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Abstract—Visual relationship detection is an intermediate im-
age understanding task that detects two objects and classifies a
predicate that explains the relationship between two objects in
an image. The three components are linguistically and visually
correlated (e.g. “wear” is related to “person” and “shirt”, while
“laptop” is related to “table” and “on”) thus, the solution space
is huge because there are many possible cases between them.
Language and visual modules are exploited and a sophisticated
spatial vector is proposed. The models in this work outperformed
the state of arts without costly linguistic knowledge distillation
from a large text corpus and building complex loss functions. All
experiments were only evaluated on Visual Relationship Detection
and Visual Genome dataset.

Index Terms—Visual relationship, Image understanding, Deep
learning.

I. INTRODUCTION

Understanding images is important in computer vision. In

deep learning for computer vision, object classification [1],

[2], detection [3]–[5], attribute detection [6], segmentation

[7], [8] and other tasks have improved performance for image

understanding. Although these works are still insufficient

for understanding images, there is room for improving their

performance. Researchers changed their focus to Scene graph

[9], image captioning [10], image retrieve [11] and other

related works.

One area is visual relationship detection [12]–[17]. Visual

relationships are a type of relationship between objects in

an image and consist of subject, predicate, and object; e.g.

{person, ride, motorcycle}, {person, eat, hamburger}, and

{cup, on, table}. These can be considered sentences without

adjectives, adverbs, or the in/definite article. The subject and

object in a visual relationship are exactly the same as a subject

and object in a sentence. A predicate in a visual relationship is

different from a predicate in a sentence. In the dictionary, the

meaning of “predicate” is the part of the sentence that contains

the verb and gives information about the subject, but the

predicate of a visual relationship is similar to a verb. It can be a

regular verb, a preposition, a comparative, a prepositional verb,

a phrasal verb or other words that could explain a connection

between objects.

One previous approach [13] considered each visual rela-

tionship as a one of a class. e.g. {person, ride, motorcycle},

{person, ride, bicycle} and {person, ride, skateboard} are of

different classes. This fashion requires numerous data because

all possible combinationsmeaning the number of predicates

times the number of objects squaredare different classes and

it results in a huge solution space. Other previous approaches

[12], [14], [16], [17] consider detecting objects (subject and

object) and a predicate separately. This fashion reduces the

solution space rather than the above approach [13] because

solution space of the objects (subject and object) and predicate

are decoupled; an object detector and a predicate classifier

are only needed in this case but this way still requires large

amounts of data. This work follows the later approach to solve

the problem.

There are three major difficulties for visual relationship

detection: first, intra-class variance; a predicate can be in-

volved with any subject and object. e.g. {person, eat, pizza},

{elephant, eat, grass}, {person, use, phone}, {person, use,

knife} and so on. These visual relationships are totally differ-

ence visually and make the solution space huge. The second

difficulty is long-tail distribution. Some of the predicates

may occur many times but other certain predicates may only

occur once or twice throughout the whole dataset and most

of the visual relationships are insufficient for training. This

phenomenon brings out a biased dataset and model training

result. The third difficulty is class overlapping; some of the

predicates in the dataset are almost similar meaning but each

data belongs to different class even though their annotations

are nearly the same: (near, adjacent, around), (below, under),

(look, watch), (next to,feed) etc.

This work utilizes a pair of word vectors, a spatial vector

and a union box of two objects boxes to detect visual relation-

ships in an image using a language and visual module. The

proposed models significantly outperform the state of arts. All

experiments in this paper are conducted on the VRD [12]1 and

Visual Genome dataset (VG) [18]2.

II. RELATED WORK

Object classification [1], [2] is the basis of image under-

standing, is based on a Convolution Neural Network (CNN).

This network learns the features of objects in images and

1VRD dataset link : https://cs.stanford.edu/people/ranjaykrishna/vrd/
2VG dataset link : https://visualgenome.org

http://arxiv.org/abs/1904.07798v1


classifies what objects are in an image. As a result of this

research field, several CNNs such as VGG16 [1], ResNet [2]

called the backbone network outperform object classification.

In visual relationship detection, most papers [12], [14]–[17]

use these networks to classify the predicate between two

objects; this paper employs VGG16 [1].

