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Abstract—In different wireless network scenarios, multiple
network entities need to cooperate in order to achieve a common
task with minimum delay and energy consumption. Future
wireless networks mandate exchanging high dimensional data
in dynamic and uncertain environments, therefore implementing
communication control tasks becomes challenging and highly
complex. Multi-agent reinforcement learning with emergent com-
munication (EC-MARL) is a promising solution to address high
dimensional continuous control problems with partially observ-
able states in a cooperative fashion where agents build an emer-
gent communication protocol to solve complex tasks. This paper
articulates the importance of EC-MARL within the context of
future 6G wireless networks, which imbues autonomous decision-
making capabilities into network entities to solve complex tasks
such as autonomous driving, robot navigation, flying base stations
network planning, and smart city applications. An overview of
EC-MARL algorithms and their design criteria are provided
while presenting use cases and research opportunities on this
emerging topic.

Index Terms—Future wireless networks, emergent communi-
cation, multi-agent reinforcement learning.

I. INTRODUCTION

AS we are in the early phase of the development of the
6th generation (6G) of wireless networks, researchers

from academia and industry are investigating what 6G will
be [1]. There is a common consensus that at least two
dimensions will characterize 6G, namely sensing and artificial
intelligence (AI). With AI-enabled devices that perform both
sensing and communication, processing and communicating a
large amount of data becomes challenging. The post-Shannon
communication paradigm allows for efficient encoding and
transmission of semantic information. Instead of guaranteeing
the correct reception of data symbols regardless of their
meaning and semantics, the post-Shannon paradigm focuses
on the meaning of data and how they affect specific actions
for downstream tasks. One approach for addressing such a
problem is to transmit only relevant data samples that are
decoded at the receiver. The relevance of data refers to their
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meaning and/or their importance in achieving a certain goal.
Another approach concerns communication between intelli-
gent agents, where communication is no longer hard coded
into a classical vocabulary but the message representation is
learned through interaction. In this case, semantics and their
task-oriented encoding emerge from play and interaction. This
paradigm is referred to as emergent communication.

The problem of intelligent agents interacting with an en-
vironment to collaboratively complete a task can be solved
within the framework of multi-agent reinforcement learning
(MARL), where reinforcement learning (RL) is used by each
agent to interact with the environment and learn a policy to
maximize its cumulative reward. A large number of telecom-
munications scenarios in sensor networks, internet of things
(IoT) networks, traffic control, resource management, and
smart factories applications can be represented within this
framework.

Oftentimes, interaction with an environment may not be
enough, in which agents need to communicate with each other
to solve a common task. In fact, communications in MARL
are needed in the following cases i) partially observable
environment: each agent has only access to its observation
and not to the current state of the whole environment, so
in case of common reward among agents, they need to
exchange information about their own observation which is
not always available for other agents ii) non-stationarity of the
environment: from each agent’s perspective, since the resulting
reward from an action taken by an agent depends on the
decision making of other agents, in case of common reward,
it is in the best interest of the agents to share their decision
making policies with other agents. Moreover, the physical
environment can also be rapidly changing, hence agents need
to communicate to compensate for their partial knowledge of
the environment by exchanging their observations, policies and
experience, which allows the agents to coordinate toward the
execution of the common task. Without communication, agents
and their decisions are considered part of the environment from
an agent’s perspective, and classical MARL algorithms show
poor performance and usually fail to converge to an optimal
policy.

In this paper, we motivate the importance of the emergent
communication (EC)-MARL framework in solving 6G use
cases in an environment characterized by intelligent agents,
high-dimensional sensing data and limited communications
resources. We show why emergent communication is more
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efficient than being hard-coded in future wireless networks,
and present the general framework of EC-MARL, with the
most popular algorithms and their design criteria. Moreover,
we define use cases and present challenges and open directions
for the research community.

