
ar
X

iv
:2

30
9.

01
17

4v
1 

 [
cs

.N
I]

  3
 S

ep
 2

02
3

A Method Based on Hierarchical Spatiotemporal
Features for Trojan Traffic Detection

Jiang Xie∗‡,Shuhao Li∗†,Yongzheng Zhang∗†‡,Xiaochun Yun§,Jia Li∗‡
∗Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

† Key Laboratory of Network Assessment Technology, IIE, CAS, Beijing, China
‡School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

§National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing, China

Email: {xiejiang,lishuhao,zhangyongzheng}@iie.ac.cn; {yunxiaochun,lijia}@cert.org.cn

Abstract—Trojans are one of the most threatening network
attacks currently. HTTP-based Trojan, in particular, accounts
for a considerable proportion of them. Moreover, as the network
environment becomes more complex, HTTP-based Trojan is more
concealed than others. At present, many intrusion detection
systems (IDSs) are increasingly difficult to effectively detect such
Trojan traffic due to the inherent shortcomings of the methods
used and the backwardness of training data. Classical anomaly
detection and traditional machine learning-based (TML-based)
anomaly detection are highly dependent on expert knowledge
to extract features artificially, which is difficult to implement
in HTTP-based Trojan traffic detection. Deep learning-based
(DL-based) anomaly detection has been locally applied to IDSs,
but it cannot be transplanted to HTTP-based Trojan traffic
detection directly. To solve this problem, in this paper, we
propose a neural network detection model (HSTF-Model) based
on hierarchical spatiotemporal features of traffic. Meanwhile, we
combine deep learning algorithms with expert knowledge through
feature encoders and statistical characteristics to improve the
self-learning ability of the model. Experiments indicate that F1

of HSTF-Model can reach 99.4% in real traffic. In addition, we
present a dataset BTHT consisting of HTTP-based benign and
Trojan traffic to facilitate related research in the field.

Index Terms—Trojans, CNN, LSTM, statistical characteristics,
traffic detection

I. INTRODUCTION

The rapid development of the Internet has brought great

convenience. However, more comprehensive service means

that traffic becomes more complex, which poses greater chal-

lenges to network security. Trojans are one of the main

malicious attacks in online activities. They are a class of

malicious programs that attack hosts/websites to steal personal

information and even remotely control devices. In 2017, a total

of 19,017,282 hosts with IP addresses were implanted with

Trojans. And monthly, almost 2.81 million host IP addresses in

the global Internet were infected with ”Flying” worm Trojan in

average [1]. These Trojans spread and enforce attacks through

network traffic, where HTTP traffic is one of the main carriers.

Therefore, it is necessary to find an effective way to detect

HTTP-based Trojan traffic.

At present, it is a highly concerned issue about ensuring the

security of network devices and information. People usually

build intrusion detection systems (IDSs) to resist various

network attacks. The anomaly detection, which is a primary

research direction in the field of intrusion detection, can detect

new and unknown attacks (0-day) by analyzing benign and

malicious behavior characteristics from traffic [2]. However,

most of the current anomaly detection methods, including

machine learning-based methods, are highly dependent on

feature engineering to achieve high detection performance.

And designing a satisfactory feature engineering that can

accurately extract traffic characteristics is a hard work [3].

Therefore, many anomaly detection methods are difficult to

apply in practice [4].

In recent years, deep learning has attracted great attention in

various fields. And many researchers have proposed anomaly

detection methods based on deep learning to automatically ex-

tract features [5], [6]. After inputting low-order data features,

neural networks can correct model parameters to find complex

structures from data, and then abstract them into high-order

data to realize automatic learning. Deep learning reduces the

dependence of model on feature engineering, which allows

researchers to design excellent anomaly detection models

through simple data preprocessing.

In this paper, to effectively detect HTTP-based Trojan

traffic and reduce the dependence on feature engineering, we

present an anomaly detection method based on deep learning

algorithms. Then, a statistical feature set based on experience

is added to improve the self-learning ability of the model.

In general, the contributions of this paper are as follows.

