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Abstract—Image processing technology has grown 

significantly over the past decade. Its application on low-power 

mobile devices has been the interest of a wide research group 

related to newly emerging contexts such as augmented reality, 

visual search, object recognition, and so on. With the emergence 

of general-purpose computing on embedded GPUs and their 

programming models like OpenGL ES 2.0 and OpenCL, mobile 

processors are gaining a more parallel computing capability. 

Thereby, the adaptation of these advancements for accelerating 

mobile image processing algorithms has become actually an 

important topical issue. In this paper, our interest is based on 

reviewing recent challenging tasks related to mobile image 

processing using both serial and parallel computing approaches 

in several emerging application contexts. 
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multi-threading; mobile GPGPU; OpenGL ES 2.0; OpenCL 

I.  INTRODUCTION 

Image processing allows extracting the meaning of an 
observed scene from the acquired information. Nowadays, 
there is a great interest in image processing algorithms able to 
work on mobile platforms [1]. Indeed, incorporating image 
processing capabilities on mobile devices open new 
opportunities in different application contexts such as 
augmented reality, visual search, object recognition, and so on. 
However, the high computational complexity of some image 
processing algorithms and both their long processing time and 
energy consumption prevent them from being effectively used 
in real-time mobile applications. Thus, the practice of these 
algorithms on such a device is still a challenging task since 
these devices are typically limited by: power supply, battery 
capacity, energy consumption, computational power, RAM 
amount, etc.  

In the past few years, exploring the use of desktop GPUs as 
a general-purpose co-processor [2] to accelerate compute-
intensive applications has been an active research subject. 
Several speedups have been reported in the literature, 
depending on the applications, the algorithms parallelism, and 
the computing capability provided by the GPUs. Recently, 
these programmable GPUs have proved their feasibility on 
mobile devices [1], such as smartphones and tablets. In fact, 
rapid advancements of mobile computational capabilities and 
memory specifications have allowed making processor-
intensive applications more possible, which were considered 
infeasible just a few years ago. So, as the GPUs have become 

an integrated component with a multi-core architecture in 
mobile devices, researchers have explored the opportunities of 
using the low-power mobile GPUs as a general-purpose 
accelerator, similar to its role in a desktop [3], by diverting 
their limits. Therefore, General-Purpose computing on GPUs 
(GPGPU) for mobile devices has become possible [1], which 
has opened new opportunities to speed up mobile image 
processing algorithms. In addition, several emerging 
programming models – such as Open Graphics Library for 
Embedded System 2.0 (OpenGL ES 2.0) [4] and Open 
Computing Language (OpenCL) [5] – for the mobile GPGPU 
computing have become recently supported by various mobile 
processors.  

Eventually, our interest is to survey recent researches 
related to image processing running on low-power mobile 
devices in order to have a new idea about the most and least 
extensively studied application areas, algorithms and concepts 
explored for each area, improvements made by exploiting 
parallel computing, and speedups achieved using programming 
models for mobile GPGPU. Accordingly, researchers will be 
guided in their future choices. 

II. STATE OF THE ART 

A. Mobile-serial-computing approaches  

Image processing on mobile platforms has become an area 
of research that keeps an important key to future advances in 
augmented reality, visual search, object recognition, and 
several other application domains. This section will be devoted 
to present the recent works of the previously mentioned fields 
using mainly serial computation on mobile devices. 

1) Mobile Augmented Reality 

Augmented Reality (AR) is a type of virtual reality that 
allows seeing the real world and the virtual objects together by 
superimposing virtual objects upon the real world. So, the 
Mobile Augmented Reality (MAR) system is designed 
specifically for mobile platforms that must track objects, 
recognized from a database. A 2009 overview on the tracking 
history for the MAR was presented in [6]. Indeed, the MAR 
algorithms were divided into two types: the first one used 
natural features and the second one used artificial markers. 

