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Abstract—Perfusion imaging is a valuable tool for diagnosing
and treatment planning for liver tumours. The time separation
technique (TST) has been successfully used for modelling C-arm
cone-beam computed tomography (CBCT) perfusion data. The
reconstruction can be accompanied by the segmentation of the
liver - for better visualisation and for generating comprehensive
perfusion maps. Recently introduced Turbolift learning has been
seen to perform well while working with TST reconstructions,
but has not been explored for the time-resolved volumes (TRV)
estimated out of TST reconstructions. The segmentation of the
TRVs can be useful for tracking the movement of the liver over
time. This research explores this possibility by training the multi-
scale attention UNet of Turbolift learning at its third stage on
the TRVs and shows the robustness of Turbolift learning since
it can even work efficiently with the TRVs, resulting in a Dice
score of 0.864±0.004.

Index Terms—liver segmentation, cone-beam CT, time-resolved
volumes, perfusion imaging

I. INTRODUCTION

Computed tomography (CT) perfusion imaging is a use-
ful technique for diagnosing and planning therapy for liver
tumours. With C-arm cone-beam CT (CBCT), the perfusion
scan could be acquired in the interventional room and save
time needed for patient transfer. For accurate visualisation
and comprehensive liver perfusion maps, segmentations should
be performed. However, liver segmentation in volumes recon-
structed from the acquired CBCT perfusion scan is a difficult
task due to several factors. The flow of the contrast agent
affects the appearance of vessels. This, combined with noise,
affects the grey values in the liver. The surrounding organs
and tissue of the abdomen have similar attenuation values to
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those of the liver. The dynamic liver perfusion using C-arm
CBCT is not yet explored enough, and not many acquisitions
of different subjects are available. The C-arm rotates around
the subject multiple times to acquire projections - which are
then reconstructed to obtain the 3D volumetric images. This
results in temporal undersampling and demands for a model-
based reconstruction approach to be utilised. So far, for liver
perfusion, the time separation technique (TST) [1] emerges as
the preferred choice over the straightforward reconstruction.
Instead of treating all projections of one rotation to be acquired
at the same time point (i.e. straightforward reconstruction),
the TST models the temporal behaviour of every voxel as
a linear combination of basis functions that are mutually
orthonormal [2], [3]. The liver segmentation was the subject
of research in many works [4]–[6]. However, none of these
offered completely automated liver segmentation in CBCT vol-
umes. Turbolift learning has been proposed [7] to segment the
liver from differently reconstructed CT and CBCT perfusion
volumes, including TST.

Turbolift learning consists of three stages - CT, CBCT
and CBCT TST. Each of the subsequent stages utilises the
earlier stages as pretraining - helping to combat the problem
of insufficient datasets is minimised. The first stage uses the re-
constructed CT volumes for training, then the straightforward
reconstructions of the CBCT volumes are used in the second
stage, while the final stage uses the reconstructed coefficients
by means of TST. However, neither the training nor the
testing was performed using the reconstructed time-resolved
volumes (TRV), estimated using the reconstructed coefficients.
Segmentation of the TRVs can be utilised to visualise the
change in the shape of the liver over time. Therefore, this
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paper analyses the segmentation results on the time-resolved
volumes and if these results could be improved by working
with time-resolved volumes in the third stage of the Turbolift
instead of the reconstructed coefficients. This research replaces
the third stage of the Turbolift with the TRVs and evaluates the
robustness and applicability of Turbolift learning with TRVs.
Segmenting the TRVs will deliver proper representation of the
perfusion maps, and facilitate diagnosis and treatment of liver
tumours.

II. METHODS

Turbolift learning trains a multi-scale attention UNet in
different stages, where the earlier training stages act as pre-
training for the subsequent stage - assisting the model to
learn from a small training dataset. The original Turbolift [7]
stages were CT, CBCT, and CBCT TST. Here, the CBCT
TST implied the reconstructed first coefficient (FCR) by the
means of TST. This was replaced here in this research by
the time-resolved volumes (TRV), which were generated by
all the reconstructed coefficients (shown in Fig. 3). This
section starts by explaining the experimental setup and data
acquisition methodology - explaining FCR and TRV in more
detail, followed by a brief explanation of Turbolift learning,
and finally exposing the implementation related information.