II. WHY EC-MARL FOR 6G COMMUNICATIONS?
It is expected that 6G networks will feature communication

devices with AI and sensing abilities. When a large number
of such devices are deployed, communication between them
can be limited because of the following constraints: i) en-
ergy constraints: when communicating agents refer to energy-
constrained devices such as low-power wide area networks
(LPWAN) devices, sensors and unmanned aerial vehicles
(UAVs) that run on a limited lifetime battery, the amount of
data agents can exchange with each other is limited; ii) low la-
tency requirements: in some applications such as autonomous
driving and UAV swarm control, exchanging information in
a timely manner between agents is important. Encoding large
observations in short messages would contribute to reducing
communication latency; iii) spectrum limitation: When a large
number of sensors is deployed or high dimensional sensing
information is involved e.g. 3D videos, High definition (HD)
images, exchanging raw sensing data requires large band-
widths and may not be affordable when a large number of
agents is transmitting.

To tackle these communication constraints in multi-agent
systems, agents need to exchange only the relevant infor-
mation to solve the task instead of transmitting the whole
observation as is the case in classical MARL systems. How-
ever, in complex environments where different parameters are
involved, it is challenging to analytically extract the relevant
information, as the agent is not aware of which part of the
sensing data is correlated with the task to be completed, and
which part of the data would be helpful for other agents, due
to the partially observable environment from each agent’s per-
spective. However, this relevant information can be learned by
interaction with other agents i.e., instead of transmitting fixed
communication messages, their goal-oriented representations
that encode the most relevant useful information from the raw
sensing data can be learned.

Unlike communication protocols that are manually coded
and exchanged between multiple agents to coordinate for
executing some task, EC-MARL considers algorithms that
learn both policies and communication protocols by each
agent. Each agent takes an action and learns a communication
message based on his observation as well as communication
messages transmitted by other agents. Transmitted messages
are not hard coded or specified but learned. This learned
communication has been referred to as the emergence of
communication [2].

Emergence of communication in MARL systems can be
studied within the new paradigm of semantic and goal-oriented
communications [3]. At the beginning of the simulation,
agents exchange dummy messages without any meaning.
Through interaction, semantics and meanings emerge from
communication messages [2], i.e. agents do not transmit pre-
determined messages, but learn a task-oriented message by

encoding the most meaningful information to the execution
of the task at hand. Nevertheless, it is not always easy or
possible to understand the meaning of the learned message
by an external observer, decoding emergent communication
protocols is currently an active research area.

III. EC-MARL FRAMEWORK

EC-MARL is an application of MARL in partially-
observable Markov games, in environments where agents have
a joint communication channel. In every state, agents take
actions given partial observations of the true world state,
including messages sent on a shared channel, and each agent
obtains an individual reward after interacting with the envi-
ronment. Through their individual experiences interacting with
one another and with the environment, agents learn to broad-
cast appropriate messages, interpret messages received from
peers, and act accordingly. Formally, a multi-agent system
considers an N -player partially observable Markov game G
defined on a finite state set S, with action sets

(
A1, . . . ,AN

)
and message sets

(
M1, . . . ,MN

)
. An observation function

O : S ×{1, . . . , N} → Rd defines each agent’s d-dimensional
restricted view of the true state space. On each time-step
t, each agent i receives as an observation oit = O (St, i),
and the messages mj

t−1 sent in the previous state for all
j ̸= i. Each agent i then selects an environment action
ait ∈ Ai and a message action mi

t ∈ Mi. Every agent gets
an individual reward rit : S × A1 × · · · × AN → R for
player i. In the fully cooperative setting, each agent receives
the same reward at each timestep, rit = rjt ∀i, j ≤ N ,
which is denoted by rt. Each agent maintains an action
and a message policy from which actions and messages
are sampled, ait ∼ πi

A

(
· | xi

t

)
and mi

t ∼ πi
M

(
· | xi

t

)
, and

which can be in general functions of their entire trajectory
of experience xi

t :=
(
m0, o

i
1, a

i
1, . . . , a

i
t−1,mt−1, o

i
t

)
, where

mt =
(
m1

t , . . . ,m
N
t

)
. These policies are optimized to max-

imize discounted cumulative joint reward J (πA,πM ) :=
EπA,πM ,T

[∑∞
t=1 γ

t−1rt
]

(which is discounted by γ < 1 to
ensure convergence), where πA :=

{
π1
A, . . . , π

N
A

}
, πM :={

π1
M , . . . , πN

M

}
.

