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Abstract—Billions of IoT devices will be deployed in the
near future, taking advantage of faster Internet speed and
the possibility of orders of magnitude more endpoints brought
by 5G/6G. With the growth of IoT devices, vast quantities
of data that may contain users’ private information will be
generated. The high communication and storage costs, mixed
with privacy concerns, will increasingly challenge the traditional
ecosystem of centralized over-the-cloud learning and processing
for IoT platforms. Federated Learning (FL) has emerged as
the most promising alternative approach to this problem. In
FL, training data-driven machine learning models is an act of
collaboration between multiple clients without requiring the data
to be brought to a central point, hence alleviating communication
and storage costs and providing a great degree of user-level
privacy. However, there are still some challenges existing in the
real FL system implementation on IoT networks. In this paper,
we will discuss the opportunities and challenges of FL in IoT
platforms, as well as how it can enable diverse IoT applications.
In particular, we identify and discuss seven critical challenges
of FL in IoT platforms and highlight some recent promising
approaches towards addressing them.

Index Terms—Federated Learning, IoT

I. INTRODUCTION

The rapid advancement and expansion of the Internet of
Things (IoT) result in exponential growth of data being
generated at the network edge. Such advancement and ex-
pansion pose new challenges to the conventional cloud-based
centralized approaches for data analysis from primarily two
aspects. First, the centralized approaches no longer fit the
5G/6G era due to the extremely high communication and
storage overhead (e.g., high-frequency data from high-volume
time-series sensors such as video cameras or Lidar sensors)
for pooling data from millions or billions of IoT devices.
Second, the data being collected is increasingly viewed as
threatening user privacy. With the cloud-based centralized
approaches, user data could be shared between or even sold
to various companies, violating privacy rights and negatively
affecting data security, further driving public distrust with data-
driven applications. Therefore, a distributed privacy-preserving
approach for data-driven learning and inference-based applica-
tions is needed for efficiency and to alleviate privacy concerns.

In recent years, federated learning (FL) has emerged as
a distributed privacy-preserving solution to addressing this
pressing need. The term federated learning was first introduced
in 2016 by McMahan et al. [1]. As shown in Figure 1,
in FL, training of machine learning models for data-driven
applications is an act of collaboration between distributed
clients without centralizing the client data. The distributed and

Fig. 1: Federated Learning for Internet of Things (IoT).

collaborative nature of FL is a natural fit to the network edge
where each IoT device at the edge is an individual client.
Moreover, since the raw data collected at each IoT device are
not transmitted to others, FL provides an effective mechanism
to protect user privacy particularly in the IoT domain where
IoT sensors could directly capture data about users that contain
privacy-sensitive personal information.

In this article, we briefly explain the advantages that FL
brings to the IoT domain and discuss some of the most
important IoT applications enabled by these advantages. We
then focus on discussing some of the outstanding challenges
across systems, networking, security, practical issues in real-
world deployments, and development tools that act as the
key barriers of enabling FL for the IoT domain and the
opportunities in tackling these challenges. To distinguish our
work from existing efforts such as [2]–[5], we focus on new
challenges as well as articulating known challenges from new
perspectives which have not been discussed before. We hope
that this article could inspire new research that turns the
envisioned Internet of Federated Things into reality.

II. WHY FEDERATED LEARNING FOR IOT?

The distributed, collaborative, and privacy-preserving char-
acteristics of FL bring a number of key advantages for IoT
applications (Figure 2) as follows:

• Preserving the Privacy of User Data: In an ideal FL
scenario, each IoT device in the system would learn
nothing more than the information needed to play its role.
The raw data never leaves the devices during the federated
training process, and only the updates of the model are
sent to the central server, which minimizes the risk of
personal data leakage.

• Improving Model Performance: Due to device con-
straints, a single IoT device may not have sufficient data
to learn a high-quality model by itself. Under the FL
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Fig. 2: Advantages of Federated Learning for IoT.

framework, all the IoT devices can collaboratively train
a high-quality model such that each participant could
benefit from learning data collected by others beyond its
own data but without probing others’ private information.
Moreover, as the FL could update the local model period-
ically, the edge device could always update its model in a
time-varying manner. Thus, FL is an effective mechanism
to enhance the model performance that each individual
device cannot achieve by itself.

