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ABSTRACT - For driving assistance and autonomous
driving systems, it is important to differentiate between
dynamic objects such as moving vehicles and static ob-
jects such as guard rails. Among all the sensor modalities,
RADAR and FMCW LiDAR can provide information re-
garding the motion state of the raw measurement data.
On the other hand, perception pipelines using measure-
ment data from ToF LiDAR typically can only differenti-
ate between dynamic and static states on the object level.
In this work, a new algorithm called DONEX was devel-
oped to classify the motion state of 3D LiDAR point cloud
echoes using an occupancy grid approach. Through al-
gorithmic improvements, e.g. 2D grid approach, it was
possible to reduce the runtime. Scenarios, in which the
measuring sensor is located in a moving vehicle, were also
considered.

I INTRODUCTION

To fully realize autonomous driving, the driving system
must both take over all aspects of the driving function in a
fully automated manner as well as serve as a fallback level.
The Society of Automotive Engineers (SAE) defined five lev-
els of autonomous driving [1]: Level 5 represents fully au-
tomated driving. Starting from SAE level-3, redundancy of
sensor data would be necessary to ensure the system’s func-
tional safety. LiDAR systems act as a key technology here,
complementing camera and RADAR data to ensure the safety
of the system, since the driver is allowed to put his eyes off
the road but must be able to take back control within seconds
after a warning. LiDAR sensors can measure the environ-
ment, which is represented by 3D point clouds consisting of
vast number of echoes.

For autonomous driving functions such as braking, eva-
sion, overtaking etc., the identification of an objects’ motion
states is necessary. Typically the motion state estimation of

objects is done during or after the object tracking stage of
a LiDAR perception pipeline. This kind of architecture has
several drawbacks. First of all, due to occlusions and differ-
ent viewing perspectives during driving, the association and
motion estimation on object level or cluster level sometimes
lead to false-positives, especially on static objects with irreg-
ular shapes such as vegetations. Secondly, due to the nature
of the algorithms, motion estimation on object level is rela-
tively hard to be accelerated on dedicated hardware such as
GPU. Last but not least, knowing the motion state of each
echo would be beneficial for different detection tasks such as
free space detection, static land mark detection etc.

In this paper, we propose a novel voxel grid based motion
estimation approach for 3D LiDAR point cloud. The algo-
rithm is called DONEX - Detection Of New Echos in voXel
grid. By comparing the volumetric occupancy of the voxels
over time, dynamic echoes are detected. In addition to the
method using 3D voxels, a 2D grid based method was devel-
oped to optimize the runtime. We also developed ego motion
compensation so that the algorithm can cope with moving ego
vehicles.

Our algorithm can also be used for 3D point cloud pro-
vided by other sensor modalities such as video camera or
RADAR, because it only requires the cartesian coordinates of
the echoes and the scan identifier. Figure 1 shows an example
of the result, dynamic echoes are marked in magenta.

Figure 1: Example of the detection results of DONEX. Identifying moving
cars, pedestrians and bicycles as dynamic.
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II RELATED WORK

The presented solution falls into the category of 3D change
detection [2]. This means time series data analysis in 3D
using volumetric dynamics. Few publications deal with the
classification of dynamic and static echoes. Vieira et al [3],
which use spatial density patterns, compare incoming geome-
tries or point cloud changes soley due to occlusion or incom-
plete sensor coverage.

Another approach is the so-called fast motion segmenta-
tion by Jo et al [4]. The algorithm segments a LiDAR point
cloud into dynamic and static echoes. In order to accurately
and reliably estimate the motion state of each LiDAR point
while considering the measurement uncertainty, both proba-
bility theory and evidence theory are used in this segmenta-
tion algorithm. The principle of probability theory is based on
the geometric relationship of two successive point clouds; the
basis is a probability field, which indicates a echo as static or
dynamic. If a echoes lies outside this field, an evidence-based
approach - the so-called Dempster and Shafer theory [5] - is
used for processing. Problems of this ray tracing approach
are noises in vegetation and thin objects as well as errors at
object boundaries.