The objective J (πA, πM ) is a joint objective, thus the
learning model is that of a centralized learning and decen-
tralized execution, where every agent has its own experi-
ence in the environment and using the experiences of the
other agent, it optimizes the objective J with respect to its
own action and message policies πi

A and πi
M ; there is no

direct communication between agents other than using the
actions and message channel in the environment. It should
be noted that applying independent reinforcement learning
to cooperative Markov games results in a problem for each
agent which is non-stationary and non-Markov, and presents
difficult joint exploration and coordination problems. Thus,
emergent communication becomes crucial to handle the perfect
coordination between the agents. Figure 1 summarizes the
framework of learning communication protocol for an EC-
MARL algorithm.
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Figure 1. Emergent communication in multi-agent reinforcement learning (EC-MARL). Agents learn new communication protocols and how to transmit
relevant messages to other agents in order to solve complex tasks.
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IV. EC-MARL ALGORITHMS

A. Designing EC-MARL Algorithms

In the literature [4], we find different EC-MARL algorithms
that are designed differently mainly according to the following
criteria:

a) To whom?: each agent needs to define to whom he
needs to transmit the message. The agent can

• Broadcast the message to all agents;
• Multicast the message to specific agents for example its

closest neighbors in terms of distance, quality of the
channel, or agents to whom the information is relevant.
Agents can also specify to target a specific group of
agents e.g. agents located on the first floor;

• Unicast the message to a specific agent.

In some scenarios, agents would communicate through a relay
agent that would gather the messages and relay them to target
agents. This case can also be considered as a unicast trans-
mission. Note that the network of agents can be heterogeneous
where each agent has a different communication type, which
can also change over time depending on the message to
communicate and the context of communication.

b) What?: agents need to decide what information to
exchange

• Existing context: agents encode their past observations
and actions into messages;

• Predicted context: agents encode their intended action and
predicted future actions e.g. car intends to brake.

A combination of both can also be encoded and communicated
to other agents.

c) How?: agent receiving messages from other agents
can

• Concatenate the messages;
• Apply linear combination: e.g. summation, averaging. A

weighted linear combination of messages can give more
value to messages of specific agents. For example in
search and rescue missions, messages from neighboring
agents are more relevant.

d) Where?: where is the communication integrated in the
learning process? The message can be seen as an additional
observation that the agent can take as an extra input to the
value function, or to the policy function or to both.

• Value level: most works based on Deep-Q-network algo-
rithm take the messages as input into the value function
or the critic network [5], [6].

• Policy level: messages can also be incorporated into
the policy function or the actor-network by conditioning
the agents’ next action on the received messages. Each
agent will no longer act independently by exploiting
information from other agents.

• Policy level and value level: another way to incorporate
the messages is to consider them as extra input for both
the policy model and the value model. The messages can
also be combined with the observations to generate new
internal states to be considered for both the actor and the
critic networks.

e) When?: each agent needs to decide whether to trans-
mit a message or skip communications. The decision may
be based on the observation and whether there is relevant
information to transmit. This decision can be learned as well.
Agents can also decide to communicate in multiple rounds
before taking action.

f) Training scheme:
• Centralized learning: the central unit receives experiences

from all agents and learns actions. Most EC-MARL
works do not consider this scheme;

• Decentralized learning: agents have independent training
processes;

• Centralized learning and decentralized execution
(CTDE): communication between agents is not restricted
during learning, which is performed by a centralized
algorithm; however, during the execution of the learned
policies, agents can communicate only via a limited-
bandwidth channel. Indeed, each agent i holds an
individual policy that maps local observations to a
distribution over individual actions. During training,
agents are endowed with additional information, which
is then discarded at test time.