For the first type, several MAR systems based on visual 
feature recognition and tracking [7, 8, 9, 10, 11, 12, 13] have 
been recently proposed. Most of these research efforts have 
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focused on improving the tracking speed for the MAR. In fact, 
in [7] the speed was improved by tracking Speeded-Up Robust 
Features (SURF) [14] in constrained locations. In addition, in 
[8, 9, 10, 11, 12] significant advancement were made in pose 
tracking to respond to strict real time constraints. Actually, in 
[8] two techniques for natural feature tracking from planar 
targets were presented in a real-time way. These techniques 
used an approach based on the modified descriptors: Scale 
Invariant Feature Transform (SIFT) [15] and Ferns [16]. This 
work presented the first fully self-contained natural feature 
tracking system able to track the full six degrees of freedom at 
up to 20 Hz of real-time frame rates from natural features using 
only the integrated camera phone. The latter work was first 
resumed in [9] then in [10], where a template-matching-based 
tracker was used at frame rates of up to 30 Hz on mobile 
phones of their generation. The resumed approaches increased 
the performance and the robustness of the initial approach.  

Yet, in [11] a method for real-time creation and tracking of 
panoramic maps was presented. This method ran also on 
mobile phones at 30Hz and the generated maps allowed a drift-
free rotation tracking in outdoor scenarios. Whereas, in [12] a 
real-time parallel tracking and mapping was presented with a 
monocular camera in a small workspace. That work was an 
adaptation of a simultaneous localization and mapping 
approach on mobile devices.  

However, the scalability of the MAR systems was not 
addressed by any of these last efforts. By contrast, in [13] a 
binary descriptor, called Local Difference Binary (LDB), was 
introduced to facilitate the MAR scalability. This descriptor 
was computed by using the integral image technique. For a 
large database, the LDB achieved a greater accuracy and a 
faster matching speed than the Binary Robust Independent 
Elementary Features (BRIEF) [17] descriptor. 

For the second type, few marker-based MAR systems [18, 
19] were suggested in the literature. In [18] a successor of the 
popular ARToolKit marker tracking library [20] was presented 
for the use of the AR on mobile devices such as smartphones, 
PDAs and Utra Mobile PCs. It was also called ARToolKitPlus. 
Besides, in [19] a real-time AR program was implemented on a 
smart phone by using the OpenCV library [16], the 
ARToolKitPlus and the VRToolKit [21].  

2) Mobile Visual Search 

A Mobile Visual Search (MVS) is a type of search engine 
designed specifically for mobile devices. In Mobile Image 
Search (MIS), through a query image taken with the mobile 
phone or using certain keywords, any information can be found 
on the Internet. Therefore, the content, shape, texture and color 
of the image are used to be compared to a database, and then 
the approximate results from the query are delivered. 

Various recent MVS systems have been developed to 
search for camera phone images of CD covers [22, 23, 24], 
photos [25], printed documents [26, 27, 28], locations [29, 30, 
31], and so on [32, 33]. Most of these studies were interested in 
performing a visual search on mobile devices. 

In the aim of searching for mobile images of CD covers, in 
[22] a mobile image searching method was put forward by 
consistently exploiting visual and spatial information to 

improve feature-discriminative power. Also, in [23] a CD 
cover search system was used to compare different local 
descriptors. As a result, the SIFT descriptor was broadly 
accepted as the best performed feature. However, in a low-bit 
transmission, a Compressed Histogram of Gradients (CHoG) 
[34] descriptor had an advantage over the SIFT. Nevertheless, 
in [24], an image segmentation technique was applied to a CD 
cover retrieval system on mobile devices. Given a mobile-
device image, this technique used edge detection and region 
merging mechanisms to extract the interest region from a 
complex background scene. The suggested method consisted 
in: initially, an image segmentation by a mean-shift [35] 
algorithm; next, an automatic region merging; and then, an 
object-contour extraction by the labeled regions as either 
foreground or background. Compared with other automatic 
segmentation methods and without the user interaction, the 
proposed method demonstrated its efficiency. 

However, in [25] a complete photo-to-search overview was 
given, starting with the architecture of an efficient mobile 
system until arriving at the framework of an image recognition 
algorithm. 

