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Abstract—Connected Components Labeling (CCL) is a fun-
damental image processing technique, widely used in various
application areas. Computational throughput of Graphical Pro-
cessing Units (GPUs) makes them eligible for such a kind of
algorithms. In the last decade, many approaches to compute
CCL on GPUs have been proposed. Unfortunately, most of them
have focused on 4-way connectivity neglecting the importance
of 8-way connectivity. This paper aims to extend state-of-the-
art GPU-based algorithms from 4 to 8-way connectivity and to
improve them with additional optimizations. Experimental results
revealed the effectiveness of the proposed strategies.

Index Terms—Connected Components Labeling, Parallel Com-
puting, GPU

I. INTRODUCTION

Connected Components Labeling (CCL) is a fundamental
image processing algorithm that extracts connected compo-
nents (objects) from an input binary image, transforming it into
a symbolic one, in which all pixels of the same object are given
the same label, typically an integer number. CCL is required
whenever a computer program needs to identify independent
components, and it represents the preliminary operation in
most of the computer vision research fields e.g. text analysis,
medical imaging and video surveillance. Differently from
other tasks, CCL algorithms should provide an exact solution,
and the main difference among them is the execution time.
Moreover, given that labeling is the base step of most real
time applications, it is required to be as fast as possible. For
this reasons, the proposals of the last twenty years focused on
the performance optimization of both sequential and parallel
algorithms.

For what concerns sequential algorithms, a significant im-
provement has been introduced with the use of array-based
Union-Find approach for label equivalences resolution [1], [2].
Further improvements were given by the introduction of block
and run-based scans, to reduce the number of memory accesses
and thus execution time [3], [4], by the use of pixel prediction
to exploit the information provided by already seen pixels,
removing the need to check them again [5], [6], and exploiting
techniques of footprint code compression [7], [8].

The development of parallel algorithms to solve common
problems is of growing interest, lead by the fast development
of parallel hardware architectures. A simple process to paral-
lelize sequential algorithm on CPU, consists of dividing the
input image into horizontal stripes and computing labeling
separately on each of them [9].

Computational throughput of Graphical Processing Units
(GPUs) makes them eligible for many image processing meth-
ods that can be easily implemented on such architectures. The
use of GPUs usually provides good performance, but this does
not happen for less regular problems, such as CCL. Indeed,
labeling GPU implementations tend to achieve comparable
performance with respect to the CPU ones [10]. However, data
transfer between device and host is very expensive, usually
higher than the cost of labeling procedure. Therefore, all the
applications that entirely execute on GPU would benefit from
an optimized GPU-based labeling algorithm, removing the
need for data transfers.

In the last decade, many approaches to compute GPU-CCL
have been proposed. Label Equivalence (LE), introduced by
Hawick in [11], is an iterative algorithm that propagates the
minimum label through each connected component by means
of a parallel procedure repeated until convergence, similarly as
the first sequential algorithm proposed by Haralick [12]. Block
Equivalence (BE) is a variation of LE that only works for 8-
way connectivity, and speeds up the process by implementing
the block based approach proposed for sequential algorithms
by Grana [3]. The Union Find method (UF) by Oliveira et
al. adapts the array-based union-find approach to a parallel
scenario [13], avoiding the necessity of multiple iterations.
Komura Equivalence (KE) is a very similar approach to UF,
that implements an optimized initialization phase to save work
in the following steps [14].
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Fig. 1. Possible neighbourhood configuration of a foreground pixel. Grey
squares are background and white are foreground. Arrows show connections
performed in initialization phase, crosses identify mergers that must be
performed during reduction phase, stars highlight pixels to whom the merging
operation can be delegated.



Algorithm 1 Union Find procedures. I is input image, L is
both union-find array and output label image.

