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Abstract—Distributed Ledger Technology (DLT) is promising
to become the foundation of many decentralised systems. How-
ever, the unbalanced and unregulated network layout contributes
to the inefficiency of DLT especially in Internet of Things (IoT)
environments, where nodes connect to only a limited number of
peers. The data communication speed globally is unbalanced and
does not live up to the constraints of efficient real-time distributed
systems. In this paper, we introduce a new communication
protocol, which enables nodes to calculate the tradeoff between
connecting/disconnecting a peer in a completely decentralised
manner. The network layout globally is continuously re-balancing
and optimising along with nodes adjusting their peers. This
communication protocol weakened the inequality of the commu-
nication network. The experiment suggests this communication
protocol is stable and efficient.

Index Terms— Communication protocol; Software defined

network; Blockchain; Distributed Ledger Technology

I. INTRODUCTION

Distributed systems, where computational entities are con-

nected to and organised by networks to work collectively

in large-scale and high performance, have earned significant

attention in contemporary life [1]–[3]. Distributed Ledger

Technology (DLT) is one kind of decentralised system that

of replicated, shared, and synchronised digital data geographi-

cally spread across multiple sites, countries, or institutions [4].

The first well knew DLT—Nakamoto blockchain, and most

permitless blockchains [5], [6] require participants to accept

the first valid block (statement) posted by one participant

in every fixed period (referred to as the block interval), the

block is built on top of the previous accepted block. Thus,

a balanced network structure of the communication protocol

running below these DLTs is vital for the fairness of the system

as the earlier a node finished hearing a block, the earlier it

starts to create the next block. A faster or slower sub-network

will slow down the network in overall, DLT must has an

extended block interval to enable most nodes in heterogeneous

network environments to sync data and to create blocks. Sadly,

DLTs like Bitcoin [7] suffers from a slow and unbalanced

network. It is observed that blocks first propagated by the

fastest node reach 50% of the nodes in 2.3s whereas blocks

first propagated by the slowest node reach 50% of the nodes in

more than 1, 800s with merely over 6, 000 nodes in 2016 [8].

Given the decentralised and distributed nature, how the entities

inside the DLT network collaborate to balance the network

structure and improve efficiency is a severe problem.

Yet, the study toward optimising the communication pro-

tocol of DLT has not been placed similar attention as like

the attention for extending the block throughput or transaction

per second [9]–[11]. Though many may argue that the redun-

dancy of the network structure is beneficial for fault tolerance

because it is common for nodes to go offline without prior

notice, network readdresses in the current protocol is seldom

needed. The tradeoff between fault tolerance and the speed of

data propagation as well as the fairness of the system is worth

studying.

In this paper, we discuss a new communication protocol for

DLT, which achieves an equilibrium network structure through

a connection adjustment method. This connection adjustment

method is of local optimisation (accelerate the speed for

hearing the data propagated from any direction in the network)

for global optimisation (make the speed for data propagation

started from the most point in the system reached the majority

of nodes at a similar time).

II. HYPOTHESIS AND APPROACH OVERVIEW

A. Hypothesis

Any node in the system can publish a transaction, block or

gossip message. Thus, every node gets a chance to be closer

to a data publisher if they are directly connected or can reach

each other within some levels of the network. When the system

is data-extensive, and the network structure is well organised,

a node which has a higher number of links should be able to

hear more data faster in a fixed time window provided there

are few redundancy connections. Thus, it should be able to re-

transmit more data to its peers faster. If there are three nodes

(node A, node B and node C), C peered both A and B; A and

B have a similar number of connections and A has a faster

communication speed to node C. Then C should be able to hear

more pieces of data sooner from A in a fixed time window. If
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the nodes of similar conditions are categorised into groups, the

lazy nodes can be filtered out, and nodes gained the ability to

judge others. To not be determined by others as a lazy node,

a node should continuously evaluate the performance of its

peers and adjust its peers. In this way, every node is seeking

to optimise its peers while locating itself to the best position

in the network structure.

The challenges of this hypothesis are (1) how to acquire

the accurate connection number of every node? (2) when

there are only minimal data flowed in a period, how to

make the performance measurement? (3) how to quantify

the performance of the nodes and how to derive a standard

performance for nodes of similar performance? (4) how to

categorise nodes and how to avoid nodes peer too many or

too little nodes? (5) which peers should a node connect? (6)

when should a node replace bad performance peers?