In the goal of searching for mobile images of printed 
documents [26], a hybrid book recognition system on a 
bookshelf was suggested for use in book management systems. 
This approach consisted of the spine recognition pipeline based 
on combining both text and image features of the book spine 
image. In the case of text-based recognition system, a high 
recall at low precision was achieved, and in the case of an 
image feature-based recognition system, a moderate recall at 
high precision was attained. In the same context, in [27] a 
mobile printed-document retrieval system was presented using 
both text and image-based features. An algorithm based on 
edge-enhanced Maximally Stable Extremal Regions (MSER) 
[36] was used for text detection, a gradient-based algorithm 
was employed for rectifying the extracted title text image 
patch, and an optical character recognition was used for 
recognition during image-feature extraction. Both text and 
image-based features were transmitted to a server. The title text 
was used to make an online search and the image-based 
features were used to check the search results. The proposed 
system was able to perform a web-scale document search using 
the title text and to achieve an accuracy of retrieved documents 
using the image-based features. The latter work was resumed in 
[28], where the system was improved by using a geometric 
verification framework incorporating both text and image-
feature information.  

In order to search landmarks and locations, the authors in 
[29] put forward a discovery of disappearance points and an 
identification of facades; whereas, the authors in [30] used a 
fusion of multiple image representations, with an aligned 
facade and viewpoint, to improve the search accuracy. 
However, the authors in [31] presented an active query-sensing 
system to help users to take the best second query for an 
ulterior location search, which was not addressed by any 
previous work. Actually, it was about an interactive mobile 
vision system.  

Similarly, in [32] a multimodal interactive image search 
system, called Joint search with ImaGe, Speech And Word 
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(JIGSAW), was described on mobile devices. This system took 
advantage of the multimodal input and multi-touch natural user 
interactions of mobile devices. The JIGSAW was deployed and 
evaluated on a real-world phone system. After that, this system 
was resumed in [33] to achieve a better gain in terms of time 
and search performance. The proposed algorithm was therefore 
called JIGSAW+ for Joint search with ImaGe, Speech And 
Word Plus. 

3) Mobile Object Recognition 

Mobile Object Recognition (MOR) is a fundamental task 
for many mobile computer vision applications, such as MAR, 
MIS, and so on. For realizing this case study, several 
researches exist in literature which allow recognizing food 
ingredients [37], characters [38], faces [39, 40, 41, 42, 43, 44, 
45, 46], objects [47, 48, 49, 50], etc. The focus investigation of 
all these studies was to prove the feasibility of performing 
object recognition systems on mobile platforms. 

Few researchers have been interested in recognizing food 
ingredients. Accordingly, in [37] a system of recipe 
recommendation on mobile devices was carried out allowing 
extracting color feature, recognizing 30 kinds of food 
ingredients, and recommending food recipes. 

Also, few researches have focused on recognizing 
characters from mobile-platform images. In order to develop a 
business card reader, in [38] a character segmentation 
technique was presented for business card images taken using a 
mobile phone camera. The proposed technique consists in 
extracting text regions from card images and segmenting them 
into characters, which was successfully implemented on a 
moderately powerful notebook. 

The practice of face detection and recognition on mobile 
platforms have become increasingly frequent in the literature 
[39, 40, 41, 42, 43, 44, 45, 46], where most of them use the 
OpenCV library. Thus, in [39] a cascade-subspace face/eye 
detector was put forward and compared to an AdaBoost [51] 
detector whose results showed that at a comparable speed the 
suggested detector could detect eyes at more precise locations. 
However, in [40, 41, 42] face-recognition systems using the 
OpenCV library were proposed. These systems are based on 
the AdaBoost algorithm for the face detection stage. A real-
time Eigenfaces algorithm [52] and a Local Binary Pattern 
(LBP) [53] were used, respectively in [40] and [41, 42], for the 
face recognition stage. Nevertheless, in [43] the face 
recognition performance was improved on a mobile phone by 
using a selective method that generated Gabor features [54] 
based on a contribution measurement got by a discriminant 
analysis. Likewise, in [44] the skin-color image segmentation 
was presented as a preprocessing stage for human-face 
detection on a mobile platform. The RGB-H-CbCr skin-color 
model introduced in [55] was applied with few minor 
adjustments for a better result. Indeed, compared with few 
other types of skin-color models, the suggested model showed 
better results of skin extraction. Nonetheless, in [45, 46] web 
services were used for improving the face recognition system 
on Android platforms. So, in [45], besides the face recognition 
process using a locally-implemented-Eigenfaces 
decomposition, a web service using SOAP messages [56] was 
also developed for a more advanced feature extraction and 

