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Abstract—Performance achievable by modern deep learning
approaches are directly related to the amount of data used
at training time. Unfortunately, the annotation process is no-
toriously tedious and expensive, especially for pixel-wise tasks
like semantic segmentation. Recent works have proposed to
rely on synthetically generated imagery to ease the training set
creation. However, models trained on these kind of data usually
under-perform on real images due to the well known issue of
domain shift. We address this problem by learning a domain-to-
domain image translation GAN to shrink the gap between real
and synthetic images. Peculiarly to our method, we introduce
semantic constraints into the generation process to both avoid
artifacts and guide the synthesis. To prove the effectiveness of our
proposal, we show how a semantic segmentation CNN trained on
images from the synthetic GTA dataset adapted by our method
can improve performance by more than 16% mIoU with respect
to the same model trained on synthetic images.

Index Terms—domain adaptation, semantic segmentation,
GAN

I. INTRODUCTION

Recent advancements in computer vision are characterized
by a widespread adoption of deep learning, either as end-to-
end complete solutions or as components of more complex
pipelines. A common trait across all the different flavours of
deep learning models is the strong correlation between the
size of the accurately annotated training set and the achievable
performance. As for research work, the need of a large corpus
of annotated data may not be an issue thanks to availability
of many curated dataset. Yet, the data issue is limiting a
more widespread adoption of deep learning in many practical
applications. Even assuming availability of training images for
the target environment, manually producing the annotations is
a tedious and expensive operation, that quickly become hard to
scale for more complex tasks. For example, annotating a single
image with a global label usually requires few seconds while
annotating the same image for pixel-wise prediction tasks,
such as depth estimation or semantic segmentation, requires
many minutes or hours, even with the help of professional
tools [1].

Many recent works [2]–[5] have proposed to deploy syn-
thetic training images generated by state-of-the-art computer
graphics techniques to obtain for free, during the rendering
process, different kinds of annotations. Yet, such synthetic
training samples turn out significantly different from the real
images processed at test time, which implies a well-known
issue, referred to in the machine learning literature as domain
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Fig. 1: On the right an image generated applying our semanti-
cally aware GAN on a synthetic image from the GTA dataset
[2] (left) to make the latter look more realistic. Lower right
corner: zoomed crops to highlight how our semantically aware
GAN can transform images across domains preserving the
semantic structure of the scene.

shift. As a consequence, models trained only on synthetic
data severely under-perform in the real deployment scenario.
Therefore, the commonly used training protocol mandates
the use of (potentially few) annotated training samples from
the target domain to perform fine-tuning and recover good
performance. The assumption of having annotated images
from the target domain at hand, unfortunately, can not always
be fulfilled for complex tasks like 3D reconstruction, semantic
segmentation or pose estimation where data acquisition and,
especially, labeling is often a challenging and costly task per
se. Promising works like [6]–[8] try to learn models which
extract the same kind of features across the two domain. While
this strategy seems successful for tasks like classification, it is
still unclear how well it can scale to dense structured domain
adaptation [9] where the improvement gained by feature align-
ment is still modest. Alternatively, [10], [11] work directly on
the training data trying to shrink the gap between synthetic
and real images by transforming the first to make them look
real using image-to-image generative adversarial networks.
However, since they do not enforce any kind of constraint
on the geometric consistency between input and output, these
approaches can easily produce artifacts and distortions. Beside
harming the realism of the generated images, artifacts could
easily render annotations created for the synthetic images
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useless, especially for pixel-level labeling task where even a
few pixels shift can invalidate the annotation.

Building on these observations we propose a novel approach
based on image-to-image domain translation by GANs while
explicitly training the system to keep the semantic structure
of the scene. The intuition behind our formulation is that
forcing the generator network to keep the semantic structure
of the image act as a regularizer enforcing overall consistency
of image appearance and producing images that look more
realistic and exhibit less artifacts. For example, according
to our formulation a ”tree” can change its appearance but
it should still be recognizable as a ”tree” across domains.
To enforce the semantic constraint we train a discriminator
network not only to classify the domain (real/fake) but also
to solve the task of semantic segmentation on the synthetic
domain (i.e., we do not need labels on the real target domain).
Moreover, we introduce an appearance reconstruction loss to
further regularize the generation process and help preserving
small details across the domain adaptation. To asses the
effectiveness of our proposal we transform synthetic images
obtained from the synthetic GTA datasets [2] to look similar
to the real images of the Cityscapes [1] dataset. Fig. 1 shows
on the right column a qualitative example generated by our
method using as input the corresponding synthetic images
depicted on the left. We will show how those images can
be used to train a model to solve the problem of semantic
segmentation yielding promising result with respect to using
synthetic images.