A. Experimental Setup and Data Acquisition

The C-arm CBCT perfusion scans of four domestic pigs 1

were acquired using Siemens Artis pheno C-arm using scan-
ning protocol suggested in [8]. It consists of ten rotations,
with each covering rotation of 200° and with an angular step
of 0.8°. The C-arm makes forward and backward rotations
with a pause between every two successive rotations. The
embolisation of the right hepatic liver artery was conducted in
all four subjects resulting in decreased blood flow to embolised
regions.

The TST linearly combines orthonormal basis functions to
model the change in grey values of every voxel and also
of every pixel in projections during the scan duration. By
multiplying both sides of the reconstruction problem Ax = p
with any orthogonal basis function, the reconstruction problem
is simplified. Instead of reconstructing a volume in every time
point for which the projection was acquired during the scan
duration, the number of reconstruction problems is the same as
the number of basis functions. In this work, the basis function
set has been constructed using prior knowledge, by applying
singular value decomposition (SVD) on the reconstructed
CT volumes, as shown in Fig. 2. Note that the SVD was
applied only to the liver regions, while the surrounding tissue,
bones and catheters were ignored. The selected subsection of
SVD vectors formed the basis function set, and the functions
were fitted to the projections and were reconstructed (i.e.
reconstructing fitted coefficients) with a slice thickness of

1The research was carried out in compliance with European Directive
2010/63/EU and German animal welfare legislation (TierSchG). All exper-
iments were approved by the local animal ethic committee (Lower Saxony
State Office for Consumer Protection and Food Safety, LAVES 18/2809).

1mm. The basis set consisted of five basis functions. The
analysis and discussion of the right number of SVD vectors
is carried out in [9]. The general scheme of the described
approach is depicted in Fig.1.
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Fig. 1. Steps for prior knowledge extraction and time separation technique
application.

Previous research [7] only utilised the first coefficient for
training since the associated basis function is a constant one
and therefore the most similar to the classical reconstructed CT
volumes (i.e. straightforward reconstructions). Fig. 3 portrays
all of the coefficients, and when analysed in relation to Fig. 2,
it is noticeable how the Function 2 contains information about
the arterial input function and therefore models the contrast
agent flow, but the liver contours are not easily distinguishable.

In total, 100 samples of time-resolved volumes per subject
were generated using these reconstructed coefficients over the
complete scan interval. Since the contrast agent is washed out
during scanning, many volumes appear very similar, as can
be seen in Fig. 4. Therefore, six volumes per subject were
utilised in this research. In total, there were four subjects in
the dataset - three of them were used for training and one for
testing. In this manner, 4-fold cross-validation was performed
(i.e. all possible combinations using those four subjects).

B. Turbolift learning
Deep learning typically requires large training datasets that

are comparable to the final test set. Turbolift learning [7]



Fig. 2. Basis function set used to model the C-arm Cone-Beam CT perfusion
data.
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Fig. 3. Reconstructed coefficients.

was proposed to combat this problem by employing a fine-
tuning-based approach - using transfer learning in different
stages. Turbolift starts by pretraining a modified version [10],
[11] of the Multi-scale Attention UNet [12] on a dataset of
healthy humans - the CHAOS dataset [10]. The network has
a UNet-like architecture [13], consisting of four encoding
blocks, also known as the contraction path, to obtain the latent
representation and then symmetrically uses four decoding
blocks, known as the expansion path blocks, to obtain the
final output. The output of each encoding block is supplied
to its corresponding decoding block as skip connections. All
skip connections, except the one in the final decoding step,
pass through attention gates to suppress noise - making it
an attention UNet [14]. Unlike typical deep learning models,
this model receives the input image in the original scale
and in three downsampled scales, which are supplied in the
inner encoding blocks. Similarly, the output of the model
is compared at different scales as well - known as deep
supervision [15] or multi-scale supervision [16]. The final
output of the model (output from the final decoding block),
along with three more outputs from the inner decoding blocks,
are compared against the original ground-truth (used in [7]),
as well as three downscaled versions of the ground-truth,
respectively.