Asvadi et al [6] also use probability theory but addition-
ally in combination with a voxel grid. A voxel grid cell has
certain probabilities to be static or dynamic, which are up-
dated continuously. The first step is to check if any cell con-
tains echoes. If so, it is checked whether new ones have been
added in the current frame. If new echoes were detected, the
dynamic probability of the voxel cell increases. If no new
echoes were detected in that cell, the probability for static
is correspondingly higher. One difficulty with this approach
is the shadow handling. In contrast, our DONEX algorithm
does not determine the probablistic motion state of a cell, but
purely through real detections. Errors that are caused by a
probability model do not occur in our solution, shadow han-
dling issues could be solved by DONEX as well.

Publications [7][8] also use an approach with a voxel data
structure to differentiate between static and dynamic sections
of the point cloud. Instead of measuring free voxels, the sys-
tem counts how many times a voxel is occupied. Because of
the variating occlusion, they must make some environment
assumptions and apply several heuristics that are not neces-
sary in DONEX. In addition, their approach needs an ground
surface estimation.

The algorithm which serves as starting point of our devel-
opment is the so-called peopleremover algorithm [9]. For an
existing set of 3D point clouds, a binary voxel occupancy grid

is generated. This is traversed along the lines of sight be-
tween the sensor and the measured echoes to find differences
in volumetric occupancy between scans. The traversal of the
line of sight is based on the fast voxel traversal algorithm of
Amanatides and Woo [10]. This method is used to investigate
whether an echo that was at a certain location at another time
is now no longer present there. The principle of see-through
voxels is used for this purpose: If a line of sight can be tra-
versed through a voxel where it could not be traversed at an
earlier time due to an object, this object must have moved
away and the voxel is now see-through. That is how a dy-
namic voxel is determined. A significant disadvantage of this
algorithm is that it cannot be used in real-time. The peoplere-
mover algorithm can only be used for post-processing of al-
ready stored point cloud data. A use in the field of automated
driving is excluded.

One of the latest deep-learning based approaches from Sun
[11] uses an extended SalsaNext semantic segmentation net-
work, where a spatial and channel attention module is used
to extract motion information from residual image, which is
computed by the normalized range distances of the current
frame and the projected previous frame. Despite good perfor-
mance, the required runtime is however relatively large.

Another recent related work is a deep learning-based ap-
proach from Chen et al [12]. It exploits sequential range im-
ages from a rotating sensor as an intermediate representation
and combines it with a convolutional neural network (CNN).
Based on this intermediate representation, the existing range-
image-based semantic segmentation networks can directly be
exploited as already proposed for example by Milioto et al.
[13], Cortinhal et al. [14], and Li et al. [15] to deal with
the moving objects segmentation. The CNN based segmen-
tation approach uses the generated 3D range image from the
sensor together with the residual images generated from past
scans as inputs and outputs. The network exploits the tem-
poral information and can differentiate between moving and
static objects combining the range images and the residual
images.

III GENERAL DESIGN

The developed algorithm DONEX uses a binary occupacy
grid like the proposed peopleremover approach. The concept
of occupancy grids for map generation with mobile robots
was first introduced by Hans Moravec and Alberto Elfes in
their oft-cited publications [16]. Figure 2 shows an example
of an occupancy grid at two time stamps. The information
about the measured echoes is durable stored over time. For
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example, we know that in tn+1 in voxel (0/2) the echoes with
both identifiers were already registered.

Figure 2: Binary occupacy voxel grid. Gray fields represent a static object;
green points are echoes of the first scan, red ones from the second scan.

Compared to processing with raw 3D point cloud data, us-
ing an occupancy grid is significantly more runtime efficient.
Neither the coordinates nor the number of echoes associated
with a voxel are stored; the size of the used data is signifi-
cantly smaller than that of the input data. A significant factor
is the size of the voxels - smaller voxels provide a more ac-
curate result, but require a longer runtime. In addition, the
number of voxels in the grid affects the runtime. This de-
pends on the space considered as well as on the dimension of
the voxels, whereby the second point has a bigger impact.

Peopleremover identifies a voxel as dynamic if it does not
detect any echoes in the current scan but it was occupied in
the previous scan. Our solution follows the opposite princi-
ple: a voxel is classified as dynamic if echoes are measured
but none were detected in the previous scan. In contrast to
the peopleremover algorithm, this approach enables a real-
time classification of the motion state of the echoes. The peo-
pleremover can only detect that there was a dynamic echo at
a certain position at an earlier time stamp.