II. RELATED WORKS

The main topics relevant to this article are Semantic Seg-
mentation and Domain Adaptation.

A. Semantic Segmentation

Since the advent of deep learning, semantic segmentation is
mainly performed by convolutional neural networks [8]. Sev-
eral kind of architectures are employed. Multi-scale models,
such as [12]–[15], take inputs at different resolution to extract
context information at different abstraction levels. Encoder-
decoder networks, [16]–[18], combines an encoder to extract
high-level, low-resolution features which are later exploited
by a decoder to reconstruct an high-resolution semantic map.
Other networks employ Conditional Random Fields, [14], [19],
to encode long range context information. Modern networks
deploy spatial pyramid pooling and atrous-convolutions to
extract information at different level of abstraction [14], [20],
[21].

B. Domain Adaptation

Many domain adaptation techniques have been proposed
to address the domain-shift problem [22]–[24]. Earliest ap-
proaches such as [25], [26] try to build intermediate rep-
resentations using manifolds while recent ones, tailored for
deep learning, focus on adversarial training. Deep domain
adaptation can be mainly divided in two branches: Pixel-
level and Feature-Level. Feature-level approaches, such as

[6]–[8], [27] seek to find a domain invariant representation,
obtaining networks able to perform well on both the source
and target domains. On the other hand, pixel-level approaches,
such as [10], work on image data and try to directly convert
the source image into a target style image relying on recent
image-to-image translation generative networks [28], [29].
Few works have explicitly studied domain adaptation for
semantic segmentation. [30] performs two kind of alignments:
a global alignment through adversarial back-propagation, as
in [31], and a local one, which aligns class specific statistics
by a multiple instance learning formulation. [32] proposes
curriculum-style learning where a teacher network solve the
easier task of learning global label distributions over images
and local distributions over landmark superpixels, then a
student segmentation network is trained so that the target label
distribution follow these inferred label properties. Similarly
to our proposal, [33] combines the cycle consistency loss
proposed by [29] with a semantic consistency loss. While they
combine different networks trained sequentially, in our work
we proposed a simpler end-to-end architecture with a semantic
discriminator that obtains comparable or even better results.

III. PROPOSED METHOD

In this section we present our proposal for domain adapta-
tion exploiting semantic information. We consider the problem
of unsupervised and unpaired pixel-level domain adaptation
from a source to a target domain. We define as Xs , Ys the
provided source data and associated semantic labels whilst
as Xt the provided target data, but without any available
target labels. Our goal is to transform source images so to
resemble target images while maintaining the semantic content
of the scene during the generation process. A schematic
representation of our method is shown in Fig. 2.

A. Architecture

Inspired by [29], we adopt a cycle architecture consisting
of two generators and two semantic discriminators. The first
generator, GS→T , introduce a mapping from source to target
domain and produces target samples which should deceive the
discriminator DT . The discriminator DT , instead, learns to
distinguish between adapted source and true target samples.
On the other hand, the second generator, GT→S , learns the
opposite mapping from source to target data, while the second
discriminator Ds distinguish between adapted target and true
source samples. Furthermore, peculiarly to our work, both
semantic discriminators act not only as classifiers but also
as semantic segmentation networks. Thus, we add a second
decoder to DT and DS obtaining DSsem and DTsem . The fea-
tures extracted by the last encoder layer of the discriminators
are used to generate both the semantic map and the domain
classification score.

B. Training

We train our system to minimize multiple losses:



Fig. 2: Schematic representations of the proposed network architecture. In dark blue and orange images from the source domain
and target domain respectively. Dual color framed images are obtained by our adaptation method. In purple the semantic maps.

Adversarial Loss
We apply adversarial losses [34] to both mapping functions
S → T and T → S. For the sake of space, we define here
only source to target adversarial loss, being equivalent to its
inverse.