Object detection [3]–[5] is the next level of object classifica-

tion for image understanding. This field also achieves massive

success through deep learning. The object detection network

localizes objects as bounding boxes in images. R-CNN and

Fast/Faster R-CNN [3]–[5] are common object detectors that

follow the two-stage approach in which object candidates are

proposed while working with RPN [3] and then classify what

object is in candidates. Some papers [14], [15] about visual

relationships utilize RPN; they show how the employment of

RPN and object detection results are improved. This work

employs faster R-CNN [3] based on VGG16 [1].

Humanobject interaction recognition [19], [20] is a subset

of the visual relationship. In contrast to visual relationships, a

subject is fixed as a person; this field focuses on the interaction

between a person and an object or another person. Average

Precision (AP) is an evaluation metric of this research field.

Specifically, they evaluate the AP of the triplet {person, verb,

object}, which is called the role AP. Moreover, Ref. [21] is

focusing on the action or pose without interaction in an image.

Image captioning is an interesting field in visual tasks in

which an image is given as an input and the output is a

description that explains that image; this field involves natural

language. Recurrent Neural Network (RNN) and Long Short-

term Memory (LSTM) [22] are used with CNN. Vinyals et al.

[23] proposed an architecture in which CNN encodes visual

features in an image and RNN decodes it to natural language.

The scene graph [9], [24], [25] is a higher level image

understanding. It is a kind of graph in computer science

grounded by the visual. Nodes are objects, relationships are

edges, and attributes are a sub-node coupled with objects in

an image. This field is related to natural language, so some

papers [24], [26] have attempted to generate a scene graph-

based image description.

Visual relationship detection is a superset of humanobject

interaction. Differently, relationships between any two objects

are focused in an image. Some papers [12]–[17], [27], [28] do

work to detect visual relationships; Lu et al. [12] established

a visual relationship detection task and introduced a VRD

dataset [12] which contains four categories such as verb,

preposition, spatial and comparative, and only one predicate

exists in a visual relationship regardless of the category. Yu

et al. [17] improved the detection performance by expensive

linguistic knowledge distillation from an internal and external

text corpus. Li et al. [15] proposed a top-down pipeline.

Unlike other approaches [12], [14], [16], [17], the visual

relationships including subject, predicate, and object are de-

tected simultaneously with RPN [3] and the phrase-guided

message passing structure (PMPS). Zhang et al. [14] built an

equation to embed the visual relationship into space with a

class indicator, a location vector, and a visual feature. Ref.

[14], [15] employed RPN in their architecture and said that

cooperating with it improved the object detection result. Liang

et al. [27] proposed a novel framework called deep Variation-

structured Reinforcement Learning (VRL) to detect both visual

relationships and attributes to understand the global context in

an image and use prior language to build a directed semantic

graph. Plummer et al. [28] conjugated visual and language

cues for the localization and grounding of phrases in images

and gave a special attention to relationships between people

and body parts or clothing. Bo et al. [16] represented the

predicate by using a union box that included the subject,

object, and a spatial module consisting of several convolution

layers, and detected visual relationships using a deep relational

network.

III. DIFFICULTIES OF VISUAL RELATIONSHIP DETECTION

A. Intra-class Variance

Fig. 1: The examples of Intra-class Variance

The approach that detects objects and the predicate indepen-

dently requires a predicate classifier. A predicate is involved

with many subjects and objects. Therefore visual appearance

can have a big gap between visual relationships on the same

predicate. {person, eat, pizza} and {elephant, eat, grass} are

examples of this.

B. Long Tail Distribution

This common problem is mentioned in most papers [12]–

[17] and has two aspects: the first is the number of predicates

in a dataset and the second is the number of visual relation-

ships. In the VRD [12] and VG [18] dataset, the number of

predicate “on” is a huge part of the dataset, but the number

of “feed” and “talk” make up a small part of the dataset.

Most of the data are small to train because gathering data

and annotation are difficult and expensive; subject, predicate,

and object can be obtained easy individually but rarely appear

together in an image: “airplane,” “next to,” and “bag” are easily

obtained individually, but {airplane, next to, bag} is rare.