1: function FIND(L, index)
2: label := L[index]
3: while label − 1 6= index do
4: index := label − 1
5: label := L[index]

6: return index

7: procedure UNION(L, a, b)
8: done := false
9: while done = false do

10: a := Find(L, a)
11: b := Find(L, b)
12: done := (a = b)
13: if a = b then
14: done := true
15: else
16: if done := false and a > b then
17: Swap(a, b)

18: old := atomicMin(&L[b], a+ 1)
19: done := (old = b+ 1)
20: b := old− 1

Many computer vision tasks require 8-way connectivity
CCL. Despite this, most of the aforementioned algorithms
have focused on 4-way connectivity only. According to the
Gestalt Theory of perception, our senses operate the closure
property perceiving objects as a whole, even if they are loosely
connected as happens in the 8-way connectivity case [3].

This paper aims to improve state-of-the-art GPU algorithms
with three main contributions: (i) extension from 4 to 8-way
connectivity of UF and KE methods (ii) optimization of KE
8-connected, and (iii) exhaustive evaluation of the proposed
strategies and comparison with state-of-the-art using a public
benchmark.

The rest of this paper is organized as follows. Section II
describes the relevant GPU-based algorithms that will be then
extended in Section III. In Section IV, a set of experiments
is reported discussing and motivating obtained results. Finally,
in Section V we draw conclusions.

II. RELATED WORK

A. Union Find Algorithm

Oliveira et al. proposed in [13] a GPU-CCL algorithm based
on a union-find approach. The union-find data structure was
firstly applied to CCL problems by Dillencourt et al. in [15]. It
consists of a forest of trees that supports two basic operations:
find and union.

The find function takes a node of a tree as input and returns
its root as output.

The union procedure takes two nodes as inputs and joins
together the trees they belong to, by setting the first tree root
as the father of the second one.

When union-find is applied to CCL, each pixel in the image
matches a node in the data structure. The final goal is to build a

Algorithm 2 Union Find kernels. I is input image, L is both
union-find array and output label image. Checks on image
borders are not shown.

1: kernel INITIALIZATION(I , L, r, c)
2: if I[r, c] = 1 then
3: L[r, c] := LinearIndex(r, c) + 1
4: else
5: L[r, c] := 0

6: kernel MERGE(I , L, r, c)
7: if I[r, c] = 1 then
8: index := LinearIndex(r, c)
9: for all ki := Neighbours(index) do

10: if ki < index and I[ki] = 1 then
11: Union(L, index, ki)

12: kernel ANALYSIS(I , L, r, c)
13: if I[r, c] = 1 then
14: L[r, c] := Find(L,LinearIndex(r, c)) + 1

single tree for each connected component, starting with every
foreground pixel in its own tree and taking advantage of union
operations for merging trees of connected pixels.

The union-find forest can be stored in memory as an array,
where each node is represented by an index, and the value
stored at that index represents its parent node. Root nodes have
their own indexes stored in the array. Values in said array can
also be interpreted as pixel labels. This way, when the goal
of matching every single connected component to a separate
tree has been achieved, a flattening operation that links each
node of every tree directly to the root is sufficient to assign the
same label to every pixel in the tree, thus completing the CCL
task. The union-find array can at this point be interpreted as
the label image, saving the need for a separate data structure
in memory. In order to distinguish between background and
foreground pixels, in our implementation we actually write,
for each node, the index of its parent + 1. This way, every
foreground pixel has a positive label, and 0 is assigned to
background ones.

A possible implementation of find and union procedures is
shown in Alg. 1. Atomic operations are used in union to avoid
problems concerning the simultaneous updates performed by
different threads.

UF algorithm is based on the union-find data structure and
it consists of three kernels: initialization, merge and analysis,
described in Alg. 2. Each of them is launched on a number of
threads equal to the image size, and each thread is assigned a
pixel, which we will refer to as the active pixel.

During initialization phase, the union-find structure is ini-
tialized, with each node in its own tree.

During merge phase, each thread working on a foreground
pixel analyzes its neighbourhood, and for every foreground
neighbour performs a union with the active pixel. In the pseudo
code, the neighbours function is used to get the neighbours of
a pixel, which depend on the chosen connectivity.

After merge phase the analysis kernel performs the flatten-



Algorithm 3 4-way connectivity Komura equivalence algo-
rithm kernels. I is input image and L is labels matrix. Checks
on image borders are not showed.