• Flexible Scalability: The distributed nature of FL is
able to leverage the constrained computation resources
located at multiple IoT devices across different geo-
graphical locations in a parallel manner. As edge device
hardware capability is increasing, the data size of each
individual becomes huge, and centralizing all data to the
server either wastes the computing resource at the edge
or brings pressure for wireless communication network,
which become an obstacle for the network scalability. By
attracting more devices to join the framework, FL en-
hances the scalability of IoT networks without adding an
extra burden on a centralized server due to its distributed
learning nature. In addition, within the FL framework,
there is no need for the expansive transmission of raw
IoT-collected data, which also increases the scalability
with regard to communication costs, especially for the
low bandwidth IoT networks.

III. APPLICATIONS

Benefited from the advantages mentioned above, FL has
enabled many important IoT applications. In this section, we
briefly discuss some of the most important ones (Figure 3).

A. Industry 4.0

The rapid development in the Industrial Internet of Things
(IIoT) brings several advances in information technology
applications for the manufacturing field. The concept of In-
dustry 4.0, also known as the fourth industrial revolution,
has been proposed based on the emergence of significance
for the inter-connectivity of IIoT and the access to real-time
data. With unprecedented connectivity, Industry 4.0 will bring
greater insight, control, and data visibility for the supply chain

Fig. 3: Applications of Federated Learning for IoT.

in many industries. Currently, some mature implementations
of Industry 4.0 include the Optical Character Recognition
(OCR) for the labels, smart and automatic Incoming Quality
Control (IQC), and smart Process Quality Control (PQC).
However, there are still some real-world problems challenging
the deployment of Industry 4.0. First, the amount of data
generated from a single factory may not be sufficient enough
for training a reliable model comprehensively. Second, the data
collected by the industrial IoT devices is highly related to the
commercial value, which makes privacy-preserving important.
For example, eavesdroppers may infer the capacity for manu-
facture from its electricity usage for industrial IoT users. The
federated learning framework will become an inspired solution
to address the above challenges.

B. Healthcare

As IoT devices become more pervasive in individuals’ daily
lives, the privacy of the collected data becomes a significant
matter. An example to illustrate privacy concerns is IoT E-
health. Nowadays, smart wearable devices are used to monitor
the health status of patients, such as heartbeat, blood pressure,
and glucose level. Compared to the other types of data,
personal healthcare data is most sensitive to users’ privacy and
highly restricted by government laws and regulations for any
kind of data sharing. Therefore, techniques such as FL are a
requirement for investigators and researchers to develop state-
of-the-art ML models over a fractured and highly regulated
data landscape. The ability to train machine learning models
at scale across multiple medical institutions without pooling
data is a critical technology to solve the problem of patient
privacy and data protection. Successful implementation of
federated learning in healthcare could hold significant potential
for enabling precision medicine at a large scale, helping match
the right treatment to the right patient at the right time.

C. Smart Home

Smart home systems enabled by consumer IoT devices
have achieved great popularity in the last few years as they
improve the comfort and quality of life for the residents. The
wireless smart IoT home devices, such as smart bulbs, smart
doorbells, and smart cameras, are capable of communicating
with each other and controlled remotely by smartphones
and microcontrollers. The implementations of Wake-Up-Word
speech recognition and Automatic Speech Recognition (ASR)
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on IoT devices bring great convenience to everyday living, and
people now tend to rely on smart IoT gateways with intelligent
virtual assistants to control their home hands-free. FL has thus
become a critical technology that is able to improve the on-
device speaker verification while reducing the risk of raw data
leakage.

D. Smart City

IoT-enabled smart cities are bringing significant advance-
ments by making city operations efficient while improving
the quality of life for citizens. Various IoT devices enable
city managers to control the physical objects in real-time
and provide intelligent information to citizens in terms of
the traffic system, transportation, public safety, healthcare,
smart parking, smart agriculture, and so on. Due to the
concerns of data privacy, smart infrastructures are moving to
compute resources close to where data reside, which makes FL
framework suitable for deployment. For example, the FL-based
smart grid system enables collaborative learning of power
consumption patterns without leaking individual power traces
and contributes to the establishment of an interconnected and
intelligent energy exchange network in the city.