C. Class Overlapping

Fig. 2: The examples of Class Overlapping



In a predicate list of both datasets, there are some predicates

that mean nearly same thing like “near” and “next to”. Ac-

cording to the dictionary, the difference in the literal meaning

between them is vague. For two other cases, some predicates

are a superset of others or a subset of others. In visual

relationship detection, only one predicate exists between two

objects regardless of category. This means that an unrelated

predicate that has a totally different meaning can be chosen

when the feature vector is close. These phenomena cause

wrong classification results.

IV. APPROACH

A. Visual Module

A visual module is VGG16 [1] and trained similar to object

fine-tuning with a softmax loss for classifying the predicate

using a union box that includes two objects in an image as an

input.

This work relieves ambiguous inferences using only the

union box containing two objects, a pair of word vectors,

and/or a spatial vector are/is used together. Therefore, variant

visual modules are newly created based on the visual module

such as a spatial and visual module (SV), a visual and word

vector module (VW), and a spatial, visual, and word vector

module (SVW).

B. Language Module

W × [wordvector(subject), wordvector(object)] + b (1)

A language module is trained with the softmax loss instead of

the K, L loss in [12], and takes a pair of subject and object

word vectors which is 600 dimensions as an input. These are

fed to a fully connected layer and produce 70 dimensions

vector as an output and 70 is the number of predicates in the

dataset. W is 70 × 600 and b is 70 dimensions in (1). This

simple training approach fulfils the K and, L loss. In [12], the

L loss gives a higher likelihood to high-frequency data and a

lower likelihood to low-frequency data in a training dataset.

The K loss enforces similar visual relationships getting close,

and far away from dissimilar visual relationships; e.g. {person,

eat, pizza}, {person, eat, hamburger} are similar and {car, has,

wheel} is dissimilar from them. It means the language module

in [12] produces similar likelihood when visual relationship

are close. Without the L loss, the language module in this

work naturally assigns the appropriate likelihood to predicates

depending on the frequency because several predicates can

exist when subject and object are given, only one predicate

is annotated for a visual relationship and loss is the softmax

; for an example, “wear” has a higher likelihood than “hold”

when the subject is “person” and the object is “shirt”. Without

the K loss, the property of word vector leads similar visual

relationships to get close and further away from dissimilar

visual relationships. {person, ride, bicycle} and {person, ride,

motorcycle} naturally get close because “bicycle” and “mo-

torcycle” word vectors are close in a word vector space. This

means that the language module in this work produces nearly

same likelihood for “ride” when the subject is “person” and

the object is “bicycle” or “motorcycle”.

As with the visual module, a spatial vector is concatenated

on the pair of word vectors before the fully connected layer

as a new module called the language and spatial module (LS)

to relieve the ambiguous inference based on only the pair of

word vectors.

C. Spatial Vector

[IOU, x, y, Ssubject/Simage, Sobject/Simage,

cf lagsubject, cf lagobject]
(2)

This work proposes a sophisticated spatial vector different

from [17]. The spatial vector in [17] only reflects only each

objects bounding box normalized location and size in an

image. This encoding is insufficient to classify predicates

because predicates do not depend on location in an image. The

proposed vector encodes the intersection over union (IOU) and

normalized relative location (x, y) based on the subject box

center, normalized subject and object size, and contain flag

(cflag) for subject and object; cflag for a subject is 1 if the

subject box contains the object box, and 0 otherwise, and vice

versa. Ssubject,object is the size of the bounding box for each

and Simage is the size of an image in (2).

D. Model Variants

softmax(visaulmodule× languagemodule) (3)

Several components are available in the modules including

a spatial vector, word vectors and a union of the bounding

box. The model consists of two modules: the language and

visual module. The base component of a language module is

a pair of word vectors and spatial vector can be added to the

language module. The base component of a visual module is a

union box, and word vector and/or spatial vector can be added

to the visual module. Furthermore, the language and visual

modules can be trained together or separately. Therefore,

possible models are L, LS, V, VW, SVW, SV, L + V, L + VW,

L + SV, L + SVW, LS + V, LS + VW, LS + SV, and LS + SVW

for an experiment (“+” means that two modules are combined).

When the language and visual modules are jointly trained, the

loss function is (3). “×” means element-wise multiplication.

Each module produces 70 dimensions vector.

