N
N

N

HAL

open science

A Unite and Conquer Based Ensemble learning Method
for User Behavior Modeling
Abdoulaye Diop, Nahid Emad, Thierry Winter

» To cite this version:

Abdoulaye Diop, Nahid Emad, Thierry Winter. A Unite and Conquer Based Ensemble learning
Method for User Behavior Modeling. 2023. hal-04194549

HAL Id: hal-04194549
https://hal.science/hal-04194549

Preprint submitted on 3 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04194549
https://hal.archives-ouvertes.fr

A Unite and Conquer Based Ensemble learning
Method for User Behavior Modeling

Abdoulaye Diop, Nahid Emad, Thierry Winter

Abstract—IT companies use tools to analyze user and en-
tity behavior to protect their information assets from insider
threats. Although supervised machine learning methods seem
to be the ideal solution for solving this problem, situations in
which new employee activity data is labeled and balanced, are
not so common. Besides, the data can have different origins,
structures, and can be substantial. Therefore, it’s difficult for
a specific detection model to deal with and identify insiders in
all cases effectively. To provide a solution to this problem, we
are faced with methodological, algorithmic, and technological
challenges. In this article, we try to meet these challenges by
proposing a new approach based on ensemble learning methods
to improve their performances from the point of view of accuracy
and computation efficiency. With the detection of behavioral
anomalies as a case study, we show the interest of this approach
for its improvement of the prediction results and its efficacy on
a high-performance computing system.

Keywords—Bagging, Boosting, High performance computing,
Unite and conquer, Insider threat, User behavior modeling

I. INTRODUCTION

In the cybersecurity domain, user and entity behavior
analysis (UEBA) software are the tools used to stop insid-
ers threats. In a company environment, insiders are mostly
employees who misuse their access rights, or hackers that
exploit flaws of the authentication systems with malicious
intent. Companies use UEBA tools to determine if employee
behavior is normal or abnormal. Employee behavior is hard
to classify because it’s nature diverges depending on the job
role, the situation, and the organization structures. It can
also evolve over time. They mainly use classification and
anomaly detection techniques to detect insiders. Most of the
techniques used to identify malicious activities are based on
supervised machine learning methods. Other techniques use
semi-supervised, unsupervised machine learning, and graph
feature analysis. Their goal is to detect a divergence from an
employee behavior profile or to find outliers in the all-around
company activity data. The proposed solutions are diverse,
but they are mostly facing the same problem of high false-
positive/negative (FP/FN) and a lack of versatility. Depending
on the company studied, a method initially performing well
to detect an attack scenario can present an unstable detection
accuracy. It makes sense to optimize a specific model for a
particular company, but the cost of the software development
and maintenance of these tools can represent a drawback.
The data volume can also pose a challenge to implement a

This project is funded by ATOS/EVIDIAN/ANRT, and the University
of Paris Saclay/UVSQ (UPS/UVSQ). Abdoulaye Diop (e-mail:mamadou-
abdoulaye.diop@atos.net) and Nahid Emad (e-mail: nahid.emad@uvsq.fr)
are members of the Li-PaRAD and Maison de la simulation laboratories of
UPS/UVSQ, Thierry Winter (e-mail: thierry.winter @atos.net) and Abdoulaye
Diop are funded by ATOS/EVIDIAN compagny.

detection model. Machines limited in their computation power
struggle to treat the massive amount of behavior data. A solu-
tion to this issue would be to build a model somehow adaptive,
able to manage different and extensive data input. This model
would have to consider detection accuracy, detection time, and
maintainability constraints.

In this work, we propose an approach to counter this issue
based on the use of unite and conquer and ensemble learning
principles. Our solution uses the collaboration of multiple ma-
chine learning methods to build individual post-login activity
profile. These profiles are used to classify a new activity record
as regular or abnormal. The base methods of the ensemble of
learners belong to the family of the unsupervised, supervised
machine learning, and graph-based methods. We show that
this approach makes it possible to obtain significant gains in
accuracy relative to the base-methods, which constitute the
global method proposed. To exploit the potential parallelism of
the proposed solution, we implement it with high-performance
parallel computing techniques and show its efficiency also in
terms of execution speed. The rest of this paper is organized as
follows. Section 2 presents some related works. In section 3,
we define our approach and issued detection models. Section
4 presents the algorithm and parallel programming models
according to which we implemented the proposed approach.
Section 5 presents the results of a selection of our experiments
and their analysis. Finally, Section 6 concludes this article and
gives indications about some perspective of this work.

II. RELATED WORK

Due to the nature of insider attack, using unsupervised
learning and anomaly detection seems to be a natural decision
to handle this type of issue [1], [2]. Haidar et al. [2] proposed
a semi-supervised detection method using an ensemble-based
scheme with two base classifiers; a one-class support vector
machine (OcSVM) and an isolation forest (IForest). Moreover,
they added a progressive update method using false positive
oversampled FP chunks to refine their pre-generated models.
A human domain expert labeled the FP results. Employee
behavior can be considered as the dominant normal activity
class and the insider action as an anomaly. However, an
individual’s behavior is a difficult phenomenon to classify.
A behavior model is susceptible to be perturbated by new,
unexpected or unusual good action and should evolve over
time, since the studied individuals might change their habits.
These specificities might not be capture by behavior profiles
based on anomaly detection methods. Hence they always
suffered from high FP/FN rates. The solution proposes by
[2] gives insight on how we can boost the OcSVM and the
IForest algorithm to handle the behavioral exception, but not

the change of behavior over time. Using a periodic training
scheme combined with a smart windowing of the training data
can be a solution to this problem. However, anomaly detection
methods cannot characterize the source of the problem, which
means that they can spot unusual or un-popular data samples,
but cannot give insight into their causes.