B. Approach

1) Publish connections to blocks: When building a connec-

tion, each side of the connection co-sign a statement (referred

to as a contract) and send this contract to the blockchain. The

contract contains the identity as well as the IP and Port of

each side of the connection. When terminating a connection,

either side of the connection should publish this information

to the blockchain.

2) Peering restriction and peer score: We rule that two

nodes can become peers only when they don’t have a mutual

peer. This design motivates peers to consider the tradeoff

between building a connection with another node and the

restrictions of peering after this connection is created. For

every node, every peer of it is being marked by a combined

index of the communication speed, the structure of this peer’s

peers and the number of peers this peer has. The performance

of the peers of a similar score is compared by the number of

data pieces this node first heard from them in a fixed time

window.

3) Send data in pieces: For any data larger than 500bytes,

it is split into parts with each portion sized 500bytes in

maximum. The data publisher should not send all the portions

to a peer and then move on to the next peer; instead, it

should send different parts of data to different peers per time

until it shipped all the parts of data to all of its peers. This

method accelerates the data transmit as it is not necessary for

nodes to finish hearing a data before re-transmitting the data.

Assumed a IoT device Gary linked itself to ten other IoT

devices and all these devices are inside the same category,

then Gary should hear approximately the same number of

pieces/transactions from every device; if the devices are in

different categories, then the number of data pieces should be

within the corresponding ranges.

4) Evaluate the performance of nodes: If a peer showed

an abnormal performance among the peers of the similar

peer score, the node might disconnect this peer. Nodes are

motivated to evaluate their peers because they want honest

and diligent peers to accelerate the speed of hearing overall.
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Figure 1: An example of publishing a data to the network

If they don’t control their peer qualities, they may be consid-

ered as abnormal for others. For example, because the data

propagation in DLT relies on voluntary re-transmissions, if

some of a node’s peers are not re-transmitting an adequate

number of data to this node that fitted their peer scores in a

fixed time window, this node will then have less data that can

be re-transmitted to its other peers. When a peer compares

this node’s performance with this peer’s other peers of a

similar score, this node may be considered of low performance

because it transmitted an unfulfilled number of data pieces.

5) Autonomous decision on peering/unpeering: By evalu-

ating the performance of a peer in a fixed time window, a

quantified performance score can be calculated. The number

of peers, the average performance of all the peers as well as

the average scores of peers are used to feed the reinforcement

learning (RL) algorithm [12]. The algorithm can decide to add

peers or to replace peers or to do nothing at the end of every

time window. The differences in the average time for receiving

all the parts of data for every data iteration happened in this

time window and that in the last time window are the reward

for the decision made by the RL algorithm.

III. CONTRACT-CONNECTION PROTOCOL

A. Definitions

• Data propagation. When a node broadcast data to the

network. If the data is larger than 500 bytes, it is divided

into parts; a part is sized 500 bytes in maximum. Before a

data propagation begins, a data header of a tiny size (34

bytes) is sent to the network, which indicates the type

of data (e,g. blocks, transactions) and the Merkle Root

of the data. Then the node sends the divided parts to its

peers. Different parts are being sent to different peers at

the same moment. When all the parts are being sent out,

this marks the end of a moment; then the next moment

starts until every peer has heard the entire data for the

data sender. This procedure is showed in Figure 1, in

which the node has four peers 1, 2, 3 and 4; data is split

into three parts.

• Peer. When the contract between two nodes is embedded

in the blockchain, the two nodes are peers to each other

until the contract is terminated. Two nodes can become

peers to each other only when they don’t have a mutual

peer.
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Figure 2: An example of PL and SubPL, where PLA

contains four nodes in the blue with node A; PLB contains

four nodes in the blue with node B; SubPLA contains seven

nodes linked in the yellow line; SubPLB contains six nodes

linked in the green line.

• Peer List (PL). PL is a set of peer information. For every

peer of a node, the peer list records the NID (a 32 bytes

public key) as well as the IP, Port of the peer and the co-

signed contract. PLA stands for the PL of node A. Peer

Number (PN). PNA is the number of peers the node A

has.

• Index of Peer Coincidence (IPC). IPCA,B =
Card(SubPLB\PLA)

PNB
, where SubPLB is the set of

PL of all the peers of node B. Figure 2 shows an

example of the PL and SubPL. For this example,

IPCA,B = 6−2
4 = 1; IPCB,A = 7−2

4 = 5
4 .