• We combine raw traffic with statistical characteristics to

enrich feature representation information. Then, feature

encoders are built to layer the traffic into packet-level

and flow-level for preprocessing. Experiments indicate

that this preprocessing method can effectively improve

the performance of the model.

• We propose HSTF-Model (Model based on Hierarchical

SpatioTemporal traffic Features) consisting of CNN and

LSTM. HSTF-Model extracts hierarchical spatiotemporal

sequence features from raw data and statistical character-

istics. We can adjust the weight of the two to determine

which one is more reliable.978-1-7281-1025-7/19/$31.00 ©2019 IEEE
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• We generate a dataset BTHT-R (Benign and Trojan Traf-

fic based on Http-Raw) consisting of raw HTTP traffic.

BTHT-R includes benign traffic (4,044,751 flows) and

HTTP-based Trojan traffic (37,847 flows). In addition, a

corresponding statistical feature dataset BTHT-S (Statis-

tical) is also built. BTHT-R and BTHT-S form dataset

BTHT1. Because of privacy, we use irreversible hash

technology for data masking in BTHT.

The remainder of this paper is organized as follows. Related

works is described in Section II, and the introduction of dataset

BTHT in Section III. Section IV introduces the methodology

of HSTF-Model. We conduct experiments in Section V. Subse-

quently, we discuss the model and experiments in Section VI.

Section VII draws our conclusion and gives future challenges.

II. RELATED WORK

The research in this paper belongs to malicious traffic

detection, which is one of the cores of intrusion detection.

In general, there are two types of approaches for IDSs based

on traffic detection, signature detection and anomaly detection

[7]. The former, also called misuse detection, mainly analyzes

the characteristics and behavior patterns of known attacks. The

greater the similarity of network behavior in actual detection,

the more likely that it is to be judged malicious. Signature

detection is effective in detecting known attacks with low

errors. But it cannot detect new and unknown attacks (0-

day). The latter is also known as behavior detection. Anomaly

detection can detect unknown attacks. This makes anomaly

detection a major research direction in intrusion detection

[8]. Current mainstream anomaly detection methods include

classical anomaly detection, TML-based anomaly detection,

DL-based anomaly detection and so on.

A. Classical Anomaly Detection

The classical anomaly detection profiles benign traffic pat-

terns [7]. It is based on the hypothesis that an attacker behavior

differs to that of a benign user. Benign operations of the

members are profiled and a certain amount of deviation from

the benign behavior is flagged as an anomaly [9].

Classical anomaly detection can be useful for new attack

patterns, but it is not as effective as signature detection when

detecting known attacks [10]. In addition, its performance is

highly dependent on feature engineering. If the feature analysis

for benign traffic is incomplete, this approach will have a high

false-positive rate [7]. Therefore, more research is attempting

to combine classical anomaly detection and signature detection

currently, that is, analyzing both benign and malicious traffic

to improve the performance of model. Because this hybrid

intrusion detection can detect unknown attacks, it is also

commonly considered as anomaly detection [8].

1The dataset can be found at https://drive.google.com/open?id=1d SVIOzz
gw2kYPlC5dKjgOl51YXTDZUi. Researchers who are going to use the
dataset should indicate the original source of data by citing this paper.

B. TML-based Anomaly Detection

There are many traditional machine learning-based (TML-

based) anomaly detection methods applied to IDSs [11], for

instance, Markov-based anomaly detection [12]. These TML-

based intrusion detection methods simultaneously learn the

characteristics of benign and malicious traffic.

Lin et al. [13] presented CANN, a feature representation

approach that combines cluster centers and nearest neighbors

for intrusion detection. The experimental results based on

the dataset KDD-Cup’99 [14] can reach 99.9% in accuracy.

Aljawarneh et al. [15] proposed a hybrid model based on the

optimal characteristics of network traffic. The hybrid algorithm

is composed of J48, Meta Pagging, and other classical machine

learning algorithms. The accuracy of the model can be 99.81%

(binary-class) and 98.56% (multiple-class) in dataset NSL-

KDD [16], respectively. Chen et al. [17] proposed S-IDGC

based on machine learning to classify imbalanced traffic data

for mobile malware detection. Gezer et al. [18] utilize machine

learning techniques to detect TrickBot malware infections.