E. Autonomous Driving

Along with the advancement of the vehicular IoT, au-
tonomous driving technology is making its way into everyday
cars. For a reliable self-driving system, it needs frequent
real-time communication with a multi-access communication
environment. Also, the spatial and temporal changes of the
vehicular environment require an intelligent approach that can
evolve with the change of environment. For the traditional
centralized-over-cloud method, the driving system needs to
transmit a large amount of raw data to the server, which would
cause potential privacy leakage. The communication overhead
triggered by the large-size data transmission and limited
network bandwidth may also lead the driving system to not
being able to respond to the real-time spatial changes precisely.
Adopting federated learning in vehicular edge computing for
autonomous driving has thus become a promising direction
to mitigate the above challenges. With FL, each vehicle only
needs to transmit a limited size of data to the cloud and can
adapt to real-time local changes more sensitively.

F. Metaverse and Virtual Reality

The metaverse is a hypothesized next generation of the
internet, providing fully connected, immersive, and engaging
online 3D virtual experiences through conventional personal
computing, as well as virtual and augmented reality devices. In
metaverse, users own their avatars and can interact with virtual
objects and other participants. One of the fundamental building
blocks of the metaverse is the digital twins duplicated in virtual
environment that reflect the real-time physical world status.
The connection between the virtual and physical world is tied
by the data collected from IoT devices. Federated learning is a
promising solution to enable collaboration between edge and
server for better global performance and also boost the security

Fig. 4: Challenges of Federated Learning for IoT.

and privacy of the metaverse. For example, the eye tracking
or motion tracking data collected by the wearables of millions
of users can be trained in local devices and aggregated via an
FL server. Hence, users can enjoy services in the metaverse
without leaking their privacy.

IV. CHALLENGES AND OPPORTUNITIES

To realize the full potential of FL in the applications
mentioned above, we have identified seven challenges that
act as the key barriers of enabling FL on potentially bil-
lions of IoT devices. These challenges come from 1) the
limited resources of the IoT devices, 2) limited network
bandwidth available at the edge, 3) intermittent connectivity
and availability commonly occurred in real-world settings, 4)
the diversity of IoT devices across their available resources, 5)
the temporal dynamics after deployments, 6) how to protect
from the adversarial attacks and aggregate client information
securely, and 7) the lack of standardization and system devel-
opment tools in the community. In the following, we describe
these challenges followed by the opportunities that have high
promise to address those challenges.

A. Limited On-device Resources

The deployment of FL on the network edge is severely
impeded by the limited resources of the IoT devices. Existing
machine learning models, especially deep neural networks,
are known to be computation-intensive, which presents strict
requirements on hardware and may result in low training
efficiency on edge devices. Thus, developing customized and
specialized hardware for machine learning applications on the
edge is a promising direction to accelerate inference and train-
ing tasks while using much less energy compared with general-
purpose processors. Edge devices have limited resources not
only in terms of computation but also in terms of memory for
storage and data access. Recent neural network architectures
require accessing a vast amount of memory locations for
storing not only model weights and parameters but also the
intermediate results produced by the computations. Therefore,
a significant challenge for processing neural network models



4

on a resource constraint device is reducing the memory
accesses and keeping the data on-chip as to avoid costly reads
and writes to the external memory modules. Finally, in contrast
to servers with CPUs and GPUs that can use a substantial
amount of power, edge devices with embedded processors have
a limited energy budget, which further imposes restrictions on
the hardware performance. Despite the fact that current edge
devices are increasingly powerful, training some deep learning
models on-device is still time-consuming and inefficient.

To make models more applicable for the edge environ-
ment, researchers mainly focus on two research directions:
design lightweight and hardware-friendly models/algorithms,
and compress existing models to obtain thinner and smaller
models, which are more computation and energy-efficient. As
an example, FedMask [6] is proposed as a joint computation
and communication-efficient FL framework. By applying Fed-
Mask, each device can learn a heterogeneous and structured
sparse binary mask; based on the mask, it is able to gener-
ate a sparse model with reduced computation cost, memory
footprint, and energy consumption. However, this approach is
hardware-agnostic; to further reduce the resource demands of
federated training, we envision that the approach of hardware
and algorithm co-design, which sparsifies the model by tak-
ing the IoT hardware architecture into consideration during
federated training, is a promising future direction.

B. Limited Network Bandwidth

Communication bottleneck is considered one of the major
challenges in an FL-based IoT environment. Currently, most
IoT devices communicate using wireless networks whose
bandwidth is much smaller than wired network bandwidth in
datacenters. For example, under a smart home scenario, the
sum of the overall networking bandwidth is constant for the
whole IoT system, no matter how many devices are connected.
As more devices join the system, the communication problem
is advent when clients possess different resources allocations.
The limited network bandwidth not only makes the commu-
nication between clients and the server inefficient but also
triggers the presence of straggler clients, which fail to share
their local updates with the server during the communication
round. They both serve as the bottlenecks for the performance
of FL deployment in the large-scale IoT scenario.