Note that algorithms should also take into consideration
communication constraints: i) Limited resources: mainly lim-
ited spectrum and energy: algorithms can consider short mes-
sages e.g. RIAL and DIAL transmit 1-symbol messages [5].
We can also allow only a subset of agents to transmit their
messages depending on their relevance because of the limited
time and frequency and spatial resources. ii) Noisy channel:
algorithms should be designed to take into consideration the
noise introduced by the communication medium. Moreover,
communication messages can take the form of continuous
vectors, or discrete ones using a sequence of symbols.

In Table I, we summarize some popular EC-MARL algo-
rithms with respect to the presented design criteria. All the
presented algorithms follow the CTDE training scheme. Note
that, the presented algorithms are tested in different simulation
environments, and a fair comparison in terms of performance
and complexity needs to be conducted by testing all algorithms
in the same simulation environment.

B. Overview of EC-MARL Algorithms

In the literature of EC-MARL algorithms, we find the differ-
entiable inter-agent learning (DIAL) [5] which is based on the
combination of centralized learning and Q-networks that make
it possible, not only to share parameters but to push gradients
from one agent to another through the communication channel.
Thus, while the reinforced inter-agent learning (RIAL) is
end-to-end trainable within each agent, DIAL is end-to-end
trainable across agents. Letting gradients flow from one agent
to another gives them richer feedback, reducing the required
amount of learning by trial and error, and easing the discovery
of effective protocols.

CommNet algorithm [4] is based on a continuous commu-
nication channel i.e. continuous vector, which allows train-
ing using back-propagation. It uses a single network for all
agents where multiple communication messages are broadcast
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between agents at each time step to decide the actions of all
agents. The algorithm does not allow distributed execution,
and assumes perfect communication conditions.

Multi actor attention critic (MAAC) [7]) is an attention-
based actor-critic algorithm where an attention model is
learned to share the information between the policies. More-
over, this approach is able to train policies in environments
with any reward setup and different action spaces for each
agent.

Targeted multi-agent Communication for collaborative
multi-agent deep reinforcement learning (TarMAC) [8] allows
each individual agent to actively select which other agents to
address messages to. This targeted communication behavior
is operationalized via a simple signature-based soft attention
mechanism: along with the message, the sender broadcasts a
key that encodes properties of agents the message is intended
for, and is used by receivers to gauge the relevance of the
message.

Individually inferred communication (I2C) [4] is a simple
effective model to allow agents to learn a prior for agent-
agent communication. Indeed, each agent exploits its learned
prior knowledge to understand which agent is relevant and
influential by just local observation. The learning of the prior
knowledge is done through causal inference via a feed-forward
neural network that maps its local observation to a belief about
who to communicate with.

In [9], a novel architecture that incorporates an intelligent
scheduling entity in order to facilitate inter-agent commu-
nication in both limited-bandwidth and shared medium ac-
cess scenarios has been proposed. The architecture is called
”SchedNet” which consists of an actor-network, a scheduler
and a critic network.

Asynchronous advantage actor critic with communication
(A3C2) [10] is an architecture allowing to learn messages
between agents via a message neural network. A3C2 can be
seen as an augmentation of the classical A3C by adding a
neural network message to each agent. The objective function
of the message neural network is directly linked to the policy
network. by the message neural network.

MAGIC [4] is an EC-MARL architecture based on a graph-
attention communication protocol in which a scheduler is
used to communicate and whom to address messages to,
using a message processor through graph attention networks
(GATs) with dynamic graphs to handle communication signals.
The scheduler consists of a graph attention encoder and a
differentiable attention mechanism, which outputs dynamic,
differentiable graphs to the message processor, which enables
the scheduler and message processor to be trained end-to-end.

For more details on EC-MARL algorithms, the interested
reader can refer to the survey in [4].