V. EXPERIMENTS

In this section, predicate prediction, phrase, and relationship

detection are conducted on the VRD and VG datasets [12],

[18]. In predicate prediction, the models take an image and set

of localized subjects and objects as an input and predict the

set of possible predicates between pairs of objects. In phrase

detection, the models take an image as an input, detect the

phrase for a set of visual relationships and localize the entire

relationship as one bounding box that has at least a 0.5 overlap



Fig. 3: An overview of a full visual relationship detection model. An image is given as an input. Faster R-CNN [3] based on

VGG16 [1] detects object(s) and pairs of objects called candidates are generated from detected objects. Each pair of objects

is fed to the predicate classifier with a pair of word vectors, a spatial vector, and a union box that includes subject and object.

The language and visual module produce results, multiply it element-wise and softmax is applied to the result.

with the ground truth box. In relationship detection, the models

take an image as an input, detect the relationship as a set of

visual relationships and localize the subject and object in the

image that have at least a 0.5 overlap with their ground truth

boxes at the same time.

A. Dataset

Particularly for the VG dataset [18], previous works cleaned

up the VG dataset on their way. For a fair comparison, the

visual relationships that are consistent with the VRD dataset

[12] are extracted from the VG dataset to compare with

Yus results. For a zero-shot test, a dataset must consist of

unseen visual relationships that never occurred in the training

dataset for the VRD and VG datasets. The task that extracts

unseen visual relationships from the original is applied on both

original datasets.

B. Evaluation Metric

Then, Recall@n (R@n) is chosen as a metric becasue it is

used in [12], [17] and the evaluation algorithm is modified

based on [12]. Additionally, the evaluation fashion from [17]

is applied. Consistent with [17], the number of chosen predic-

tions (k) per object pair is hyper-parameter and shows R@n

for different k for fair and equal comparison.

C. Predicate Prediction

Table I shows the results of predicate prediction on the VRD

dataset [12]. The results of L model that only considers a

pair of word vector is 44.09 R@50,100 when k = 1. The

most referenced predicates are “on” and “wear”, as these

are common predicates in the dataset. Better performance is

produced from the LS model which takes a pair of word

vectors and spatial vector. “on” and “wear” are the most

commonly referenced but this model can distinguish spatial

predicates. The L + V model outperforms the model in [12]

for same condition that a pair of word vectors and a union

box are used. In particular, the zero-shot result is nearly 6%

higher than [12]. The reasion is that the language prior is

well obtained in the model in this work rather than the model

TABLE I: Predicate prediction on the VRD dataset. In [17],

“U” is the union box that includes two objects, “SF” is the

spatial vector in their work, “W” is the word-embedding-based

semantic representations, “L” is the linguistic knowledge dis-

tillation, “S” is the student network, “T” is the teacher network

and “S+T” is the combination of two networks. In this work,

“L” is a language module that uses word vectors, “S” is the

proposed spatial vector, “V” is the same as “U” , “W” is the

word vectors in the visual module, “+” means that the two

modules placed before and after the “+” are used together.