In general, most TML-based anomaly detection methods

also need to design feature engineering. Some traffic features

are designed first. Then, a model is built based on those

features using supervised or unsupervised learning algorithms.

But designing a feature set that can accurately characterize

network traffic is still an ongoing research issue [3].

C. DL-based Anomaly Detection

At present, deep learning (DL) have received great atten-

tion in various fields, including cyber security [19]. Multi-

ple processing layers of the neural network can learn the

abstract representation of data. Neural network extracts low-

order features directly from the raw data, and then, combines

and transforms them into high-order features for automatic

learning and analysis. Therefore, DL-based anomaly detection

reduces the need for researchers to spend more time designing

complex feature engineering [20].

Shone et al. [6] presented a novel DL technique using

stacked NDAEs for intrusion detection, which is a nonsym-

metric deep autoencoder for unsupervised feature learning.

Accuracy can reach 97.85% in KDD-Cup’99 and 89.22% in

NSL-KDD. CNN and RNN are two widely used neural net-

work models. CNN has attracted much attention for its spatial

feature extraction ability. In cyber security, Vinayakumar et al.

[21] used CNNs for network intrusion detection. Li et al. [22]

used CNN for representation learning for intrusion detection.

Yin et al. [5] proposed RNN-IDS for intrusion detection,

and compared it with classical machine learning algorithms.

LSTM, another well-known model as one of a variant of RNN,

has natural advantages in processing data with sequences and

dependencies. Kim et al. [23] applied LSTM for intrusion

detection, which can achieve accuracy 96.93%.

On the basis of existing research, there are the following

main problems that can be improved: 1) The classic datasets

for benchmarking, such as KDD-Cup’99, are outdated. The ac-

tual network environment is more complex nowadays. 2) There

is no specific research for the detection of the HTTP-based



Trojan traffic attack scenario. 3) Classical and TML-based

anomaly detection methods are mostly dependent on well-

designed feature engineering. DL-based anomaly detection

methods can extract features automatically, but most of those

methods currently learn directly from the original data, without

making use of artificial accumulated feature experience. Our

method belongs to DL-based anomaly detection. Meanwhile,

we add statistical characteristics based on experience and data

analysis to get a more efficient neural network model.

III. FEATURE SET CONSTRUCTION

In this paper, we generate dataset BTHT (Benign and Trojan

traffic based on Http) including BTHT-R (Raw) and BTHT-

S (Statistical). BTHT-R consists of benign and malicious

traffic from the laboratory gateway and traffic interfaces of

CNCERT/CC2. For each flow in BTHT-R, statistical charac-

teristics are made to construct dataset BTHT-S.

All the data used in experiments is from BTHT. We are

also set up multiple proportions of benign:malicious data to

evaluate the performance of HSTF-Model comprehensively.

A. Data Acquisition

Dataset BTHT-R is generated by capturing and filtering

traffic from the real network. There are about 4 million flows

in BTHT-R, 99% of which come from benign behavior and

1% come from malicious behavior (various Trojans).

For most benign traffic, after being authorized, we col-

lected about 300GB traffic from the laboratory gateway under

the premise of protecting privacy. After cleaning out irrele-

vant/redundant information in traffic, we obtained 4,044,751

million benign network flows eventually, including news

browsing, social chatting, web browsing and so on.

HTTP-based Trojan traffic is provided by CNCERT/CC.

There are two sources of HTTP-based Trojan traffic. One is

to analyze the real-time traffic in the network through the

existing monitoring system of CNCERT/CC. The other is to

deploy honeypots in the network for malicious sample capture

and breeding to generate HTTP-based Trojan traffic. After

analysis and processing, we obtained 37,847 valid malicious

flows based on HTTP by manual labeling. These malicious

traffic types include malicious promotion, malicious download,

Trojans implant and so on. Because of data security protection,

the sensitive fields (host, etc.) of traffic we obtained were sub-

jected to irreversible hash processing. To maintain consistency,

benign traffic is handled in the same way.