Ladv = Ext∼XT [log(Dt(xt))]+

Exs∼Xs [log(1−Dt(Gs→t(xs)))]
(1)

GS→T tries to generate images that look similar to im-
ages from domain T while DT tries to distinguish between
adapted source samples GS→T (xS) and real target samples
XT . GS→T seek to minimize this objective against DT which
instead tries to maximize it.

Semantic Discriminator Loss
We train both discriminators, DSsem and DTsem , to perform
semantic segmentation employing source labels. DTsem

will
be trained on adapted source images, while DSsem

will be
trained directly on source images. We used a pixel-wise cross
entropy loss H(p, q) as in standard segmentation networks:

Lsem = H(DSsem
(GS→T (XS)), YS) +H(DSsem

(XS), YS)
(2)

Weighted Reconstruction Loss
We exploit the cyclic L1 reconstruction loss proposed in [29]
for target samples where we do not have any label. Regarding
source samples, we weight each pixel proportionally to the
probability of not belonging to its semantic class. Our weight-
ing term acts as a regularization where the network usually
fail adaptation introducing artifacts, forcing the least frequent
classes to be reconstructed preserving input appearance:

Lrec = ||GS→T (GT→S(xT )))− xT ||1+
(1− w)||GT→S(GS→T (xS)))− xS ||1

(3)

w is a weight mask with the same resolution of the source
image. Defined C as the set of possible classes, each weight
wi,j represents the likelihood of a class among all synthetic
dataset:

wi,j =
npixel ∈ c
npixel

, c ∈ C (4)

.
Final Loss

We train our discriminators and generators to minimize the
following losses:

LD = −Ladv + λsemLsem

LG = Ladv + λsemLsem + λrecLrec

(5)

λsem and λrec are hyper-parameters that control the relative
importance of domain classification, weighted reconstruction
and semantic segmentation. Across all our experiments we will
use λsem = 1 and λrec= 3.

IV. EXPERIMENTAL RESULTS

We conduct a series of tests to assess the effectiveness of
our method in producing realistic images and verify if they
are suitable for training deep learning models.

A. Datasets Creation

We have used as synthetic source domain the GTA dataset
[2], that features 22K realistic synthetic images obtained from
the Grand Theft Auto videogame enriched with perfect pixel
level annotations for semantic segmentation. As target real
images we have used the Cityscapes dataset [1] featuring 5000
images acquired during real driving sessions around Germany
and annotated with precise pixel level labels for semantic
segmentation. Among all available images we have used the
training split as our target samples during training, while
we have kept the validation split to measure performance of
different semantic segmentation networks. We did not use the



(a) GTA (b) GTA → Cityscapes [29] (c) GTA → Cityscapes (ours) (d) Cityscapes

Fig. 3: Image generated by CycleGan [29](b) and our semantics-aware GAN (c) for the GTA to Cityscapes domain alignement
task

test split since the labels are not publicly available. We chose
these two datasets as they provide annotations for the same
set of semantic classes and feature domains where the biggest
difference concern the shift from synthetic to real images.
We used ResNet as our generator networks and U-Net [18]
as our discriminator. Using the loss formulation described in
Sec. III-B we have trained our GAN to transform images
from the GTA [2] to the Cityscapes [1] domain for 300k
steps using Adam as optimizer, 0.0001 for learning rate and
batch size 2. We cropped our input images to 512x512. During
the training process we have used images and labels from
GTA and only images from Cityscapes, i.e., our method does
not require annotations from the real/target domain but only
from the source one. Once trained, we used the generator
to transform synthetic images from the training dataset to
produce an aligned GTA dataset that should resemble images
from the real Cityscapes domain. On Fig. 3 we depict some
qualitative example of images produced by our GAN (column
(c)) together with the corresponding input from the GTA
dataset (column (a)) and some exemplar images from the
Cityscapes, target, dataset (column (d)). To better show the
effectiveness of our semantic aware GAN, we also report
images obtained by training a CycleGAN network [29] that
does not use any semantic clues at training time (column (b)).
By comparing our images (column (c)) with those produced
by CycleGAN (column (b)) it turns out clearly that, unlike
previous approaches (i.e., column (b)), our novel formulation
can preserve the semantic content and avoid introduction of
artifacts. Moreover, the introduction of semantic constraints
during the training process helps to produce sharper edges
in the final image, which increases the quality of the images
compared to CylceGAN. We have also applied our GANs to
entire video sequences from the GTA domain and verified that
the network can easily maintain temporal consistency even if
it has only been trained on single frames. 1

B. Semantic Segmentation

Fig. 3 shows how our network can produce visually ap-
pealing images. In the following we demonstrate that our

1https://youtu.be/wIpFcKLviYQ

adapted images can be used to train a neural network to
obtain much better performance on the target domain w.r.t
the corresponding synthetic ones.