To reduce the bandwidth demand during federated training,
methods such as gradient compression have been heavily
explored. However, these methods compromise the training
quality to gain training efficiency. Mercury [7] proposed a
sampling-based framework that enables efficient on-device
distributed training without compromising the training quality
as a new inspiration for solving this challenge. In addition,
Chen et al.’s work [8] formulates the bandwidth resource
allocation and user selection problem during training federated
learning models as an optimization problem whose goal is
to minimize the training loss while meeting the delay and
energy consumption requirements. Liu et al. also proposed
a client-edge-cloud hierarchical aggregation framework as a
communication resource-efficient method to operate the fed-
erated learning in edge computing [9]. Each client is able to

offload its data samples and learning tasks from its device to
the edge in proximity (e.g., edge gateway at home) for fast
computation in the client-edge-cloud paradigm, which allows
multiple edge servers to perform partial model aggregation.
These works proposed promising and orthogonal techniques
to reduce the bandwidth demand in the context of IoT. We
envision that those techniques can be combined together in
the scenario where IoT devices are confronted with extremely
limited network bandwidth.

C. Intermittent Connectivity and Availability

Apart from the previous challenge of bandwidth limitations,
the intermittent connectivity of the IoT devices signifies an
unstable network connection that drops the device out of the
system in the middle of the training round. Especially in
large-scale IoT systems, the dropout problem followed by the
intermittent connectivity and availability of various devices
will become a serious obstacle for the FL framework to
efficiently manage and schedule clients. Currently, most of
the FL studies are based on the synchronous update at the
server, which implies that the server will not start the model
aggregation until it receives the information sent from the
slowest client. However, in real-world settings, due to the
unbalanced communication abilities and training data distribu-
tion, the local training speed varies from device to device, and
even some clients will be temporarily disconnected during the
training phase, which makes the synchronous update nearly
impossible. Also, not all of them will be simultaneously
available for FL updating. In the asynchronous FL scenarios,
a client could join the active learning group even in the middle
of the training progress, which endangers the convergence of
the federated training.

To address this challenge, some researchers proposed an
asynchronous aggregation scheme with the implementation of
coding theory to resist the stragglers in the FL system. In
[10], an asynchronous aggregation protocol known as FedBuff
has been proposed to mitigate stragglers and enable secure
aggregation jointly. Specifically, the individual updates are not
incorporated by the server as soon they arrive. Instead, the
server will keep receiving local updates in a secure buffer of
size K, which is a tunable parameter, and then update the
global model when the buffer is full. However, in real-world
settings, IoT devices are by nature heterogeneous with diverse
computing speeds. IoT devices with higher computing speed
would be able to send in their local updates faster than IoT
devices with slower computing speed, which inevitably leads
to training bias. We envision that an asynchronous approach
that can take the heterogeneity of IoT devices into account
could be a better and promising solution.

D. System Heterogeneity

Within cross-device settings, clients under the FL frame-
work have diverse system metrics in terms of both hard-
ware and software. Various devices with different hardware
architectures or even different device vendors are used to
perform the learning tasks in different operating systems and
different software APIs. Clients may choose different deep
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learning frameworks such as TensorFlow, PyTorch, and Caffe
to train the local models, resulting in different model formats
for aggregation. All the diversities have not only posed a
significant challenge to system design but also exacerbated the
asynchronous communication problem as mentioned above.
Moreover, in IoT settings, the data collected by different
devices can be very different in terms of the feature and
dimensions, and various types of devices can also have differ-
ent temporal and spatial preferences for their data collection,
which may create a discrepancy in the local data structure
among all the participants under FL framework. For example,
a surveillance camera will record videos in real-time (24x7
hours), while the data generated by a doorbell is intermittent.
However, the central server could not examine the impact of
the data heterogeneity until the training is done.

An FL framework for IoT should enable graceful adaptation
of the data and compute load across different devices based
on their resource availability. To address this challenge, we
envision that the training quality and speed will be improved
if we can determine the heterogeneity and make adjustments
accordingly before the training starts. Diao et al. [11] proposed
a heterogeneous FL framework that can produce a single
global inference model from training heterogeneous local
models on the clients. It is the first time to challenge the
underlying assumption of existing work that local models have
to share the same architecture as the global model, which
inspires a solution to address the system heterogeneity among
IoT devices.