GET /?mrow_cntrl/?id&rnd=***** HTTP/1.1

User-Agent: ***** exp

Host: www.************.info

Cache-Control: no-cache

Fig. 1. Online package generated by a Trojan intrusion.

An online package generated by a Trojan intrusion behavior

is shown visually in Fig. 1. The relevant sensitive data is

2CNCERT/CC is the abbreviation of “National Computer Network emer-
gency Response technical Team/Coordination Center of China”. The web site
of CNCERT/CC is http://www.cert.org.cn/.

replaced with ’*’ to fully protect the privacy and data security.

In addition, data size in BTHT-R is shown in Tab I.

TABLE I
STATISTICS ON PACKET SIZE (IN BYTES) AND FLOW SIZE (IN PACKETS) IN

BTHT-R

Statistics Packet Flow

Count 14,892,047 4,082,598

Size 12,597,103,235 14,892,047
Mean 845.894 3.648
Min 12 1
Max 46,729 16,819

B. Feature Set Construction

We are committed to building a feature set based on the

statistical characteristics of traffic and adding it to neural

network to improve the performance. The URL length of

malicious flow, for instance, is generally longer than benign.

Experiments indicate that these statistical characteristics are

useful for traffic identification.

A flow is represented with corresponding statistical char-

acteristics in dataset BTHT-S. In addition, a flow consists of

multiple packets, and a packet consists of different fields. This

means that flow can be layered. We show the hierarchical

structure in Fig. 2.

...

flow

packet1 ...

packet2

field1 fieldN

packetN

...field1 fieldN

...field1 fieldN

Fig. 2. Hierarchical structure in flow.

Traffic in dataset BTHT exhibits this hierarchical timing

relationship (such as Fig. 1). Therefore, we extract features

from two statistical levels and form two vectors, packet-level

vector (PL) and flow-level vector (FL).

The first is PL. Statistical characteristics of packets are

extracted according to items shown in Tab II. RFC1998 [24]

proposed 47 header fields and suggested that HTTP-based

web services use those header fields. Actually, most web

services use only a few major header fields. We default that

no more than 47 header fields in packets. A packet will

generate a extensible vector PL(1 × 100). The composition

and dimension can be adjusted flexibly according to different

data Features.

TABLE II
COMPOSITION OF THE PACKET-LEVEL VECTOR(PL)

Item Type Pos

request type 1
source port 2

destination port 3
URL length 4

HTTP protocol version 5
field name length 6-52
field value length 53-99

payload 100

http://www.cert.org.cn/


The second is FL. A flow consists of multiple packets,

just as a sentence consists of multiple words. Sometimes, the

information provided by a single word is no-valuable and

combination of multiple words can show specific content.

Similarly, information based on flow level can reflect traffic

behavior better. Therefore, we extract statistical characteristics

of flows to form vector FL. By analyzing the dataset BTHT-R,

we default that the number of packets in a flow will not exceed

50. It will be truncated if it is exceeding and filled with 0 if it

is insufficient. Tab III details items of FL. A flow generates

a statistical characteristics extensible vector FL(1× 170).

TABLE III
COMPOSITION OF FLOW-LEVEL VECTOR(FL)

Item Type Pos

number of packets 1
proportion of request packets 2

proportion of response packets 3
proportion of the same packets in the request packets 4
proportion of different packets in the request packets 5

proportion of the same packets in the response packets 6

proportion of different packets in the response packets 7
TTL value of packets 8-57

interval between acquisitions of adjacent messages 58-106
HTTP packets length 107

proportion of request length 108
proportion of response length 109

length of each packet 110-159
multiple requests corresponding to one response? 160
multiple responses corresponding to one request? 161

’get’ proportion in the request 162
’post’ proportion in the request 163
’head’ proportion in the request 164
other proportions in the request 165

2XX proportion in response 166
4XX proportion in response 167
5XX proportion in response 168
other proportions in response 169

HTTP packets accounted for in flow 170

The PL and FL of a flow together constitute a sample in

dataset BTHT-S as statistical characteristics of the correspond-

ing raw flow. This feature set can provide more information

for the neural network as experience knowledge.