Before the double vertical line is the general performance and

after is the zero-shot performance

R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100

k=1 k=1 k=70 k=70 k=1 k=1 k=70 k=70

VRD [12] 47.87 47.87 - - 8.45 8.45 - -

U+W+SF [17] 41.33 41.33 72.29 84.89 14.13 14.13 48.13 69.41

U+W+L:S [17] 42.98 42.98 71.83 84.94 13.89 13.89 51.37 72.53

U+W+L:T [17] 52.96 52.96 83.26 88.98 7.81 7.81 32.62 40.15

U+SF+L:S [17] 41.06 41.06 71.27 84.81 14.33 14.33 48.32 69.01

U+SF+L:T [17] 51.67 51.67 83.84 87.71 8.05 8.05 32.77 41.51

U+W+SF+L:S [17] 47.50 47.50 74.98 86.97 16.98 16.98 54.20 74.65

U+W+SF+L:T [17] 54.13 54.13 82.54 89.41 8.80 8.80 32.81 41.53

U+W+SF+L:T + S [17] 55.16 55.16 85.64 94.65 - - - -

L 44.09 44.09 75.48 86.69 10.86 10.86 50.55 69.71

LS 48.19 48.19 78.31 88.40 15.82 15.82 55.09 74.85

SVW 48.57 48.57 78.04 88.30 16.85 16.85 55.77 74.85

L+V 49.77 49.77 79.99 88.81 14.88 14.88 54.40 72.51

LS+VW 53.05 53.05 85.12 93.17 20.78 20.78 64.67 81.35

LS+SV 53.37 53.37 85.61 93.74 21.21 21.21 65.78 82.37

LS+SVW 55.16 55.16 88.88 95.18 21.38 21.38 64.49 83.49

in [12]. The result from SVW model is a huge improvement

over U + W + SF, U + W + L:S and U + SF + L:S. This

means that coupling a spatial vector and a pair of word vectors

on the visual module works better than [17] and shows the

possibility that a model can perform better without linguistic

knowledge distillation. Next, the language and visual modules

are jointly trained, and LS + SV, LS + VW and LS + SVW



are models. The last model outperforms U + W + SF + L:T

(+ S) without linguistic knowledge distillation. Despite putting

more information into models, those models performances are

nearly same. A verb predicate is considered another category

predicate such as a preposition or a spatial when k = 1 because

of class overlapping. For an example, models predict “on”

instead of “run”.

TABLE II: Predicate prediction on VG dataset. The notations

are same as in Table I
R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100

k=1 k=1 k=70 k=70 k=1 k=1 k=70 k=70

U+W+SF+L:S 49.88 49.88 88.14 91.25 11.28 11.28 72.96 88.23

U+W+SF+L:T 55.02 55.02 91.47 94.92 3.94 3.94 47.62 62.99

U+W+SF+L:T+S 55.89 55.89 92.31 95.68 - - - -

SVW 65.59 65.73 96.37 98.90 16.82 16.82 86.33 95.02

LS+SVW 70.99 71.12 97.98 99.37 19.68 19.68 89.00 95.72

Table II shows the predicate prediction result on the VG

dataset [18]. The two models in this work unquestionably

outperform Yus model [17]. SVW model surpasses Yus model

without the language module. The dataset in [17] is not

shared and the experiment is conducted on the newest visual

relationship version 1.4 of VG dataset [18]. Like [17], the

images are randomly shuffled and split into training and test

set. The visual relationships that match the VRD dataset [12]

is extracted from the VG dataset [18]. The dataset that is used

in this experiment contains 26,180 images and 71,269 visual

relationships for training and 13,092 images and 36,184 visual

relationships for testing. The number of unseen relationships

that never occur in the training dataset is 2,692.

D. Phrase and Relationship Detection

TABLE III: Phrase detection result on VRD dataset. The

notations are same as in Table I. Above the double horizontal

line is the performance to compare the result to [17] and below

is the performance to compare to compare it to [12].

R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100

k=1 k=1 k=10 k=10 k=70 k=70 k=1 k=1 k=10 k=10 k=70 k=70

VIP-CNN [15] 22.78 27.91 - - - - - - - - - -

VRL [27] 21.37 22.60 - - - - 9.17 10.31 - - - -

Linguistic Cues [28] - - 16.89 20.70 - - - - 10.86 15.23 - -

U+W+SF+L:S [17] 19.15 19.98 22.95 25.16 22.59 25.54 10.44 10.89 13.01 17.24 12.96 17.24

U+W+SF+L:T [17] 22.46 23.57 25.96 29.14 25.86 29.09 6.54 6.71 9.45 11.27 7.86 9.84

U+W+SF+L:T + S [17] 23.14 24.04 26.47 29.76 26.32 29.43 - - - - - -

LS+SV 32.15 33.00 41.58 49.45 41.68 49.89 12.23 12.66 22.75 32.59 23.26 34.21

VRD [12] 16.17 17.03 - - - - 3.36 3.75 - - - -

LS+SV 17.00 19.03 18.94 23.01 18.95 23.06 7.35 8.12 9.83 13.08 9.92 13.43

Table III and IV show the results on phrase and relationship

detection. These experiments are conducted on an object

detection result and Lu et al. [12] conducted experiments on an

object detection result from RCNN [4]. For a fair comparison,

models in this work are evaluated on the same result which is

shared from [12]. All models perform slightly better than [12]

on phrase and relationship detection. For comparision to [17],

faster R-CNN [3] based on VGG16 [1] is trained for VRD

objects for this experiment.