face-image classification. On the other hand, in [46] a cloud 
computing service [57] with a Representation State Transfer 
(REST) [58] communication and an Android face detector API, 
as a library, were used for performing the recognition system. 

To recognize objects, in [47] local-feature descriptors and 
their matching method were devised for recognizing registered 
objects in a real-time way. Yet, in [48] an accelerated MOR 
system was presented using an adapted version of the SURF 
which was based on two new techniques: content-aware tiling 
and gradient-moment-based orientation assignment. The first 
technique improved the data locality and reduced the memory 
traffic, whereas the second avoided the penalties caused by 
pipeline hazards. Thus, the performance and robustness of the 
suggested techniques were evaluated on three mobile platforms 
and compared with the original SURF algorithm, where the 
accelerated SURF achieved a higher speedup without affecting 
the recognition accuracy. 

In the context of interactive image segmentation for mobile 
object recognition, such researches have been proposed [49, 
50]. Also, the authors in [49] performed the tracking of 
multiple seeds that improved the segmentation results. Those 
seeds were points indicated by the real-world user, following a 
laser pointer on a smartphone. The implementation of this 
method, which was based on the optical flow algorithm of 
Lucas-Kanade [59] and the Fast Multi Object Fuzzy 
Segmentation (Fast-MOFS) [60] algorithm, proved its real-
time feasibility with high frame rates on limited-resource 
devices. However, in [50] the proposed algorithm starts with 
pre-segmentation by the mean-shift algorithm, followed by 
merging regions using discriminative clustering and completed 
by a local-neighborhood-region classification and pruning. 
Compared to the method GraphCut [61], with pre-segmented 
regions using the Watershed algorithm [62], and to the 
Maximal-Similarity-based Region Merging (MSRM) [63], the 
proposed method had better quality results. 

On the other hand, in order to compare the performances of 
the following mobile platforms: Nokia N900, LG Optimus One 
and Samsung Galaxy SII, the authors in [64] ported and tested 
few classic computer vision algorithms by using the OpenCV 
Library. These algorithms were dedicated to three tasks: feature 
extraction, face detection, and image segmentation. For the first 
task, three algorithms were employed: Features from 
Accelerated Segment Test (FAST) [65], a Modified Upright 
SURF (MU-SURF) [66], and the SURF. Concerning the 
second task, the AdaBoost algorithm was used. For the final 
task, the GraphCut algorithm was considered. 

B. Mobile-parallel-computing approaches 

In this section, we investigate the computational capability 
and energy efficiency of mobile CPU-GPUs systems to 
accelerate image processing applications. In this connection, 
we give an existing and recent overview of mobile parallel 
computing utilizing both multi-threading and GPGPU 
concepts. 

1) Multi-threading concept on mobile devices 

In order to achieve optimizations, many developers have 
resorted to the use of the multi-threading concept in the MAR 
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[67, 68, 69], Mobile Food Recognition (MFR) [70, 71, 72], 
Mobile Optical Character Recognition (MOCR) [73] contexts.  