C. Lessons learned from EC-MARL Literature Review

The literature review on EC-MARL algorithms reveals a
diverse and innovative set of approaches to facilitate commu-
nication among agents. Key lessons include the importance of
allowing gradients to flow between agents, as seen in DIAL,
to reduce learning through trial and error and enhance the
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Figure 2. Emergent communication increases the percentage of served users
in a flying base station network using the targeted multi-agent communication
(TarMAC) algorithm. Three flying base stations are deployed in the environ-
ment and try to coordinate in order to find the optimal location for maximizing
the coverage for 30 ground users. When learning a communication protocol
and exchanging messages, the reward gets higher than when using a classical
MARL algorithm without communication or when a random decision-making
algorithm such as a random walk is used. Communication size refers to the
length of the learned communication message.

discovery of effective communication protocols. Algorithms
like CommNet utilize continuous communication channels for
synchronous execution, while others, like TarMAC, enable
targeted communication via attention mechanisms. The incor-
poration of scheduling entities, such as in SchedNet, provides
a solution for communication in limited-bandwidth scenarios.
Approaches like I2C demonstrate the power of local observa-
tion for determining communication needs. MAGIC, utilizing
graph attention networks, demonstrates a flexible architecture
that adapts to communication demands dynamically. Across
these methodologies, there is an underlying theme of striving
for balance between centralized control and distributed exe-
cution, the implementation of attention mechanisms, and the
use of graph-based models to build more robust and effective
communication protocols. This body of work highlights the
breadth of strategies available to enhance collaboration and
adaptability in multi-agent systems, emphasizing the centrality
of efficient and effective communication.

D. Distributed Coordination in EC-MARL

All reviewed algorithms are based on centralized execution,
potentially limiting scalability and robustness in certain ap-
plications. In a multi-agent network, distributed coordination
is critical to enable agents to act independently without re-
lying on a central entity. Distributed algorithms can enhance
efficiency, fault tolerance, and adaptability to varying envi-
ronments. To achieve distributed algorithms in EC-MARL,
several approaches can be considered such as local commu-
nication protocols, decentralized training, swarm intelligence
techniques, or hybrid centralized-decentralized techniques.

V. POTENTIAL USE CASES AND APPLICATIONS

There is a significant amount of 6G-enabled emerging use
cases and applications that fit into the framework of EC-
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Table I
MAIN DEEP REINFORCEMENT LEARNING ALGORITHMS WITH EMERGENT COMMUNICATION.

Architecture To whom What How Where When Tested
scenarios

Available
code Limitations

RIAL [5] Broadcast Existing
context Concatenation Value level One

round
Switch riddle

MNIST games - no gradients are
passed between agents

DIAL [5] Broadcast Existing
context Concatenation Value level One

round
Switch riddle

MNIST games - Discrete messages

CommNet [4] Broadcast Existing
context

Linear
combination Policy level One

round

Combat task
bAbI toy QA

Traffic-junction
CommNet Code Scalability

TarMAC [8] Broadcast Existing
context

Weighted
linear

combination

Policy and
value level

One
round

SHAPES dataset
Traffic junction
House3D
Predator-prey

- Spatial memory,
scalability

I2C [4] Unicast Existing
context

Weighted
linear

combination
Policy level One

round

Predator-prey
Traffic-junction

Cooperative navigation
I2C code Causal inference

SchedNet [9] Broadcast Existing
context Concatenation Policy level Multiple

rounds

Predator-prey
Starcraft: Broodwars

Traffic-junction
SchedNet code Real-world noise

A3C2 [10] Broadcast Existing
context

Linear
combination

Policy and
value level

One
round

Blind groupUp
Navigation

Predator-prey
Traffic-junction

A3C2 Code Scalability

MAGIC [4] Unicast Existing
context

Weighted
linear

combination

Policy and
value level

Multiple
rounds

Predator-prey
Traffic-junction

Google research football
MAGIC Code Spacial memory

MARL. The typical scenario is when AI agents are deployed
in a partially observable environment to collaboratively solve
a complex task. A fully observable environment or a non-
rich environment may not require communication or it may be
enough to deploy short hard coded communication messages.

a) UAV sector: UAVs are always limited by a pre-
defined flying time which represents a strict energy constraint,
that does not allow them to exchange long communication
messages. High dimensional messages may be required when
the 6G network is deployed at high frequency with a large
number of antennas. Therefore, when multiple UAVs are
deployed in the field to complete collaboratively a common
task, EC-MARL can be a suitable framework to learn jointly
the best actions as well as encoded communication messages
to be exchanged between agents. A clear application is when
UAVs are deployed as flying base stations to efficiently serve
users and to maximize the network capacity, each energy-
constrained UAV needs to optimize its location depending on
its observation (e.g. users’ demands, users’ location, channel
conditions) as well as the messages received by other agents
that give information about the non-observable environment.
Figure 2 shows how the reward increases with the communica-
tion size in a simple flying base station setup using parameters
of Table II.