• Network Distance (ND). NDA,B is the Network Distance

between node A and node B, which is defined as 1Mbytes
Tt

where T t represented the time in second consumed for

node A to retrieve a data that sized 1Mbytes from Node

B.

• Structure Proportion (SP). SPA,B = PNB ∗ IPCA,B ∗
(1 +NDA,B).

• Grubbs criterion (X) is the Grubbs criterion algorithm

[13], which is used for separate outliers; Grubbs criterion

(X) has four steps:

1) If X = or Card(X) < 3, return X .

2) If
|X̄−X1|

S
>= GrubbsTable(Card(X), p = 0.95),

then X = X\X1, repeat (2);

3) If
|X̄−XCard(X)|

S
>= GrubbsTable(Card(X), p =

0.95), then X = X\XCard(X), repeat (3);

4) Return X .

where, X̄ =
X1+X2+...+XCard(X)

Card(X) , S =
√∑

N
i=1(Xi−(̄X))2

Card(X) .

• NFHDP. NFHDPA is the number of parts of data that

is first heard from peer A in a data propagation.

• NFHDC. NFHDCA is the number of parts of all the

data that is received since the node built a connection

with peer A.

• ExpNFHDP. When the node A finished hearing data from

one data propagation,

1) it creates a set of arrays ODP . ODP−∞...+∞ = is

the initial value.

2) Let ODPSPA,i
= NFHDPi, i ∈ [1, PNA].

3) The ExpNFHDP for node A’s

peers are EXPNFHDPi =
Average(Grubbs criterion({ODPSPA,i−T , ...
, ODPSPA,i+T })), i ∈ [1, PNA]. T is a parameter

that will be adjusted in the RL algorithm. Figure 3

shows an example of ExpNFHDP.
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Figure 3: An example of ExpNFHDP , the dot in orange

represents the ExpNFHDP for SPA,i = 35 and T = 5; the

green dots in the blue rectangle are the values used in Grubbs

criterion.

• ExpNFHDC. Supporting we are operating on node A.

ExpNFHDCi is the sum of the ExpNFHDPi during

the contract between peer i and node A. Every time a

data propagated, ExpNFHDCi = ExpNFHDPi +
ExpNFHDCi, i ∈ [1, PNA]. ExpNFHDCi = 0
is the initial value when node A and node i built a

connection.

• Determine Index (DI). DIA,B =
sin(min(32π,

NFHDCB+1
ExpNFHDCB+1 ∗ π

2 )).

• Fulfill Rate (FR). FRA,S,E = sin(min(3π2 , P ∗ π
2 )),

P =

∑PNA
j=0

∑NS,E
i=1

NFHDPi
j +1

ExpNFHDPi
j
+1

PNA
, where NS,E is the

number of data propagation during the time in second

S to E, NFHDP i
j and ExpNFHDP i

j is NFHDPj

and ExpNFHDPj at i data propagation in this duration

respectively.

• Average bandwidth (AB). Let D1 be the time when the

data header of one data propagation is received; let D2
be the time when all the parts of one data propagation is

received. ABB,E = Average(
D2j−D1j

DATASIZEj

), j ∈ NS,E ,

where D1j and D2j are the D1 and D2 at the number

j data propagation during the time in second S to E,

DATASIZEj
is the data size of j data propagation.

B. Automatic operations

We use two Q-learning [12] models to make automatic

operations for every node. One (referred to as Alice) decides

whether the peers of the node should be adjusted; another

(referred to as Bob) decides whether a node should accept

the connection invitation from another node. Let the current

time (in second) be C, Alice and Bob will be activated every

time C mod W = 0; where W is a random parameter that is

different from nodes to nodes. We set W ∈ [30, 600] assumed

the block interval is 30 seconds.



1) Alice: Alice is a tuple.

• State = (FRX,C−W,C , PNX ),

• Action={Add, Replace1, Replace2, STAY, ChangeT1,

ChangeT2},

• Reward=ABC−W,C −ABC−2∗W,C−W ,

• Policy.

where ADD refers to a function that add a new peer which

fulfill the following conditions.

1) The candidate node accepts to build new connection.

2) Connect to candidate node will not violate the connec-

tion restriction (they don’t have a mutual peer).

3) The candidate node is of the highest SP .

Replace1 refers to a function that delete the peer of smallest

DI and ADD a new peer. This action is conducted at the

same time. So that the contract with the new peer served as

the both termination notice and the new connection contract.