E. Temporal Dynamics and Continual Learning
IoT sensing devices will, by their very nature, continuously

collect new data, which will be used to update the model for
lifelong or continual learning. With the objective of keeping
providing services accommodating to newly collected data, the
continued model update training poses a new challenge for
resource-limited IoT devices. Specifically, as most of the IoT
devices are memory-limited, their memory resources are not
sufficient enough to handle both model inference and training.
Furthermore, the lack of sufficient memory to keep past
collected data may exacerbate catastrophic forgetting, which
is one of the most critical problems in continual learning.

To address this challenge, we envision that the light-
weighted machine learning engine is needed to reduce the
memory consumption for on-device training. As an example,
FedGKT [12] is a potential method to reduce the train-
ing memory footprint for efficient on-device learning. With
FedGKT, IoT devices could transfer knowledge from many
compact CNN models to a large CNN at a cloud server, which
reformulates FL as a group knowledge transfer training model
for the large-size model training on resource-constrained edge
devices. To avoid catastrophic forgetting, we envision the use
of clustering approaches that identify and store a few core data
samples from each time interval. Moreover, leveraging IoT
“Hubs” that can store non-sensitive/public datasets to inject
memory in the training system is another promising solution.
Furthermore, approaches that can detect temporal distribution
shifts at each IoT node to determine when to update the model
would also be needed.

F. Trustworthiness

In practical deployment, IoT devices are attractive targets
for adversaries seeking to launch attacks such as phishing,
identity theft, and distributed denial of service (DDoS). With
the expansion of the IoT networks, the potential traffic volume
of IoT-based DDoS attacks is reaching unprecedented levels,
as witnessed during the Mirai botnet attack leveraging infected
webcams and home routers. Attacks through the Internet have
raised awareness of the need for IoT risk assessment and
security, e.g., in fields such as healthcare. Even though these
attacks could be easily defended by installing security patches,
many IoT devices lack the requisite computation resources to
do so. Moreover, within a cross-device system setting, it is
difficult to identify whether the coming participant is malicious
or not before it joins the system. Therefore, it is crucial for
the IoT system to detect malicious or broken IoT devices
that will ruin the model training with limited resources. To
address this challenge, one of the promising directions is to
implement a lightweight security protocol in the IoT system
for the detection of broken and malicious devices. With the
distributed nature, FL can offer an alternative approach for
IoT cybersecurity by protecting the system from malicious
attacks as close as possible to the IoT devices. DIoT [13]
is the first system to employ an FL approach to anomaly-
detection-based intrusion detection in gateways to IoT devices
without centralizing the on-device data, where it demonstrates
the efficacy of federated learning in detecting a wider range
of attack types occurring at multiple devices.

Although FL shows its efficacy in cybersecurity for the
IoT system, the privacy leakage from on-device sensitive data
still matters as the participants share the model gradients or
weight parameters with the server during the training process,
which are derived from the participants’ private training data
as a statistical representation of the data it was trained on.
The attacker could initiate the model inversion attack on
the FL server first to achieve the individual model of each
participant, and then recover the personal training data by
inverting these personal models. One of the representative
works for the attacking above is the inverting gradients attack
[14], which proves that personal data reconstruction from
gradient information is possible in federated learning setups.
Therefore, a critical consideration in FL design is to ensure
that the server as a blackbox for aggregation that does not
learn the locally trained model of each user during model
aggregation. Currently, the state-of-the-art secure aggregation
protocols in FL essentially rely on two main principles: the
pairwise random-seed agreement between users in order to
generate masks that hide users’ models while having an
additive structure that allows their cancellation when added
at the server; and the secret sharing of the random-seeds so
as to enable the reconstruction and cancellation of masks
belonging to dropped users. The main drawback of such
approaches is that the number of mask reconstructions at
the server substantially grows as more users are dropped,
causing a major computational bottleneck. Especially for the
low-end IoT devices, the additional operator for the secure
aggregation becomes an excessive burden to the limited on-
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device computational resources. To address this challenge, one
of the promising directions is to implement lightweight and
secure aggregation protocols that could provide the same level
of privacy and dropout resiliency guarantees while substan-
tially reducing the aggregation complexity, which meets the
constraint in the IoT setting.