1: kernel INITIALIZATION(I , L, r, c)
2: if I[r, c] = 0 then
3: L[r, c] := 0
4: else
5: index := LinearIndex(r, c)
6: label := index
7: for all ki := Neighbours(index) do
8: if ki < label and I[ki] = 1 then
9: label := ki

10: L[r, c] := label + 1

11: kernel REDUCTION(I , L, r, c)
12: if I[r, c] = 1 and I[r, c− 1] = 1 then
13: a := LinearIndex(r, c)
14: b := LinearIndex(r, c− 1)
15: Reduce(L, a, b)

16: procedure REDUCE(L, a, b)
17: a := Find(L, a)
18: b := Find(L, b)
19: done := (a = b)
20: if a > b then
21: Swap(a, b)

22: while done = false do
23: old := atomicMin(&L[b], a+ 1)
24: if old = a+ 1 then
25: done := true
26: else if old > a+ 1 then
27: b := old− 1
28: else if old < a+ 1 then
29: b := a
30: a := old− 1

ing of trees, completing the labeling task. The entire algorithm
is first performed on rectangular blocks the image is divided
into. Then, merge kernel is performed on border pixels only,
and a final analysis is launched over the whole image. The
original algorithm uses 4-way connectivity, and we extended it
to 8-way connectivity by simply adding the diagonal directions
to the neighbourhood of a pixel, in merge kernel.

B. Komura Equivalence Algorithm
The Komura Equivalence algorithm [14], which employs a

4-way connectivity, introduces additional improvements to the
UF algorithm. This method consists of four steps: initializa-
tion, analysis, label reduction, and analysis again, which are
detailed in the following:
(a) The initialization kernel, shown at line 1 of Alg. 3,

sets the label of each pixel with the smallest linear
address of its neighbours, avoiding the commonly used
write operation which initializes the output image with
increasing labels. Since the smallest address is chosen,
north pixel is prioritized over west one. Same as Union

Algorithm 4 8-way connectivity Komura equivalence reduc-
tion kernel - r and c are thread row and column, I is input
image and L is labels matrix. Checks on image borders are
not showed.

1: kernel REDUCTION(I , L, r, c)
2: if I[r, c] = 1 and I[r − 1, c] = 0 then
3: k := LinearIndex(r, c)
4: NW := I[r − 1, c− 1]
5: if NW = 1 and I[r − 1, c+ 1] = 1 then
6: Union(L, k,LinearIndex(r − 1, c+ 1))
7: if NW = 0 and I[r, c− 1] = 1 then
8: Union(L, k,LinearIndex(r, c− 1))

Find, in our implementation we add 1 to each label, to
make sure that foreground pixels always are assigned
positive values. Background pixels are given label 0
instead. This small change also slightly affects the other
kernels.

(b) The analysis kernel is equal to the Union Find procedure
of the same name, and achieves the goal of collapsing
the trees created in the previous step to their roots.

(c) In reduction kernel, shown at line 11 of Alg. 3, every
thread merges the active pixel tree with the one containing
the pixel to the west, in the case it is foreground. Indeed,
if both north and west pixels are foreground, only north
has been chosen during initialization phase. The merging
is performed by the reduce procedure, which has the same
effect of union.

III. PROPOSED ALGORITHM

Our new algorithm is an adaptation of KE to a 8-way
connectivity scenario. It keeps the same structure as the
original 4-way variation—initialization, analysis and reduction
kernels are preserved. A few changes must be introduced to
the operations these kernels perform though.

The initialization kernel has the same structure as the
4-way connectivity variation, but the neighbours function
must also return diagonal neighbours. Since we still assign
the smallest neighbour address, the priority order is north-
west→north→north-east→west.

The analysis kernel is the same as the 4-way connectivity
variation. Its job of following the equivalence chains to the
root of trees is not indeed tied to pixel connectivity.