The CHAOS pretrained model was then trained using an
animal CT perfusion dataset - constituting the first stage of
the main training phase. The subsequent round of training
of that trained model was carried out on the CBCT dataset
before finally training on the first reconstructed coefficient of

CBCT TST (FCR). In this stage-wise training method, the
model learns on multiple datasets at different stages, allowing
the model to perform well on the final and smallest dataset
- FCR. The preceding training stages serve as pretraining for
each subsequent task, allowing the model to benefit from three
stages of pretraining (i.e. CHAOS pretraining and two stages
of Turbolift) before finally learning on the FCR dataset. It
has been seen that the performance of the model improves
significantly from using Turbolift learning instead of training
on the individual dataset [7].

The earlier research of Turbolift learning [7] works with
the first reconstructed coefficient (FCR) of the CBCT TST
reconstruction and not with the time-resolved volumes (TRV)
estimated from it, as mentioned earlier, and segmenting the
liver from these TRVs will be useful for tracking the move-
ments of the liver over time. Hence, a second Turbolift was
trained by replacing the final stage with TRV. In this case, the
model trained on CBCT (already trained on CHAOS and CT)
was trained on the TRV dataset. Fig. 5 depicts the training
process.

C. Implementation, Training, and Inference

The original implementation of Turbolift 2 was utilised
in this research and was trained using 2D slices from the
3D volumetric images from the training datasets in various
stages with a batch size of eight while collecting gradients
of eight batches before backpropagating - resulting in an
effective batch size of 64. The training was performed with
the help of mixed precision [17]. The error between the
model’s predictions and the ground-truth segmentation masks
was measured using the focal Tversky loss [12] and was
calculated at the original scale (the final output of the model)
and three downsampled scales (as discussed earlier). All the
four values were averaged to obtain the final loss value. This
combined loss was then optimised for 500 epochs using the
Adam optimiser with a learning rate of 0.001. The trained
models were utilised for inference on that particular dataset at
each stage of Turbolift, and then they were regarded as pre-
training to conduct training on the next. 4-fold cross-validation
taking three animals for training and one for validation, was
performed at every stage of the training. To further aid the
training on a small dataset, similar to the original work, four
different data augmentation techniques were used with an
overall probability of 75% - random horizontal flips, random
vertical flips, random rotation, and random translation of the
pixels in both height and width directions. To remove noise
from the predictions, the largest area in terms of the number
of pixels was selected from each volume as there can only be
one liver, and the rest was removed.

III. RESULTS AND DISCUSSION

Six sets of evaluations were performed during this research.
For all of them, the first two stages of the Turbolift were as
they were in the original paper [7] - CT and CBCT. The third

2Turbolift on GitHub: https://github.com/soumickmj/Turbolift

https://github.com/soumickmj/Turbolift
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Fig. 4. Time-resolved volumes reconstructed by the means of time separation technique. The liver is marked with red line. The change in contrast agent flow
over time can be observed.
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Fig. 5. Three stages of Turbolift. In the last third stage, the training on
reconstructed coefficient is replaced by training on the time-resolved volumes
generated using this reconstructed coefficient.

stage in the original Turbolift is referred to here as FCR (i.e.
fitted coefficients reconstructed). One additional experiment
was performed with the third stage using TRV (i.e. using
the time-resolved volumes). For evaluation, the CBCT trained
models (2nd stage of the Turbolift), FCR trained models (3rd
stage of the original Turbolift), and TRV (3rd stage of the
modified Turbolift) were evaluated using FCR and TRV. The
results were evaluated using Dice and Intersection over Union
(IoU), and are presented in Tables I and II, respectively.

It is worth mentioning that by modelling the data using only
the selected subsets of the SVD components, not all the signals
are modelled - which can also be considered as the denoising
of the data. However, the presence of noise can be observed
in functions in Fig. 2. This means some noise components are
also reconstructed and therefore might affect the segmentation
quality.