IV. HSTF-MODEL METHODOLOGY

A. Overview

We propose the HSTF-Model (Model based on Hierarchical

SpatioTemporal Traffic Features). With a preprocessed HTTP-

based flow as input, HSTF-Model can extract features auto-

matically, and judge whether it is malicious or benign.

Combining the layered characteristics of raw flows, HSTF-

Model processes data. At packet level, after the feature encoder

of raw data outputs the feature matrix, HSTF-Model uses

CNN to extract spatial and character features directly. At

flow level, HSTF-Model extracts temporal features between

packets further by using LSTM. Then, model synthesizes all

the feature information through hidden layers, and outputs the

discriminant result finally.

In addition, HSTF-Model is improved by adding statistical

feature set. The PL statistics is added at the packet level and

combined with the output of CNN. Then, the FL statistics is

add at the flow level and combine it with the output of LSTM.
The overall structure of HSTF-Model is shown in Fig. 5.

Through preliminary experiments and empirical knowledge,

we determined the overall structure (the number of neurons

in each layer of neural network, the output size of feature

encoders of PL and FL, etc.)

The various parts of HSTF-Model are detailed below.

B. Data Preprocessing

We build feature encoders to preprocess data. The first one

is the raw data. As shown in Fig. 3, the feature encoder of raw

data converts each field line in the packet into a 1×200 vector.

As a rule of thumb, we default that no more than 47 header

fields in packets. Finally, a raw packet produces a 47 × 200
feature matrix. It will be truncated if it is exceeding and filled

with 0 if it is insufficient. Then, we use 1:1 hash technology

for data privacy protection and vectorization.

...

...t

For a line in raw packets

e %

A tenfor of field row(1×200)

?

Dense(200)

G

Fig. 3. Feature encoder of raw data.

The second is feature encoders of statistical data at packet-

level and flow-level. As shown in Fig. 4, the feature encoder

at packet-level converts PL to a 1× 20 vector and combines

it with the output of CNNs. Then, the feature encoder at flow-

level converts FL to a 1× 30 vector and combines it with the

output of LSTM. Feature encoders convert statistical informa-

tion into a more compact representation, which facilitates the

combination with tensors in neural network.

Statistical data at packet level
PL (1×100)

A tensor at packet level
p l-vector (1×20)

Dense(64)

Dense(20)

Statistical data at flow level
FL (1×170)

A tensor at flow level
f l-vector (1×30)

Dense(30)

Dense(128)

Fig. 4. Feature encoders of statistical data at packet-level/flow-level.

C. Learning of Packet Feature by CNN

CNN belongs to deep feedforward neural network. In 1980s,

Fukushima et al. [25] realized it for the first time. CNN can

extract hidden structural information. There are one or more

convolution and pooling layers in CNN. The convolution layer

contains multiple feature mapping neurons (convolution ker-

nels), which separate input data into different feature regions,



CNN

Input_unit1

Dense(5) CNN

Input_unit2

Dense(5) CNN

Input_unitN

Dense(5)

Dropout(0.2)+ReLU

LSTM(128)

Dense(64)+ReLU

Dense(16)+ReLU

Dense(2)+Softmax

Conv
Filters=8, kernel_size=(2×3 ) ,

 Stride=1, padding=SAME

MaxPool

pool_size=4

MaxPool

pool_size=2CNN = 

Conv
Filters=32, kernel_size=(2×3 ) , 

Stride=1, padding=SAME

X1

(47×200) 

pl-vector1

(1×20) 

X2

(47×200) 

Xn
(47×200) 

...

Flatten

Feature Encoder of 

Raw Data

Raw data
PL

(1×100)

Feature Encoder of Statistical 

Data at packet-level

Feature Encoder of 

Statistical Data at flow-level

pl-vector2

(1×20) 

pl-vectorn

(1×20) 

LSTM(128) LSTM(128) LSTM(128)

FL
(1×170)

f l-vector
(1×30) 

Dense(128)

Fig. 5. Overall architecture of HSTF-Model.

and each convolution kernel is responsible for extracting local

features. We can obtain global feature information of sample

by aggregating local features. After convolution operation, the

vector is pooled, which is a down-sampling method to reduce

the complexity and over-fitting.