The reduction kernel is still responsible for merging trees
that result separate after the first two phases, but are con-
nected together by at least a couple of foreground pixels
nonetheless. This occurrence is rather common, considering
that in the initialization phase each pixel can only choose
one among possibly four different neighbour indexes. Each
possible neighbourhood configuration of a foreground pixel
is shown in Fig. 1. Configurations in Fig. 1a do not need
additional merging between pixel trees. In fact, connected
pixels in the mask have already been linked together in
initialization phase. Conversely, crosses in Fig. 1b identify
merging operations that must be performed between the tree
containing the active pixel and the one containing the pixel
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Fig. 2. 4-way connectivity experimental results obtained on a Nvidia Quadro K2200 GPU with the YACCLAB benchmark. For each dataset and algorithm
the average execution time in ms is reported (lower is better).

to the west (f ) or to the north-east (g and h). Those two
trees may have already been joined together by another pixel
outside from the neighbourhood mask, but since we do not
know it, we must join them anyway. A further exploration
outside of the mask is not worth the effort, because of the
large amount of memory accesses it would introduce. Each
configuration in Fig. 1c exhibit one or more couple of trees
that need to be merged as well. Nevertheless, each of those
tree connections also show up in the neighbourhood mask of
at least another foreground pixel, marked with a star (e.g. in i,
the connection between the west pixel and the north-west pixel
also appears in the neighbourhood mask of the west pixel).
This means that, when we face a mask configuration included
in the aforementioned set, we are not forced to join neighbour
trees. Indeed, other threads can perform the same operation.
Consequently, to save unnecessary calls to the reduce function,
each thread in reduction kernel only joins together connected
trees if the neighbour configuration of the active pixel belongs
to the merge required set, because those are the only cases
we cannot delegate the merging operation to other threads.
We use a small decision tree to identify said configurations
while limiting the number of memory accesses to a minimum.
Actual memory accesses range from a minimum of 1 to a
maximum of 4 per thread, but their cost is compensated
by the fact that reduce function, which in turn performs a
variable number of memory accesses, is only called on 3
neighbourhood configurations out of 16 possibilities.

We also introduced another slight improvement to reduction
kernel. As Playne noticed in [10], the original reduce function
always performs at least two atomicMin, even in the case no
other thread interfered. We thus replaced the reduce procedure
with union, which produces the same result without employing

unnecessary atomic operations. The pseudo code of reduction
is showed in Alg. 4. After the reduction step, equally to the 4-
way connectivity variation, a final analysis is needed to assign
every pixel the root label of its tree.

IV. EXPERIMENTAL RESULTS

In this Section, the performance of the proposed strategies
are evaluated and compared with other state-of-the-art GPU-
CCL algorithms. There are many variables that could influence
the performance of an algorithm in terms of execution time:
the machine architecture and the operative system on which
test are performed, the adopted compiler, code implementation
and last but not least the data on which algorithms are tested.
In order to produce a fair comparison, our proposals have
been evaluated with YACCLAB [16], [17]: an open source
C++ benchmarking system, based on OpenCV and available
in [18], which lets researchers test CCL algorithms under
variable points of view and over a common background.
The benchmark provides a set of datasets covering real case
scenarios for CCL, from which we select the most signif-
icant ones: MIRflickr [19], Medical [20], Tobacco800 [21],
XDOCS [22], [23], Fingerprints [24], and 3DPeS [25]. A
complete description of these datasets can be found in the
original paper.

The algorithms have been implemented with Visual Studio
2017 using CUDA 9.2 and compiled for x64 architectures em-
ploying MSVC 19.13.26132 and NVCC V9.2.148 compilers
with optimizations enabled. Tests are performed on an Intel
Core i7-4770 CPU @ 3,40 GHz (with 4×32 KB L1 cache,
4×256 KB L2 cache, and 8 MB of L3 cache) with 16 GB
of RAM available, and with a Quadro K2200 NVIDIA GPU
with Maxwell architecture, 640 CUDA cores and 4 GB of
memory. Both 4-way and 8-way connectivity implementations
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Fig. 3. 8-way connectivity experimental results obtained on a Nvidia Quadro K2200 GPU with the YACCLAB benchmark. For each dataset and algorithm
the average execution time in ms is reported (lower is better).

are provided for each algorithm except for BE, which employs
a block-based strategy suitable for 8-way connectivity only.