Some researchers [67, 68, 69] have been interested in 
optimizing the MAR context by using a multi-threading 
model. In [67] the workloads of the MAR system, running on 
a low-power Intel® Atom™ processor of Mobile Internet 
Devices (MIDs), were analyzed. After identifying the hotspot 
functions that took the largest part of the overall response 
time, an architectural characterization of those hotspot 
functions was presented in terms of Cycles Per Instruction 
(CPI), Misses Per Instruction (MPI), etc. Also, implementing 
several software optimizations – such as multi-threading, 
vectorization, cache conflict avoidance, and various code 
optimizations that reduce the number of computations – 
improved 3X the performance in the overall execution time. 
The last work was resumed in [68] to show the benefits of 
hardware accelerations for the MAR that needed important 
computation processing for object recognition and matching. 
Therefore, two proposed hardware accelerations were 
designed: one for object recognition and the other for match 
processing.  As a result, those hardware accelerations 
significantly enhanced the overall response time by 7X. 
Similarly, in [69] a MAR system of tourist guides was 
presented. This system combined the camera, location, 
orientation and motion sensors to put forward a new manner to 
bring more tourism information to users. So, to track objects 
of interest in the live camera view and to place augmented 
information on top of them, a combination of motion 
estimation algorithms and orientation sensors was used. 
Significant speedups were attained by identifying the hotspots 
in the MAR source codes and using the following 
optimizations: resolving hotspots by multi-threading approach, 
converting data and computation type, and vectorization. 

In the context of the MFR, enough research efforts have 
been presented in [70, 71, 72]. All these works are focused on 
improving the speed of their MFR systems by using the multi-
threading concept. All of them had the same purposes, which 
are: (i) implementing an interactive and real time MFR system 
running on the Android smartphone Samsung Galaxy Note II 
(1.6GHz Quad Core), (ii) estimating calories and nutritious 
food, (iii) recording the user’s eating habits, (iv) adopting a 
linear SVM and an histogram χ2 kernel based on kernel-
feature maps [74], (v) and implementing a multi-threaded 
system on Quad CPU cores. Furthermore, in these works, an 
automatic adjustment was applied by using the GrabCut [75] 
method. After that, the user drew a bounding box over the 
food region. However, the authors in [70] used a color 
histogram and the SURF-based bag of features for the food 
recognition stage; whereas, the authors in [71, 72] adopted a 
Fisher Vector (FV) [76], an Histogram of Oriented Gradients 
(HOG) [77] patches, and color patches. According to the 
experiments of recognition accuracy and processing time, the 
proposed method in [70] has been the least efficient of all. 
Note that [71] and [72] offered the same method but the 
second one gave a more detailed study with several versions 
and more tests of the suggested method. 

On the other hand, in [73] a reference implementation of 
the MOCR workload was analyzed, on the low-power Intel® 
Atom™ processor for handheld devices. Also, the elementary 

hotspot functions that incurred most of the overall response 
time were identified. A detailed architectural characterization 
of those hotspot functions, in terms of CPI, MPI, and various 
phases of memory bandwidth, were also presented. Moreover, 
several software/algorithmic optimizations – such as multi-
threading, image sampling for a hotspot function, and various 
code optimization – as well as hardware acceleration were 
implemented and analyzed. The optimization results could 
significantly improve the overall processing time and the 
power consumption. 

2) GPGPU concept on mobile devices 

The emerging and advent of the GPUs with programmable 

shaders on mobile devices like smart phones and tablets have 

motivated developers to utilize the GPUs to offload 

computationally intensive tasks and relieve the burden from 

the mobile CPU. In fact, the capability of the GPGPU on 

mobile devices has opened a new era for mobile computing 

and has enabled many computationally demanding mobile 

image processing algorithms [1]. Recently, programming 

models supporting mobile GPGPU computing such as 

OpenGL ES 2.0 and OpenCL, has become available on most 

mobile devices. Thus, in this section, we review the recent 

studies that use each of these frameworks for controlling 

mobile-GPU tasks. 

a) Using the OpenGL ES 2.0 programming model 

Originally, the OpenGL ES programming model was 
designed for 3D-graphics rendering for embedded systems. 
From version 2.0, the OpenGL ES framework has become 
able to support programmable shaders. Thus, most of recent 
researches have benefited from this version so as to harness 
the computation power of the mobile battery-powered GPUs. 
Their special investigation has focused on the role of mobile 
GPUs for energy or/and time optimization in real-time 
applications. Accordingly, we present recent studies using the 
OpenGL ES 2.0 shading language to support the GPGPU on 
mobile platforms for optimizing image processing algorithms. 