IV 3D GRID APPROACH

The 3D voxel method uses a grid where each echo is as-
signed to a voxel according to its x, y and z-coordinates. As
soon as a voxel is associated with newly detected echoes (i.e.
no echo was measured here in the previous scan), it is marked
as dynamic. Figure 3 demonstrates this in a 2D view.

Figure 3: New detection principle for 3D grid. Rectangles represent potential
moving objects; movement is indicated with arrows. The grids below show
the stored identiers per each voxel. Voxels identified as dynamic according
to the new detection are marked in magenta.

In tn+1 the voxels (0/1) and (2/0) have been determined to
be dynamic. This can be concluded from the fact that they
do not have a green identifier stored in them, since no echoes
were measured in tn. A problem with this naive approach
is that static objects appearing out of previously shadowed
area like in the example of Figure 4. As soon as any voxel
is covered by a shadow, no echo is detected. Once a voxel
is no longer covered by a shadow, a new detection is always
generated, which leads to false-positives for static objects.

Figure 4: Problem of the 3D new detection approach due to shadows. Some
static objects are incorrectly classified as dynamic.

One approach for shadow detection from the literature is
the paper by Hu and Li [17]. This is based on the concept of
z-buffering known from computer graphics for the occlusion
computation. Since the z-buffer algorithm is quite compu-
tationally intensive, a different approach was created for our
development, the so-called concept of shadowing. It is based
on the shadow cast of the objects.
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Figure 5: Concept of shadowing voxels. After the scan of tn, green and red
identifiers are stored in the voxels. In tn+1 echoes with blue identifiers are
detected. Voxels where no echo detection was measured, but one was mea-
sured in the scan before, are classified as shadowed. Corresponding voxels
are marked in grey.

However, the shadowing leads to a new problem. Once
a dynamic object has traversed a voxel, the corresponding
identifier is stored. After the object moves away, the voxel
would be falsely shadowed. To compensate for these false-
negatives, the fast voxel traversal algorithm of Amanatides
and Woo [10] is used. This is performed in each scan to iden-
tify the see-through voxels as in the peopleremover algorithm
[9]. These dynamic voxels are exactly the ones that can lead
to potential false-negatives. To prevent this, they become ”de-
shadowed”.

Thus, false-positives and false-negatives can be prevented
by a combination of shadowing and the fast-voxel-traversal
algorithm.

V 2D GRID APPROACH

To improve the runtime of the algorithm, another approach
- based on a 2D grid - was developed. In this case, echoes
are sorted into 2D cells based on their x- and y-coordindates.
To compensate for the missing z-coordinate, the principle
of ranging was invented. In addition to the scan identifiers,
a 2D voxel stores a range consisting of two floating point
numbers: The highest and the lowest z-value of all detected
echoes. Thus, the range of the z-coordinates of all associated
echoes are represented. An increase of the range implies a
new detection or the occurrence of dynamic echoes within
the 2D voxel. Figure 6 illustrates the principle.

At the time tn only the ground is measured in the whole
grid. Since this is at the z-value -1.75, all 2D voxels have
the range [-1.75/-1.75]. In tn+1 there are now objects in (2/1)
and (1/2) that have been added. These objects have a height
over ground of 2m. Accordingly, the ranges of the voxels
are updated to be [-1.75/2.0]. As a result of the z-range
expansion, these voxels are classified as dynamic.

A naive 2D approach produces both, false-positives and
false-negatives. False-positives are produced by labeling all
echoes of a 2D voxel as dynamic. Therefore, it is necessary

to recognize only those that were newly added as dynamic.
A typical example of these false-positives are ground echoes.
The solution to this problem is to save the previous ranges.
In case of a range extension, the echoes which belong to both
the previous saved range and the new range are classified as
static. Newly added dynamic echoes can be determined.

False-negatives occur when an object moves away from a
2D voxel. Since the voxel stores the z-range, smaller objects
or objects of the same size that later move into this 2D voxel
are incorrectly classified as static. To compensate for this,
the technique of resizing was introduced: Once an object has
moved away from a 2D voxel, the z-range of that 2D voxel is
reset.