In Fig. 2 and Fig. 3 the average execution time for each
algorithm and dataset is reported, respectively for 4-way and
8-way connectivity. Bar charts report separately the time
needed for allocating data structures and the execution time
required by the labeling procedure. According to [17], the
allocation time reported in this charts is an upper bound of
the real allocation time required by an algorithm on a given
environment.

Focusing on Fig. 2, the allocation time is the same for
each strategy, but for LE. Indeed, all strategies must allocate
memory for the output image and LE requires an additional
boolean flag to stop iteration when no change on the output
image occurs. A similar conclusion can be drawn for Fig. 3,
but the allocation time of BE is almost twice the others, since
it relies on additional matrices to store equivalences between
blocks and their labels.

The execution time of the LE core phases is always the
worst, given that it requires multiple iterations over the input
image to update the output one until convergence. The block
scan approach introduced by BE allows to reduce by a factor of
four the operations required by LE, thus reducing the labeling
time at the expense of allocation step. In most cases, using
blocks to scan images improve the performance, except for
images with very low foreground density such as in 3DPeS.

Anyway, multiple scan approaches are always worse than
others. As can be seen from charts in Fig. 3, the reduction
in the number of iterations allowed by UF always improves
performance. Moreover, KE allows the removal of the initial-
ization phase of UF, always providing the best performance
on real cases datasets.

In order to highlight strengths and weaknesses of the
algorithms, and following a common approach in litera-
ture [1]–[3], an additional test has been performed on images
with increasing foreground density (Fig. 4). These images
are pseudo-randomly generated using the Mersenne Twister
MT19937 [26], as described in [17]. Resulting images have a
size of 2048× 2048 and a density varying from 0% to 100%
with step of 1%.

Considering both 4 and 8-way connectivity, the LE approach
has an increasing trend in the execution time up to 40% of
foreground density, and a decreasing one after 60%. In the
middle densities the execution time reaches the maximum
value. This is linked to the number of iterations required
by the labeling procedure to converge, as shown in Tab. I.
More specifically, the pixels patterns which cause the highest
number of iterations appear near 60% of foreground density
for 4-way connectivity variation and near 40% for the 8-way
one. The BE algorithm has a similar behavior, albeit with
better performance. This confirms results on real cases datasets
described before.

On the other hand, the execution time of the UF approach
grows with foreground density. This is because each pixel
thread has to perform one merge operation for each connected
pixel, and the number of those pixels is linked to density. The
more merges there are, the more memory accesses and atomic
operations are performed.

Performance gap between UF and KE significantly increases
from 4 to 8-way connectivity. This can be easily explained
considering the optimization we introduced on the 8-connected
variation of the algorithm. Indeed, thanks to reduction pro-
cedure we are able to remove unnecessary operations, thus
reducing overall execution time.
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TABLE I
AVERAGE NUMBER OF ITERATIONS REQUIRED BY LE IMPLEMENTING

8-WAY CONNECTIVITY ON IMAGES OF INCREASING DENSITY.

density (%) 0 10 20 30 40 50 60 70 80 90 100
iterations 1.0 4.0 5.0 5.0 7.2 5.0 5.0 4.0 3.9 3.0 2.0

V. CONCLUSIONS

In this paper the problem of connected components la-
beling on GPUs is explored. Many approaches have been
introduced over the years but we focused our study on four
main methods: Label Equivalence, Block Equivalence, Union
Find and Komura Equivalence. All this algorithms have been
reimplemented in their original 4-way connectivity version,
but BE that is suitable for 8-connected applications only.
Moreover, we adapted both the Union Find and Komura
Equivalence strategies to the 8-way connectivity, and intro-
duced an optimization on the second one which reduces the
memory accesses, improving the performance. Experimental
results obtained with an open-source benchmark for CCL,
revealed the effectiveness of our proposals. The source code
of described algorithms is available at [18], so anyone can
download, test it on his own setup, and verify our claims.
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