TABLE I
DICE OF THE SEGMENTATION RESULTS OF TRADITIONAL TURBOLIFT

LEARNING (CBCT TST) AND TIME-RESOLVED TURBOLIFT (TRV TST)

Trained on ... Tested on ...
FCR TRV

CBCT 0.890±0.019 0.865±0.087
FCR 0.905±0.007 0.842±0.141
TRV 0.883±0.003 0.864±0.004

It can be observed that the method performs adequately in
all scenarios as the lowest Dice score of 0.842±0.141 was
obtained while testing TRV on the model trained with FCR,
while the highest Dice score of 0.905±0.007 can be observed
when FCR was tested on FCR-trained model. This trend is
also confirmed by the IoU. Both metrics also show that when
a similar type of data is used for training and testing, the
results are better. Furthermore, it is noteworthy that the second

TABLE II
INTERSECTION OVER UNION (IOU) OF THE SEGMENTATION RESULTS OF

TRADITIONAL TURBOLIFT LEARNING (CBCT TST) AND TIME-RESOLVED
TURBOLIFT (TRV TST)

Trained on ... Tested on ...
FCR TRV

CBCT 0.802±0.019 0.762±0.076
FCR 0.826±0.010 0.726±0.124
TRV 0.790±0.006 0.761±0.007

stage of the Turbolift (CBCT) works better with TRV than
the third stage (FCR) as the TRV is more similar to the
volumes of straightforward reconstruction (CBCT) than to the
reconstruction of the constant coefficient reconstruction.

Fig. 6 presents segmentation results for qualitative com-
parisons. The qualitative results corroborate the quantitative
results - when the same type of data is used for training
and testing, the results are better. The first set of examples
(first two rows) shows the results are very similar in all
six cases. However, the intestine region (green arrow) was
better segmented when FCR trained model was tested on FCR
data, while the stomach was better segmented by the model
trained on TRV and tested on FCR (purple arrow). It is worth
mentioning that the intensity values of the intestine are very
different from the values of the liver. Even then, the TRV
results in faulty segmentations, which might be due to the
gallbladder region, which has similar values to the liver. But
in general, both of them are better than CBCT results when
tested on FCR and TRV. The second set of examples shows
the region of the gallbladder. Similar to the earlier set, as well
as the quantitative results, the models trained and tested on
the same type of data perform better. When the FCR data
was tested on CBCT and TRV trainings, the network failed
to segment out the gallbladder properly (yellow arrow) as
the gallbladder is not very well visible in the input FCR
image. But, when it comes to TRV, the gallbladder is better
visible and aids all three types of trainings in segmenting it.
Considering the second stage of the Turbolift is trained on the
straightforward reconstruction (CBCT) that experience change
in the contrast agent flow over time, it will segment the TRV
better than the FCR trainings. The FCR is only trained on
the fitted reconstruction coefficient, which describes the static
behaviour of an organ, but not the dynamic one (i.e. contrast
flow).
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IV. CONCLUSION

This research presents an analysis of the segmentation
quality of Turbolift learning while segmenting different types
of computed tomography (CT) perfusion images. A multi-scale
Attention UNet model was trained and tested serially on CT,
straightforward cone-beam CT (CBCT) reconstruction, and
first coefficient reconstruction (FCR) of model-based CBCT
reconstruction TST - making the earlier stage act as the pre-
training stage for the current one to combat with the problem
of small datasets. In this research, the original Turbolift was
modified by replacing the FCR stage with the time-resolved
volume (TRV) data. The experiments revealed the robustness
of Turbolift learning while encountering different scenarios,
resulting in Dice scores between 0.842±0.141 and 0.905±0.007
while performing automatic segmentation. The experiments
revealed that the method could work efficiently on both FCR,
as well as TRV data. Further experiments will be performed
to evaluate the performance of the method while encountering
motion artefacts and while modelling using a different number
of SVD components in TRV reconstruction.

ACKNOWLEDGEMENT

This work was in part conducted within the context of the
International Graduate School MEMoRIAL at Otto von Gu-
ericke University (OVGU) Magdeburg, Germany, kindly sup-
ported by the European Structural and Investment Funds (ESF)
under the programme ”Sachsen-Anhalt WISSENSCHAFT In-
ternationalisierung” (project no. ZS/2016/08/80646) and by the
German Federal Ministry of Education and Research within
the Research Campus STIMULATE (grant no. 13GW0473A
and 13GW0473B).

REFERENCES
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