Collaborative UAVs can also be deployed in field coverage,
surveillance and target tracking in military applications for
example. In these scenarios, not only energy-efficient com-
munications between UAVs is needed but also it is crucial
to communicate the information in a timely manner, which
requires learning short communication messages.

b) Automotive sector: the most striking example in the
automotive sector is the autonomous driving scenario where
vehicles must coordinate with each other to achieve safe
driving and fluid traffic. In [10], an EC-MARL algorithm

Table II
UAV USE CASE SIMULATION PARAMETERS.

Parameter Description Value

Altitude UAV flight altitude 40 m
Speed UAV flight speed 45 ms−1

Maximum Time-step predefined maximum flight time 120
Carrier frequency - 2 GHz
Number of users - 120
Number of UAVs - 5
UAVs Capacity Nb of users served by a UAV 12
Grid size Served geographical area size 700× 700 m2

Transmit power - 46 dBm
Average noise power - -99 dBm
Architecture EC-MARL architecture MAGIC [4]
Action pace Type of actions Discrete
Number of actions Space action size 5
Discount factor RL algorithm γ-discount factor 0.9
Number of epochs - 100

has been tested in a traffic intersection simulator which is a
partially observable environment where multiple intersections
are crossed by vehicles. It has been shown through simula-
tions that learned communication between agents makes the
traffic fluid without collisions. Other applications from the
automotive sector would also benefit from the EC-MARL
framework such as traffic light control systems, platooning,
and fleet management. In intelligently connected vehicle net-
works, vehicles sense their environment and upload these data
to the roadside units in order to make decisions about complex
tasks such as traffic flow, congestion control, and trajectory
planning. In these networks, onboard vehicle sensors capture
a large amount of sensing data e.g. images, videos, and traffic
situations. Therefore, transmitting raw sensing data is not
viable when a large number of vehicles are deployed, and
emergent communication in this MARL framework can make

https://github.com/facebookarchive/CommNet
https://github.com/PKU-AI-Edge/I2C
https://github.com/rhoowd/sched_net
https://github.com/david-simoes-93/A3C2
https://github.com/CORE-Robotics-Lab/MAGIC
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such networks more efficient.
c) Smart factories and robotics: in these environments

where complex tasks need to be completed such as auto-
motive production, navigation, and control tasks, EC-MARL
allows low latency communications by encoding efficiently
exchanged communication messages. In multi-agent naviga-
tion, agents that need to complete cooperative navigation tasks
have been able to learn emergent communication protocols
when deployed in different grid-world environments, and have
successfully completed the navigation task [10]. In addition,
in disaster scenes such as buildings on fire, earthquakes,
wars, agents need to coordinate between them in order to
cover and search the whole area for rescue missions. Such
environments are hostile, constantly changing, and agents
need to communicate between them to complete this complex
task. Sometimes the target may be moving, which makes the
task even more complex. An example of such search and
rescue missions has been studied in [8] using the House3D
framework.

In addition, in [10], EC-MARL has been tested on a noisy
learned communication and has been shown to be robust
against noise. Emergent communication may be more robust
against noise and interference, which enhances reliability in
6G networks.