G. Standardization and System Development Tools

There are many concerns that the researchers need to take
into account when designing a federated learning system
on IoT networks. Issues such as different communication
APIs, dataflow models, network configurations, and device
properties have to be considered. As an emerging field, FL for
IoT has not been standardized and appropriately implemented.
Therefore, the research and development for standardization
could help expedite the widespread deployment of FL systems
on IoT networks and create an open environment for content
sharing. Additionally, in light of the complexity involved in
federated learning, researchers and industries need to fur-
ther build upon existing FL developing and benchmarking
tools such as TensorFlow Federated, PySyft, and FedML to
accommodate the scenarios of IoT applications. From the
application-level perspective, user-friendly integrated simula-
tion environments are needed to help design and evaluate
the entire FL system on a large scale of IoT networks and
its feasibility without implementing the model in real-world
settings. From the system design perspective, ideally, we are
looking for tools that can help developers accomplish system-
level tasks such as load balancing, resource management, task
scheduling, or data migrations easily.

One work of note along this direction is FedIoT [15] which
provides a mature systems-level framework that the developer
can use to deploy their federated learning applications on
CPU or GPU-enabled IoT devices, such as Raspberry Pi
and NVIDIA Jetson Nano. To make federated learning more
ubiquitous on IoT devices, we believe that researchers should
pay attention to extending the current training frameworks to
edge FL setting with awareness of the challenges mentioned
above. It is worth mentioning that current edge computing
solutions such as TensorFlow Lite, MNN, and TVM are
focusing on improving the performance and efficiency of edge
inference instead of training, much less taking FL setting into
consideration, which is an under-explored area that would
bring significant values to the federated learning and IoT
communities.

V. CONCLUDING REMARKS

The distributed, collaborative, and privacy-preserving na-
ture of federated learning makes it well suited for the IoT
domain across a wide range of applications. In this article,
we highlighted the key advantages and elaborated on some
important applications of federated learning for IoT. We have
also identified seven challenges that act as the key barriers of
enabling FL for IoT followed by discussing opportunities to
address these challenges. We hope this article acts as a catalyst
to inspire new research at the intersection of federated learning
and IoT.
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L. Xiong, Z. Xu, Q. Yang, F. X. Yu, H. Yu, and S. Zhao, “Advances
and open problems in federated learning,” Found. Trends Mach. Learn.,
vol. 14, pp. 1–210, 2021.

[3] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,
D. T. Niyato, and C. Miao, “Federated learning in mobile edge networks:
A comprehensive survey,” IEEE Communications Surveys & Tutorials,
vol. 22, pp. 2031–2063, 2020.

[4] T. Li, A. K. Sahu, A. S. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, pp. 50–60, 2020.

[5] A. Imteaj, U. Thakker, S. Wang, J. Li, and M. H. Amini, “A survey on
federated learning for resource-constrained iot devices,” IEEE Internet
of Things Journal, vol. 9, pp. 1–24, 2022.

[6] A. Li, J. Sun, X. Zeng, M. Zhang, H. Li, and Y. Chen, “FedMask:
Joint Computation and Communication-Efficient Personalized Federated
Learning via Heterogeneous Masking,” in ACM Conference on Embed-
ded Networked Sensor Systems (SenSys), 2021.

[7] X. Zeng, M. Yan, and M. Zhang, “Mercury: Efficient on-device dis-
tributed dnn training via stochastic importance sampling,” in The 19th
ACM Conference on Embedded Networked Sensor Systems (SenSys’21),
2021.

[8] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint
learning and communications framework for federated learning over
wireless networks,” IEEE Transactions on Wireless Communications,
vol. 20, no. 1, pp. 269–283, 2021.

[9] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud
hierarchical federated learning,” in ICC 2020 - 2020 IEEE International
Conference on Communications (ICC), 2020, pp. 1–6.

[10] J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. G. Rabbat,
M. Malekesmaeili, and D. Huba, “Federated learning with buffered
asynchronous aggregation,” Federated Learning for User Privacy and
Data Confidentiality Workshop At ICML, 2021.

[11] E. Diao, J. Ding, and V. Tarokh, “Heterofl: Computation and com-
munication efficient federated learning for heterogeneous clients,” in
International Conference on Learning Representations, 2020.

[12] C. He, M. Annavaram, and S. Avestimehr, “Group knowledge transfer:
Federated learning of large cnns at the edge,” Advances in Neural
Information Processing Systems, vol. 33, 2020.

https://proceedings.mlr.press/v54/mcmahan17a.html


7

[13] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, and
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