We process 47 × 200 feature matrix by CNN, as shown

in Fig.5. ReLU is used as an activation function. After two

convolutions and pooling operations, the output of CNN is

processed by ReLU, and then, enters the follow-up dense

layers containing 128 neurons. The output Ci is shown in

Eq (1), where b is the bias term and f is the activation function.

Then, multiple convolution kernels perform feature mapping

and maximum pooling.

ci = f(w · xi:i+h−1 + b)

ĉ = max(c = [c1, c2, ..., cn−h+1])
(1)

D. Learning of Flow Feature by LSTM

In 1997, LSTM was proposed by Hochreiter and Schmid-

huber [26], which is a variant of RNN. RNN records the

processed information previously and makes use of those

information in current task. However, there are some disadvan-

tages using RNN. One of them is the difficulty in addressing

long-term dependency. It can only utilize the information that

is not far from the current task. The LSTM optimizes for this

problem by designing ’gate’ structures to preserve and select

information. Each gate consists of an activation layer and a

pointwise operation.

The input gate, it, combines the input to determine the new

information C̃t be added. The forgotten gate, ft, handles the

previous status and determines the old information Ct−1 be

discarded. The two gates determine the proportions of new

and old information in the current information Ct.

it = δ(Wi · [ht−1, xt + bi])

C̃t = tanh(WC · [ht−1, xt] + bC)

ft = δ(Wf · [ht−1, xt] + bf)

Ct = ft × Ct−1 + it × C̃t

(2)

The output gate, ot, determines the output information of

current neurons.

ot = δ(Wo · [ht−1, xt] + bo) (3)

There is also a hidden layer status output ht that is used to

assist in the next task processing.

ht = ot × tanh(Ct) (4)

CNNs extract different abstract features based on packets

in a flow. These features are time-dependent due to the

dependence of raw packets. Therefore, we use LSTM with

128 neurons per cell when processing flows in HSTF-Model.

E. Learning of Statistical Characteristics by DNN

DNN is one of the foundations of neural network. Rosen-

blatt proposed the perceptron model in 1958 [27], and then

derived the multi-layer perceptron (MLP). MLP is also known



as simple DNN. In this paper, there is no obvious structural

relationship and time dependence in statistical data. Therefore,

we process the statistical characteristics by DNN.

A flow including n packets forms vector of n× 100 + 170
size. Then, feature encoders convert PL and FL vector

into denser representations through the full connection layers

within DNN. At packet level, a dense layer containing 5

neurons further processes the output of feature encoder of PL

for better stitching with the output of CNN. At flow level, the

output of feature encoder of FL is combined with the output

of LSTM to enter the follow-up network layer.

V. EXPERIMENT AND EVALUATION

A. Evaluation Metrics

Precision(P) and recall(R) are calculated to evaluate the

performance of HSTF-Model. Fβ by Eq (5) is also calculated

as the comprehensive evaluation index. We can change the

value of β to make the evaluation pay more attention to

precision or recall. In this paper, we set β = 1, which means

that precision and recall are equally important.

Fβ =
(1 + β2)× P ×R

(β2 × P ) +R
(5)

B. Configuration of Environment

HSTF-Model is implemented in Python3.5 based on the

libraries of Keras and TensorFlow. The system environment of

experiments is Ubuntu16.04 LTS. All software applications are

deployed on a server machine with 64 CPU cores and 64GB

memory. To further accelerate matrix computing, 8 NVIDIA

GeForce GTX TITAN X are installed in the server.

For the selection of experimental data, we repeat the experi-

ment 10 times and randomly select 70% malicious and partial

benign flows from dataset BTHT for training at each time.

The proportion of malicious:benign is 3:10. In subsequent

experiments, the proportion would be changed if necessary.

In addition, we select the remaining 30% malicious flows and

50,000 benign flows from dataset BTHT outside the training

set to form the testing set for each experiment.