In the literature, few research efforts [78] are interested in 
accelerating edge-detection algorithms. Nevertheless, most of 
them [79, 80, 81, 82, 83, 84, 85, 86] have focused on 
accelerating corner-detection algorithms. 

For the edge detection context, in [78] a programmable 
shader implementation of a Canny edge detection [87] was 
presented for measuring the performance of the GPUs on a 
range of devices. The Open Graphics Library Shading 
Language (GLSL) [4] from the OpenGL ES 2.0 was used. The 
purpose was to determine the advantages of utilizing mobile 
GPUs for image analysis instead of the usual processing 
performed entirely on the mobile CPU. 

However, much effort [79, 80, 81, 82, 83, 84, 85, 86] has 
focused on corner detection. Indeed, in [79] the FAST corner 
detection algorithm was implemented using parallel 
computing on GPUs with the GLSL tool. The results increased 
significantly the computational speed. Even compared to the 
SURF algorithm, the speed of the proposed method is much 
faster. In addition, the suggested method was well performed 
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for processing different images and using various mobile 
devices. 

Yet, in [80] a GPGPU implementation of a modified 
SURF descriptor (called uSURF-ES) was presented. The 
proposed method used a shader generator to adjust the 
variations in the GPU capabilities. The main contribution was 
to prove the feasibility of modern mobile-graphic accelerators 
for GPGPU tasks, particularly for the detection phase in the 
natural-feature tracking used in the MAR applications. So to 
determine the speedup, the mobile-GPU implementation of the 
uSURF-ES was compared to the mobile-CPU implementation 
of the SURF in the OpenCV library. 

In [81] the main elements, underlying the implementation, 
evaluation and optimization of computer-vision and image-
processing algorithms, were analyzed. First, the characteristics 
of the embedded GPUs and their limits compared to the 
embedded CPU, were presented. Secondly, techniques with an 
optimized shader design were put forward to achieve 
enhanced performances. In order to prove the validity and 
effectiveness of the proposed techniques, three algorithms – 
which are: cartoon-style Non-Photorealistic Rendering (NPR) 
[88], Belief propagation (BP) stereo matching [89], and SURF 
– were selected and implemented on embedded GPUs. Finally, 
the performance between the implementation on embedded 
CPU and GPUs was evaluated in terms of the achieved 
speedup and execution time. Note that an initial version of the 
latter work had been presented in [82] where a Harris corner 
detection [90] algorithm was implemented instead of the 
SURF algorithm. In the same context, in [83] a set of metrics 
to measure the characteristics were presented for image 
processing algorithms running on mobile phone GPUs. These 
measurements allow assisting users in the design and 
implementation stage as well as in the bottlenecks 
classification. Also, techniques with an optimized shader 
design were proposed to obtain an increased performance. As 
a case study, the algorithms used in [81] were also employed 
to prove the effectiveness of the suggested techniques. 

In [84] an implementation of the SIFT algorithm was 
presented using the GPU acceleration in mobile devices. The 
main contributions resided in: first, profiling the major stages 
of the algorithm on both mobile CPU and GPUs which 
allowed the development of a dataflow schema describing the 
methodical partitioning of the workload between the mobile 
CPU and GPUs; and second, reordering and compressing the 
input image to minimize the communication overhead of the 
CPU-GPUs memory transfers and to accelerate the GPU 
computation. The performances of the proposed 
implementation were tested using various mobile devices. A 
considerable speedup was achieved unlike an optimized CPU 
version running in a single thread and unlike a GPU 
implementation published in [91]. In addition, total energy and 
power consumption were greatly reduced. A significant 
speedup was achieved over an optimized CPU version and 
related GPU work, resulting in a near real-time detection.  