Replace2 refers to a function that delete the peer of the highest

IPC from the current node’s perspective and ADD a new

peer; Other operations the same as Replace1. STAY operation

refers to a function that doing nothing. ChangeT1 is a function

that add value 0.25 to T . ChangeT2 is a function that reduce

value 0.25 of T . ChangeT1 and ChangeT2 can be conducted

at the same time with either one of Add, Replace1, Replace2

or STAY operation.

2) Bob: Bob is a tuple.

• State = (FRX,C−W,C , PNX ),

• Action={Allow, Not allow},

• Reward=−(RJC−W,C −RJC−2∗W,C−W ),
• Policy.

where RJi,j is the number of connections that were ter-

minated by the other side of the connections during the time

between i to j. ”Allow” refers to the setting that the node will

accept the connection invitation from others in the next time

window; Not Allow refers to the setting that the node will not

accept the connection invitation from others in the next time

window. Let r = LT−C
10 , where LT is the last time when node

i built a connection with node A; C is the current time. The

chance for node A to accept the connection invitation from

node i when node A is accepting invitations at the current

time window is P (Accept|r) = 1
exp(6−3r) provided building

this connection is not violating the connection restriction. If

node i did not build a connection with node A before then

LT = 0. Figure 4 shows an example of P (Accept|r).
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Figure 4: An example of P (Accept|r)

IV. THE EXPERIMENT

The purpose of our experiment is to survey Contract-

connection protocol performance. We want to show the benefit
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Figure 5: Basic statistic of network

of the balanced network layout through testing the time for

broadcasting the data at random places in the network (the

differences in the time between the broadcasting started and

finished). We add Bitswap as the comparison.

We use two emulated networks, one with 2000 Nakamoto

blockchain nodes which run on contract-connection protocol;

another with 2000 nodes run on Bitswap. To show the compar-

ison, the capacity of nodes in these two networks are mirror

images to each other: if there is a node which has full duplex

of a specific bandwidth, there will also be one node of the

same setting in the other network. Every node of the system

is randomly given a fixed upload bandwidth speed ranged from

50Kbytes/s to 5Mbytes/s. When establishing a connection,

a network delay time ranged from 10ms to 600ms is given to

this connection. If the delay time of the connection between

node A and node B of one network is 60ms then the delay

time between node A and node B of the other network is also

60ms. Figure 5 shows the basic statics of the two networks.

We set the block interval time for this experiment to be 30

seconds; every node sends one to three transactions in every

iteration of the game. W of every node is set to be a random

number between 30 to 60. We set up two random connections

for every node at the beginning of the game. Figure 6 shows

the average time between a data sized 1Mbytes is broadcasted,

and it is received by all the nodes with the progress of the

game.

(0,0.5) [0.5,1) [1,1.5) [1.5,2) [2,2.5) [2.5,3) [3,3.5) [3.5,4)
Block interval (/1000)

0

2000

4000

Ti
m

e 
to

 fi
ni

sh
 (m

s)

Figure 6: Average time for all the nodes to complete hearing

a 1Mbytes data, with the progress of block intervals.
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Figure 7: Contract-connection performance VS Bitswap per-

formance.

For Bitswap network, we set a DNS server that returns

information of 3 to 5 random nodes to the inquirer. In every

block interval, the node asks the DNS server for new nodes and

build a connection with these nodes. All nodes re-transmit data

to its peers with the P (send|r) possibility. After block height

4000, we begin to compare the performance of re-transmitting

of both contract-connection and Bitswap. We conducted 100
times of tests; we randomly select nodes as the data publisher

and send the data sized 1MBytes. As the two networks are

the mirror image to each other (the connections are different,

but the node capacity are the same), we say every test starts

from the same node. Figure 7 shows a comparison between the

two networks. As can be seen from the result, the broadcasting

speed is mostly stable in contract-connection than in Bitswap,

and the general propagation time expectation is much lower

in contract-connection. It is safer to reduce the block interval

in contract-connection without afraid causing centralisation.

V. CONCLUSION

In this paper, we discussed a balanced communication

protocol for Distributed Ledger Technology. By writing the

connection information into the blockchain, the nodes derived

a tamper-resisted network topology. By building a link be-

tween the node’s peer structure with its general performance

and setting restriction for peering, a quantified performance

score for every node is periodically calculated. Through the Q-

learning algorithm, every node attempts to higher its ability to

hear from all the directions of the network. As the experiment

suggests, the whole network is balanced during the nodes

making their local optimisation.
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