C. Efficiency of HSTF-Model with Statistical Characteristics

In this paper, statistical features containing empirical knowl-

edge are added to the neural network processing as a supple-

ment. These statistics can provide richer data representation

and enhance the feature extraction capability of the model. We

conduct experiments with different packet size (in bytes) and

flow size (in packets) combinations to verify the performance

improvement from statistical characteristics.

We show some experimental results in Tab IV. Experiments

indicated that the detection effect and robustness of HSTF-

Model was generally better than the model without statistical

characteristics. But the cost of detection is increased because

of the need to extract additional statistical information. How-

ever, HSTF-Model is in the same order of magnitude as the

complexity of the model without statistical characteristics.

Therefore, the cost caused by statistical characteristics is

acceptable compared to performance improvements.

In addition, we need to determine the appropriate packet

size and flow size, which are not fixed in in different data. The

range of packet size and flow size is very wide. We cannot

experimentally validate all size combinations. Therefore, the

control variable method is used by follow-up experiments.

D. Influence of Packet Size and Flow Size

The appropriate packet size is determined in experiments.

According to the statistical analysis of the dataset BTHT and

previous experimental experience, we set flow size = 4.

Fig. 6 details the results.
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Fig. 6. Effect of packet size on HSTF-Model (flow size = 4).

We change the packet size from 100 to 4000 (size = 100,

200, 300, 400, 600, 800, 1000, 1500, 2000, 3000, 4000).

HSTF-Model can achieve the best result when packet size =
400 according Fig. 6. When the size exceeds 2000, in the

experiment, the detection effect begins to decrease. The reason

is that most malicious samples in dataset BTHT come from

an online package of Trojans, causing practical packet size is

not large and the malicious features are basically hidden in

preceding bytes. When the size enlarged, it is equivalent to

TABLE IV
THE PERFORMANCE COMPARISON OF HSTF-MODEL WITH AND WITHOUT STATISTICAL CHARACTERISTICS

Proportion HSTF-Model without statistical characteristics HSTF-Model

malicious:benign Packet size Flow size Precision Recall F1 Time Precision Recall F1 Time

3:10 400 4 99.08 98.26 98.67 11.4s 99.35 99.4 99.37 11.6s
3:10 400 8 99.21 99.18 99.19 13.5 99.23 99.19 99.21 15.5s
1:4 400 4 99.26 96.74 97.99 11.5s 99.42 97.8 98.6 11.8s
1:4 400 8 99.3 97.15 98.21 13.6s 99.38 98.96 99.17 16s
1:8 800 8 99.65 95.43 97.49 18.4s 99.94 96.64 98.26 20.8s



adding noise, which causes the drop-in effect. Therefore, we

choose 400 as the packet size for subsequent experiments.
After CNNs output abstract feature vectors, these vectors

form time-series units, which are processed by LSTM. The

experimental results of selecting flow size are shown in Fig. 7.
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Fig. 7. Effect of flow size on HSTF-Model (packet size = 400).

We change the flow size from 1 to 32 (size = 1, 2, 4, 6, 8,

16, 24, 32). HSTF-Model can achieve the best results when

flow size = 4. Trojans usually contact the attacker by sending

some online packets, which are usually concentrated in the first

few packets. Therefore, we only need the first few packets

in a flow to determine whether it originated from malicious

behavior. In this paper, 4 is chosen as the best flow size.

E. Efficiency of HSTF-Model in Imbalanced Data

To evaluate the performance of HSTF-Model in imbalanced

data, we use different proportions of data in experiments. The

results are shown in Tab V. With the increase in the proportion

of benign samples in training, it is easier to extract features

of benign data and pays more attention to it. In that case,

the training model improves the discriminant threshold for

malicious traffic and the precision of the model close to 100%.

For instance, the precision exceeds 99.99% at proportions

of 1:24 and 1:100. However, with the decrease of malicious

data, it becomes more difficult to extract the characteristics of

malicious samples, and the ability of HSTF-Model to identify

malicious samples also declines. At 3:10, the recall reaches

99.4%, while at 1:100, the recall drops to 78.96%.