Moreover, few works [85, 86] has been interested in 

computing power and energy consumption running on a 

mobile CPU-GPUs platform for face recognition, as a case 

study. Indeed, in [85] the first accelerated implementation of 

the LBP feature extraction for a face tracking approach was 

presented. The two contributions of the latter research are: 

describe the challenges of designing on mobile GPUs, and 

prove the performance achieved for mobile image recognition 

applications on mobile GPUs in terms of speedup and power 

consumption in comparison to using the mobile CPU on the 

same platform. However, in [86] a comparison between the 

performance and power efficiency of mobile GPUs, a mobile 

CPU, and a desktop GPU was made. An accelerated Gabor 

face feature extraction on mobile GPUs was implemented as a 

case study, and the results confirmed that utilizing the mobile 

GPUs could achieve a significant performance speedup and a 

substantial energy reduction, but a slight power increase, for 

the proposed application.  

b) Using the OpenCL programming model 

The OpenCL is a new standard of the GPGPU tool for 
mobile GPUs. Unlike the OpenGL ES 2.0, the OpenCL is a 
pure parallel computing library on heterogeneous platforms 
including the CPU, the GPU, and even the DSP. 

In the literature, few studies [92, 93, 94] have been 
interested in implementing general-purpose computing using 
an OpenCL framework on mobile GPUs. Indeed, in [92] an 
OpenCL Embedded Profile prototype emulated by the 
OpenGL ES was demonstrated and its advantages in 
performance and energy efficiency were also shown. 
However, to the best of our knowledge, the work presented in 
[93] introduced the first study of the GPGPU computing 
capability using the OpenCL framework on real mobile GPUs. 
Therefore, the indicated work suggested an accelerated object 
removal algorithm, as a case study. The results showed that 
offloading the core computations to mobile GPUs using the 
OpenCL framework could significantly reduce the processing 
time, hence the feasibility of intensive computing algorithms 
such as computer vision for mobile devices. Recently, the 
latter work has been resumed in [94] with more tests and 
details. 

Newly, in [95] a comparison between the GLSL and the 
OpenCL as GPGPU software platforms has been presented in 
terms of implementation efficiency and speed performance. 
Another comparison between the mobile GPUs and CPU can 
also be found in the same reference. As a case study, the 
feature detection algorithms, SIFT and SURF, have been 
parallelized and optimized on mobile GPUs. Accordingly, the 
results have shown that the mobile GPUs has significantly 
surpassed the comparable mobile CPU on the same platforms. 
The implementation using the GLSL has been less efficient 
even if it has a comparable performance with the OpenCL. 
Furthermore, the power consumption on each implementation 
has been measured and compared, which has shown that the 
GLSL has consumed more energy than the OpenCL. 

III. CONCLUSION 

The ability of mobile platforms for image processing seems 
to have achieved a tipping point since 2010, mainly because 
several devices could benefit from offloading the processing to 
the GPUs. 
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Despite the fact that some image processing algorithms 
expressing a high degree of parallelism have been successfully 
accelerated, using the OpenGL ES 2.0 and the OpenCL 
frameworks, the emerging applications need more speedups. 
So, efficient implementations of image processing techniques 
are still remaining challenging tasks. 

In order to efficiently and fully use the limited computation 
resources on mobile processors, some points should be 
carefully considered to achieve a high performance: (i) explore 
the algorithmic parallelism,  (ii) partition the tasks between the 
CPU and the GPUs, (iii) optimize the overhead of CPU-GPUs 
memory transfers, (iv) avoid useless access to the memory (v) 
choose the appropriate programming model for using the 
mobile GPGPU, (vi) and select the right hardware design 
including a unified shader design, a tiling architecture, and a 
texture compression. 

According to this recent overview, to the best of our 
knowledge, none of the mentioned researches have taken into 
consideration the set of these points; so it will be interesting to 
impose selection criteria in order to discover an efficient 
parallelization strategy of image processing algorithms running 
on low-power mobile GPUs, englobing all these points.  
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