VI. CHALLENGES AND OPPORTUNITIES

Emergent communication in MARL systems and its integra-
tion into 6G wireless networks is a nascent and complex field
that raises several open research questions and opportunities.
Next, we present some of the main challenges that will make
an impact on 6G-driven applications.

a) Scalability: a large amount of work on emergent com-
munications in the literature focuses on small-scale problems,
which may not reflect 6G network models that involve a large
number of devices and a large amount of sensing data, and
may hinder the generality of the presented conclusions. In
[11], a preliminary study has been conducted to show the
effect of scaling up the population size, the dataset size as
well as the task complexity. Several challenges emerge such
as the instability of the learning process and the generality
and guarantees of the performance. Mean field theory is one
direction to explore to handle a large number of agents.

b) Non-stationarity: In realistic communication scenar-
ios, environment dynamics and rewards are not always sta-
tionary, and since we assume stationarity in our learning al-
gorithms, they may not perform well in practical applications.
Developing EC-MARL algorithms that account for the non-
stationarity of the environment is an interesting challenge to
investigate e.g. lifelong learning systems.

c) Convergence: even for relatively simple environments,
algorithms of MARL with communications need an important
number of iterations before converging. Investigating methods
to speed up the convergence would be beneficial to save
computational resources, especially when deployed in energy-
constrained agents such as UAVs. One way that may help
speed up the convergence during the learning phase is the share
of prior knowledge of the environment and the agents. Self-
supervised learning, federated learning, and transfer learning

may also improve model convergence. Straggler’s problem
can also significantly delay the learning process and the
convergence and needs to be addressed.

d) Measuring the effectiveness of emergent communica-
tion: the challenge is to know whether exchanged messages
affect the actions taken by the agents, and to quantify this
impact. To study the effectiveness of emergent communication
in complex environments, it is not sufficient to show that
adding a communication channel leads to an increased reward
[12]. The open challenge is to define metrics in order to
evaluate the impact of an agent’s message on another agent’s
action. Some metrics have been defined in [12], but no metric
captures the full insight behind the agents’ behaviors.

e) Effect of noisy communications: most of the emergent
communication work do not consider realistic communication
settings with a practical channel model and interference. In
[10], sources of noise have been considered, but a more
realistic communication chain needs to be considered and the
effect on the emergent language needs to be studied.

f) Communication cost: Communication is costly, and
exchanging messages among agents can be expensive in some
scenarios. The value of communication should make up for
its cost. The trade-off between communication cost and partial
observation should be studied to identify in which cases and
how much communication is needed.

g) Understanding semantics of emergent communication:
agents develop a communication protocol they understand,
but as an external observer that has not been involved in
the interaction, it is difficult to decode the messages and
extract their meaning. We may only guess what the messages
might be referring to. This also opens another challenge of
evaluating machine’s communication with humans. [13] has
proposed to interpret the induced communication messages
by translating them to human language in order to facilitate
collaboration between humans and machines, another possible
way is to encourage agents to learn messages similar to natural
languages [14].

h) Compositionality, generalization and interoperability
of the communication protocol: Can agents refer to new
composite meaning e.g. high temperature, once they learned
separate concepts e.g. high and temperature? Can the learned
protocol generalize to understand new concepts based on
learning specific concepts? How can we teach a new agent
a communication protocol to be able to communicate with
other agents?

i) Learning a well-structured communication protocol:
in emergent communication, agents learn messages that com-
plete the task without imposing efficient encoding. In [15],
it has been shown that, unlike human language where more
frequent words are efficiently associated with shorter words,
agents can develop an anti-efficient encoding in emergent com-
munication, where the most frequent inputs are associated with
the longest messages, which make them easier to discriminate.

j) Emergent communication with contextual reasoning:
if agents can send messages to themselves, which will create
a recurrent network, then they can improve messages sent to
other agents through contextual reasoning. [3] shows that by
iteratively reasoning about the communication context of the
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listener agent, the length of the semantic representation of the
message to transmit can be reduced significantly.

VII. CONCLUSION

This article underscores the importance and relevance of
EC-MARL for designing future 6G wireless networks, and
shows the potential of learning communication protocols. We
have shown that multiple 6G-driven applications can fit into
this framework. Since these algorithms have been tested by
the ML community in simple and controlled simulated envi-
ronments, we have highlighted several research opportunities
specific to the integration of EC-MARL into 6G systems,
which opens new research directions to the communication
research community.
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