TABLE V
EFFICIENCY OF HSTF-MODEL AT DIFFERENT TRAINING PROPORTIONS

Proportion Evaluation Index(%)

malicious:benign Precision Recall F1

3:10 99.35 99.4 99.37
1:4 99.42 97.8 98.6
1:8 99.95 96.72 98.31

1:24 99.99 90.83 95.19

1:100 99.99 78.96 88.24

We show the recall rate convergence process of HSTF-

Model at different proportions in Fig. 8. The performance is

getting worse with the decrease of malicious data. But HSTF-

Model can still be considered that has good robustness and

can handle imbalanced data well. When malicious data only

accounts for only 4.17% in training, it can still converge and

has the F1 = 95.19%.
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Fig. 8. The recall rate convergence curves of HSTF-Model at different training
proportions.

F. Comparison with Other Methods

We implement several of the latest malicious traffic detec-

tion methods in combination with our own data analysis. And

some classical machine learning algorithms (Bayes, SVM,

Decision Tree) are also implemented, which are widely used

in the field of malicious traffic detection. We compare HSTF-

Model with these methods.

The experimental results are shown in Tab VI. HSTF-

Model has the best comprehensive performance in detection

effect and time cost. Rbf-SVM get the recall of only 74.49%

and C4.5 get the precision of only 74.29%. Although Naive

Bayesian costs the least time, its performance is worse than

others because it gives up the association between packets.

LSTM-R is fast but not excellent because there is no deep

consideration of the structural relationship inside the packet.

Then, the detection result of S-IDGC and Proposed-Hybrid-

Model are excellent but slower than HSTF-Model. These two

models are built using traditional machine learning methods,

and it is difficult to improve performance with data iterations.

HSTF-Model can be continuously updated on the basis of the

original. Moreover, HSTF-Model is more robust than other

methods when the data is imbalanced in dataset BTHT.

TABLE VI
HSTF-MODEL COMPARED TO OTHER METHODS IN DATASET BTHT

Method Precision Recall F1 Test Time

Rbf-SVM 100 74.49 85.38 34m12s
C4.5 74.29 98.66 84.76 1m28s

GaussianNB 99.36 52.25 68.49 5.7s
LSTM-R [28] 97.64 96.27 96.95 8.8s
S-IDGC [17] 99.14 99.28 99.21 3m20s

Proposed-Hybrid-
Model [15]

99.45 97.67 98.55 8m17s

HSTF-Model 99.35 99.4 99.37 11.6s

In a word, HSTF-Model has the best comprehensive per-

formance because neural networks have excellent self-learning

ability. Meanwhile, statistical characteristics can improve the



richness of data, thus enhancing the feature extraction ability

of the model and accelerating model convergence.

VI. DISCUSSION

In this paper, we designed the appropriate granularity and

range of values to cover the most optimal solutions, and then,

determined the optimal values of flow size and packet size by

controlling variables. HSTF-Model relies mainly on training

data to improve detection capabilities. When the HTTP-based

Trojan traffic in the training data is sufficient, the model can

still maintain accurate recognition of such Trojan traffic in

more complicated traffic environments.

Although HSTF-Model performs well in dataset BTHT,

there are still some shortcomings. The first is about false-

positives. When a flow is small, there are few features that can

be extracted. HSTF-Model is difficult to detect it effectively.

The second is that generalization is not fully verified, and

the performance of the model is slightly dithered in different

situations. For instance, the precision in the real-time Internet

will result in a decrease of 2%-5% due to the diversity of

traffic. Our next work is to alleviate this problem.

VII. CONCLUSION

In this paper, we build features encoders and an effective

prototype detection method HSTF-Model. Deep learning is

combined with statistical characteristics. It is used for HTTP-

based Trojan traffic detection and can reach to 99.4% in recall

(99.35% in precision) in experiments. In addition, we provide a

dataset BTHT consisting of benign traffic and malicious traffic

for experiments and other research in the field.
In the future, we will expand the dataset BTHT further

by adding more malicious traffic, and then, enhance the

generalization of the model through data iteration. In addition,

we only perform a simple coarse-grained partitioning of traffic

in this paper, but as the complexity of traffic increases, more

fine-grained hierarchical partitioning and feature extraction

must be performed . This is one of our next research work.
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