VI EGO MOTION COMPENSATION

In order to make the developed algorithm applicable to
real world driving situations, the ego vehicle’s motion must
be taken into account. For this work, we used odometry data
provided by vehicle inertia sensor which provides the linear
velocity and the angular velocity - each for each of the three
dimensions. As Figure 7 shows, the motion of the vehicle
is therefore described by six degrees of freedom (6DOF) [18].

Figure 7: Visualisation of the 6DOF. Consists of three angular and three
linear components, one per each dimension.

Using the odometry data, the motion of the vehicle can be
compensated by a coordinate transformation of two consecu-
tive point clouds. To convert the required velocities into abso-
lute distances, the time difference between two frames, which
is calculated by the corresponding time stamps, is used.

Mathematically, the transformation is done by multiplying
all points with a transformation matrix. This matrix consists
of the rotation matrix and the translation matrix. In order to
merge these two into a homogeneous matrix, a fourth dimen-
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Figure 6: Concept of ranging. Each voxel stores highest and lowest z-value of the detected echoes from a scan as a range. Extension of the range of a voxel
implies a new detection respectively a voxel containing dynamic echoes.

sion must be added; the main diagonal is supplemented by a
one and the remaining lower rows are filled with zeros. Equa-
tion 1 shows this.

px′

py′

pz′

1

 =


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1

 ∗


px

py

pz

1

 (1)

To integrate the ego-motion compensation into the existing
grid structure, the method of voxel shifting was developed.
The coordinate system and its reference is always the current
frame respectively the current vehicle position. The data of
the previous frame is transformed to the current frame. This
is achieved by moving the voxels and their contents according
to the transformation matrix. Thus, not the point cloud, but
the voxels are transformed. The number of transformations
is significantly lower than with a point cloud based approach,
the runtime is accordingly lower. Figure 8 illustrates this con-
cept with a simple example in two dimensions.

Figure 8: Concept of voxel-shift. According to the transformation matrix
all voxels respectively their content is shifted. The rectangle objects could
correctly be classiefied as static in this example.

At the time tn echoes of static objects are detected in the
voxels (0/2) and (2/1). The position of the echoes is relative to
the sensor, which is modeled through the passenger car here.
At time tn+1 this car moves one voxel length in x-direction.
This movement can be determined by current odometry data
and a corresponding transformation matrix can be generated.
Consequently, it is possible to calculate at which position in
tn+1 which voxels of the reference frame tn are located. Ac-
cordingly, the voxels are moved, respectively their contents
are copied.

The explanation in Figure 8 is a very simplified exam-
ple. The movement of the vehicle is based on only one de-
gree of freedom, because the vehicle moves only forward (x-
direction). Here, a one-dimensional translation would be suf-
ficient for compensation. Since 6DoF occur in the systems in
practice, the use of a transformation matrix is necessary here.

VII RESULTS

The development was done in the programming language
C++. The complilation of the source code was performed in
realease mode with O3 flag compiler. The algorithm has been
executed on an Intel Core i7-8650U processor with 1.90 GHz
on Ubuntu 18.04.4.

On average, there were 4-7 moving objects with a speed of
about 30-60 km/h on the observed frames. The point cloud of
a frame consists of about 160,000 points respectively echoes.

Overall, DONEX experimental works for static and dy-
namic scenarios with moving ego vehicle. The algorithm was
validated using different scenarios. Good results were ob-
tained with both the 2D and 3D grid approaches.

One reason for developing the 2D approach was to opti-
mize the runtime. To determine the improvement in perfor-
mance, runtime measurements were performed. For both ap-
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proaches, the runtime was measured for the same voxel side
lengths and the same effective grid size. Table 1 shows the
results.

Side length [m] Variant Runtime [ms]
0.3 3D 175 ≈ 185
0.3 2D 8 ≈ 9
0.15 3D 550 ≈ 560
0.15 2D 12 ≈ 14
0.1 3D 1300 ≈ 1350
0.1 2D 21 ≈ 23

Table 1: Runtime comparison 2D grid vs. 3D grid. In these experiments
we have voxelized the point clouds in the following range according x- and
y-direction: xMin = 0m, xMax = 75m, yMin = -25m and yMax = 25m.