Focusing on semantic segmentation, we have trained a
standard FCN8s [16] on the original GTA synthetic images
and on our aligned dataset. We tested both on the validation
set of Cityscapes and reported the result in Table I. For all our
tests, we have initialized the feature extractor of the FCN8s
with the publicly available VGG16 weights trained on the
Imagenet dataset, then performed 100000 training iterations
using batch 4, Adam optimizer and 0.0001 as learning rate.
We trained networks on 1024x1024 cropped images.

To compare the networks we report two different metrics:
the mean instance-level intersection-over-union (from now
on shortened mIoU) computed following the guidelines of
the Cityscapes benchmark [1] and the overall pixel accuracy
(shortened acc), i.e., the percentage of correctly predicted pixel
labels. We also report detailed scores for each semantic class
to highlight for which categories our image augmentation
schema is more effective. We compare the results obtained
by our domain adaptation method with alternatives recently
proposed in literature: the feature-level alignment method of
[30], the curriculum style domain adaptation approach of [32]
and the pixel level alignment introduced in [33]. In Table I for
all methods we report the performance achieved by training
the very same FCN8s network [16] both before and after
domain alignment, the former marked using Source in the
method column. For each row we report per class mIoU and
aggregated performance across the whole dataset (last two
columns). Concerning aggregated mIoU score, we can see
how our proposal can outperform both [30], [32] while being
comparable with [33]. Moreover, considering pixel accuracy,
our proposal compares favourably even to [33]. Considering
the performance achieved before and after domain adaptation,
our proposed pixel level alignment can provide an impressive
+16.9 gain in mIoU and a +24 in Acc., that, once again,
compares favourably to [30], [32] and is comparable to [33].
Looking at class scores, we observe how our proposal can
achieve the best absolute performances on 10 classes out of
19, including some key ones for autonomous driving like road

https://youtu.be/wIpFcKLviYQ
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Source [30] 31.9 18.9 47.7 7.40 3.10 16.0 10.4 1.00 76.5 13.0 58.9 36.0 1.00 67.1 9.50 3.70 0.00 0.00 0.00 21.2 -
[30] 70.4 32.4 62.1 14.9 5.40 10.9 14.2 2.70 79.2 21.3 64.6 44.1 4.20 70.4 8.00 7.30 0.00 3.50 0.00 27.1 -

Source [32] 18.1 6.80 64.1 7.30 8.70 21.0 14.9 16.8 45.9 2.40 64.4 41.6 17.5 55.3 8.40 5.0 6.90 4.30 13.8 22.3 -
[32] 74.9 22.0 71.7 6.00 11.9 8.40 16.3 11.1 75.7 13.3 66.5 38.0 9.30 55.2 18.8 18.9 0.00 16.8 16.6 28.9 -

Source [33] 26.0 14.9 65.1 5.50 12.9 8.90 6.00 2.50 70.0 2.90 47.0 24.5 0.0 40.0 12.1 1.50 0.0 0.0 0.0 17.9 54.0
[33] 83.5 38.3 76.4 20.6 16.5 22.2 26.2 21.9 80.4 28.7 65.7 49.4 4.2 74.6 16.0 26.6 2.0 8.0 0.0 34.8 82.8

Source Ours 43.3 11.9 54.3 3.42 11.96 9.63 10.74 5.23 68.3 6.39 46.84 30.02 2.07 33.1 7.72 0.00 0.00 0.00 0.00 18.2 60.4
Ours 85.4 32.8 78.0 21.0 9.35 26.1 18.0 8.71 82.2 22.1 71.2 51.4 13.4 79.5 16.0 13.5 7.83 10.1 0.03 34.2 84.4

TABLE I: Comparison between domain adaptation methods for semantic segmentation on the Cityscapes validation set. Middle section
reports mIoU score per class, final two columns aggregated performance across the whole dataset, best results highlighted in bold.