TABLE IV: Relationship detection on VRD dataset. The

notations are same as in Table I. Above the double horizontal

line is the performance to compare the result to [17] and below

is the performance to compare to compare it to [12].
R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100

k=1 k=1 k=10 k=10 k=70 k=70 k=1 k=1 k=10 k=10 k=70 k=70

VIP-CNN [15] 17.32 20.01 - - - - - - - - - -

VTRANS [14] 14.07 15.20 - - - - 1.71 2.14 - - - -

VRL [27] 18.19 20.79 - - - - 7.94 8.52 - - - -

Linguistic Cues [28] - - 15.08 18.37 - - - - 9.67 13.43 - -

U+W+SF+L:S [17] 16.57 17.69 19.92 27.98 20.12 28.94 8.89 9.14 12.31 16.15 12.02 15.89

U+W+SF+L:T [17] 18.56 20.61 21.91 29.41 21.98 31.13 6.07 6.44 7.82 9.71 8.75 10.21

U+W+SF+L:T + S [17] 23.14 24.04 26.47 29.76 26.32 29.43 - - - - - -

LS+SV 30.25 31.06 39.49 47.38 39.60 47.80 11.97 12.40 22.07 31.73 22.58 33.36

VRD [12] 13.86 14.70 - - - - 3.13 3.52 - - - -

LS+SV 15.05 16.73 16.82 20.49 16.83 20.54 6.75 7.35 8.98 11.80 9.06 12.14

E. Benefit of Proposed Spatial Vector

The spatial vector in [17] is replaced instead of the proposed

vector in this model to verify the capacity of the proposed

spatial vector. Table V shows that the proposed vector im-

proves 2% and 4% performance rather than the spatial vector

in [17] on Recall@50 for k = 1. On zero-shot detection, the

performance is improved nearly 5% and 3% on Recall@50 for

k = 1. This shows that proposed one has effect of detecting

unseen visual relationships.

The proposed vector consists of the relative information

except each size of subject and object in an image. IOU

means the overlap ratio between two boxes; it does not tell

us where the overlap is because it is a scalar value. cflag for a

subject and an object, and the relative location can reflect the

individuality of a predicate and these complement IOU.

TABLE V: Predicate prediction on VRD dataset to verify

proposed spatial vector. The notations are same as in Table

I. “SF” is spatial vector in [17]
R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100

k=1 k=1 k=70 k=70 k=1 k=1 k=70 k=70

(SF)VW 45.58 45.58 77.10 87.98 13.60 13.60 53.63 74.16

L(SF)+(SF)VW 50.53 50.53 81.99 91.08 15.99 15.99 56.63 76.98

SVW 48.57 48.57 78.04 88.30 16.85 16.85 55.77 74.85

LS+SVW 55.16 55.16 88.88 95.18 21.38 21.38 64.49 83.49

F. Benefit of Word Vector for Zero-shot

Fig. 4: Word vector embedding space



Word vector embedding space provides clusters that have

semantically similar word vectors. These clusters help detect

unseen visual relationships that never occurred in training

dataset. For example, “jacket” and “shirt” resemble one an-

other with regard to wearing but they are different. One is outer

clothing and the other is regular clothing. If {person, wear,

jacket} only occurs in test dataset, Proposed model easily

detects this relationship because “jacket” and “shirt” word

vectors are really close in Fig. 4. Particularly when the spatial

vector is given, {person, ride, motorcycle}, which never occurs

in training dataset can be detected easily rather than detection

using only word vector. {person, ride, bicycle} is semantically

and spatially related to {person, ride, motorcycle}. From the

view of riding a vehicle, the pose is similar between them and

the spatial vectors of those are naturally almost the same. The

predicate “ride” can be detected with high confidence between

“person” and “motorcycle”.

VI. CONCLUSIONS

The main contribution is outperformed result which can

be obtained by simple modification on [12]. The proposed

spatial vector is better than the spatial vector in [17] on

visual relationship detection. Especially zero-shot performance

is significantly improved using proposed spatial vector and

word vectors. This paper mentions class overlapping for the

first time, which is difficult in visual relationship detection.

This work will be shared in public.
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