For the largest voxels, the difference in runtime between
the 2D and 3D approaches is obvious. With decreasing voxel
sizes, the runtimes increase exponentially. Especially using
3D grid, the runtimes quickly become much too high to use
the algorithm in practice. The 2D approach, on the other
hand, shows good performance even for small voxel sizes.
Several measurements showed that the result with a voxel side
length of 0.15m has the best compromise between quality of
the result and runtime. The improvements of detection per-
formance for smaller voxels are marginal and hardly visually
noticeable. Figure 9 shows the results with different lengths.

Figure 9: Examples for performing DONEX algorithm with different voxel
side lengths. Here we show the results using 2D grid, as the results using 3D
grid are visually similar

Subjectively, the detection performance of the 2D and 3D
approaches are quite similiar despite the huge differences in
runtime. Following graphic shows an example scenario with
a static ego vehicle.

Figure 10: Example of the DONEX algorithm in a static ego vehicle scenario.
Identifying moving cars as dynamic

Figure 11 demonstrates an example scenario with a moving
ego vehicle.

Figure 11: Example for moving ego vehicle scenarios. In this example, m is
43. As the frame rate is 10Hz, the time difference between the two frames is
4.3s.

The newly developed DONEX algorithm is inspired by
some concepts of the papers presented in related work and
includes various own ideas and approaches. Table 2 shows a
comparative view between DONEX, the peopleremover [9],
the fast motion segmentation with ray tracing approach [4]
and the motion voxel grid approach which is based on the
probability theory.

Like peopleremover and motion voxel grid, DONEX be-
longs to the voxel-based approaches in contrast to ray trac-
ing. Here, DONEX is more similar to peopleremover, since
the detection is based on real detections and not on probabili-
ties as in motion voxel grid. In contrast to the peopleremover,
DONEX can also be used in real-time and has advantages in
terms of runtime - in particular, the 2D implementation of
DONEX offers a lot of potential to have an adaptable imple-
mentation and massively improve the runtime.

All voxel-based approaches have the advantage of better
adaptation in contrast to the ray tracing approach, since the
grid and the size of the individual voxels can be optimized
according to the use case. Grid and voxel size obviously be-
have antiproportionally to the runtime; anyway, the develop-
ment of the 2D approach brings exorbitant improvements in
runtime (see Table 1).
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DONEX Peopleremover [9] Ray tracing [4] Motion voxel grid [6]

Main
idea

Determine if a new
point is detected in
a voxel grid cell

Determine if a point
that was present at
an earlier view point
is not present now

Determine how often
a point was observed
at earlier view points

Update static/dynamic
likelihood of voxel
grid cell

Data
structure 2D/3D voxel grid 3D voxel grid Mesh grid buffer 3D voxel grid

Detection
type

Based on real
detections

Based on real
detections

Based on
likelihood

Based on
likelihood

Algorithmic
runtime Very good Bad Good Very good

Real-time
usage Yes

No, only
post-processing Yes Yes

Adaption
possibilities

Grid- and voxel size
is adaptable,
high performance
potential with
2D approach

Grid- and voxel size
is adaptable

No adaption
possible

Grid- and voxel size
is adaptable

Table 2: Comparison between DONEX and three approaches from related papers. Quality criteria are runtime, real-time usage and adaptability

VIII FUTURE WORK

In the future, it is planned to evaluate, design and imple-
ment further optimizations regarding the runtime. For exam-
ple, using hardware based acceleration techniques, DONEX
algorithm can be parallelized. Aspects such as the voxel
structure as well as the management of the corresponding
voxel data will be considered. Whether the use of hashmaps,
for example, can further improve the runtime.

Furthermore, DONEX algorithm will be quantitatively
more deeper compared with other solutions, both regarding
runtime and the detection performance.

IX CONCLUSION

In this paper, the DONEX algorithm was presented, which
can effectively classify dynamic echoes in a LiDAR point
cloud using an occupancy grid. Only the scan identifier and
the cartesian coordinates of the individual echoes of the point
cloud are required as input data. Therefore, the algorithm can
be used to process 3D point cloud data provided by any other
sensor modalities.

The 3D approach which was inspired by the peopleremover
algorithm was modified by the idea of the new detection so
that it can be applied in real-time systems, e.g. on an au-
tonomous driving vehicle. A 2D variant was developed for
runtime optimization.

We have shown that by using ego-motion compensation
techniques, this algorithm can cope with moving ego vehicle.
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