(a) RGB input (b) GT segmentation (c) GTA Trained (d) GTA → Cityscapes Trained

Fig. 4: Segmentation results on the Cityscapes dataset for a FCN8s network trained only on synthetic data from the GTA
dataset (c) and on our GTA adapted dataset (d).

(+42.1 gain between before and after alignment), car (+46.4)
and person (+21.4). We still lose something compared to other
proposals on less common classes (e.g., bus, motorcycle and
bicycle), we think that this might be due to the dataset used
not having enough samples of the target classes to effectively
teach to the generator how to realistically render them. Even
though our proposal performs comparably to [33], we would
like to stress out how our adaptation method can be trained
end-to-end instead of relying on separate training steps for the
different parts.

In Fig. 4 we also report some qualitative examples of the
improvement in segmentation attainable by training on our
adapted GTA images (column (d)) compared to a purely
synthetic training set (column (c)). Even if the results in
column (d) are still far form optimal, most of the mistakes
visible in column (c) are completely gone and the overall
structure of the scene is more accurately segmented. Moreover,
we can notice visually how the larger improvement concerns
the segmentation of road (colored purple), cars (colored blue)
and people (colored red).

C. Ablation Study

In Sec. IV-B we have proven that the images generated
by our proposal can effectively be used to train a semantic
segmentation network so as to nearly double its performance
compared to using synthetic data only. In this section, instead,
we investigate more in depth on how each component of
our proposal contributes to the final result. Purposely, we
trained different architectures, keeping the comparison as fair

Test mIoU Acc.
(a) Synthetic 18.23 60.43
(b) GAN+Sem. 29.45 78.13
(c) GAN+Sem+weight. 31.33 79.85
(d) Cycle [29] 29.43 79.20
(e) Cycle+sem+weight. 34.27 84.48

TABLE II: Ablation study on the different component of our semantic
aware GAN. Best results in bold.

as possible by maintaining the same training protocol. We
report the results of these tests in Table II. We first investigated
the performance of training a semantic segmentation network
on images adapted by a simple GAN [34]. As we obtained
results even worse than our baseline network (a), we decided to
not report them in Table II. We then trained a GAN framework
enriched with our semantic discriminator. Comparing line (b)
with (a) we can clearly see how adding our semantics-aware
discriminator not only allows to successfully train the GAN
system but also results in a +11.22% mIoU, thus testifying
how semantic information can successfully regularize training.
We then added our weighted L1 reconstruction loss between
source and adapted image (c) slightly improving performances
by a +1.88% mIoU. We then trained a standard CycleGAN
[29] with no semantic clue demonstrating how having two
couples of generator and discriminator is extremely effective
to stabilize training of a GAN framework, as shown by (d)
reaching comparable results to (b). Finally (e) reports the
performance achievable by our full proposal that deploys



the CycleGAN network combined with the semantics-aware
discriminator and our semantic weighting system, achieving
remarkable performance: +16.04% mIoU and +24.05% Acc.
with respect to our baseline(a).

V. CONCLUSION AND FUTURE WORKS

In this paper we have demonstrated how a semantically
aware image-to-image translation network can be successfully
deployed to shrink the gap between images belonging to
two drastically different domains such as synthetic and real
images. Our novel network structure and loss function can
successfully produce realistic images, thanks to its adversarial
component, while at the same time maintaining structural
coherence between input and output thanks to the enforced
semantic consistency.

We have addressed the adaptation problem only at pixel
level, however recent works [33] have shown how for the
semantic segmentation task the best absolute performance can
be achieved by a mix of pixel level and feature level alignment.
Therefore we plan to add an additional fine tuning step of
our semantic segmentation network in order to introduce
feature alignment in our pipeline. Moreover, we have tested
our proposal for domain adaptation from synthetic to real
images in the context of image segmentation, however, the
same process can be used to address different tasks, e.g. object
detection, or different type of domain shifts, e.g. different
seasons, different sensors or different weather conditions. We
plan to carry out these tests in order to achieve a more
comprehensive experimental evaluation of our proposal.
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