Graph-based methods are another approach to tackle the
problem of insiders. Based on the graph features analysis, the
detection mechanism is to spot anomalous subgraphs, nodes
or links. They share the same issue as anomaly detection
approaches. They are also sensitive to exceptions, and they do
not give information on the nature of the anomaly. Gamachchi
et al. [3] proposed to use a graphical processing unit to extract
graph-based features from a graph built with multidimensional
data from the CERT of Carnegie Melon university data. They
fed the features to an IForest algorithm to detect outliers
without profiling normal behavior. This technique focuses on
the study of local graph anomalies as a potential indicator of
deviant behavior. In this work, the behavioral study parameters
are chosen in a certain way by a human operator who is an
expert in the field.

In the overall literature, supervised learning approaches,
especially the ones based on deep learning, showcase better
performance than anomaly detection approaches. Particularly
approaches based on neural networks. However, they need
substantial and balanced data. Since the activity dataset natu-
rally contains more normal activity sample than insiders (i.e
class imbalances), this method can struggle to perform well
and can be susceptible to bias and variance issues. Tuor et
al. in [4] proposed unsupervised online approaches based on
a deep neural network (DNN) and a recurrent neural network
(RNN) (i.e. using an LSTM architecture) as a prospective
filter for a human data analyst. Their best model obtained an
anomaly score of in 95.53 percentile for the insider activity.
Their goal was to diminish the workload of a security analyst.

In the past, researchers use a combination of bagging and
boosting to manage the bias-variance tradeoff. Kotsiantis et
al. [5] proposed a bagging and boosting combination with
sum rules voting. They constituted a global ensemble learn-
ing method with separated sub-ensemble, respectively, using
bagging or boosting. The hypothesis of each sub-ensemble is
combined using a sum rule to get the final prediction. They
tested their solution on 36 well-known datasets from the UCI
repository of machine learning, and used decision tree (DT)
C4.5, decision stump (DS), naive bayes network (NBN), and
a rule learner (OneR) as base classifiers. Overall they obtain
better results using their combination of bagging boosting
compared to individual bagging and boosting with this base-
classifier. In the domain of power management, [6] proposed a
parallel combination of bagging and boosting for a regression
problem. They used artificial neural network (ANN) as base-
classifier, for short term electricity load forecasting. They
independently boosted ANN on a different bag of the training
dataset. Here the sub-ensembles are all boosting methods. The
result of their forecasting is obtained by averaging the result of
each boosted ANN. They compared their effect against ANN,
only Bagged ANN, and only boosted ANN. They had the best

results with their bagged-boosted combination. Fauvel et al.
proposed in [7] a hybrid ensemble method called local cascade
ensemble by combining bagging, boosting and mixture of
expert (ME) [8] methods, in a decision tree scheme. They use
their approach for estrus detection (i.e. in the milk production
industries, estrus is the only period where a cow is susceptible
to pregnancy). The ME method is a method base on a divide
and conquers strategy. This method divides the problem space
between classifiers, supervised by a gating network (i.e. a
weighted average scheme). Each classifier is trained with a
different part of the dataset. They use this combination of
bagging and boosting to handle the bias-variance tradeoff,
and use the diversification properties of ME to learn the
specificities of different parts of the dataset. Their approach
showed better results when compared with other classifiers
and commercial solutions for estrus detection.

These are a couple of examples of the use of the combina-
tion of bagging and boosting. To our knowledge, in the domain
of insider threat detection, there is no work proposing to use a
bagging and boosting combination to solve this. However, [9]
studied the effect of boosting on classifiers trained to detect
insiders’ attack. They create a meta-learner by aggregating
the boosted classifier using a probability vote. They tested
their method by comparing the base-classifiers firstly with
their boosted version. They boosted artificial neural network
(ANN), naive bayes network (NBN), support vector classifier
(SVC), decision tree (DT), and logistic regression methods.
They obtained mixed results by comparing the accuracy
and the AUC-score of the base classifiers before and after
boosting. This process improved NBN, SVC, DT, and LR
slightly, not ANN and RF, which showed a slight decrease in
accuracy and AUC-score. Using their meta-learner, they didn’t
get better efficiency. However, they have a better area under
the ROC curve.

A. Detailed contribution

Therefore, we propose a new and customized approach
to combine bagging and boosting inspired by the previous
work in the insider threat detection domain and the mitigation
of high bias and high variance problem. We opt for the
same strategy as the ME method. However, we diversify the
distribution of the training data set using bagging and boosting
sampling techniques to handle the bias-variance tradeoff.
Contrary to a divide and conquer strategy like ME, we propose
a restarting strategy based on the unite and conquer approach,
mixing individual classifier feedback to improve the training
set. Hence, in this work, we propose:

e A new iterative boosting and bagging combination re-
lying on a restarting strategy inspired by the unite and
conquer method, particularly well suited for insider de-
tection problems.

o A fault-tolerant implementation strategy, to maximize the
contribution of the best base-methods or their combina-
tion.

¢ An implementation scheme combining anomaly detec-
tion and supervised learning methods depending on the
available data.

e A custom scalable parallel implementation model that
can deal with high data load, and that take advantage of
the high-performance machine architectures.

III. PROPOSED APPROACH

Insiders threat are reported in different types of com-
panies’ work structure (e.g. companies in information and
technologies, finance, healthcare). This heterogeneous nature
of employees’ activity could appear even inside of a given
organization. The insider attack scenarios are also diverse
since they can target different types of assets of a company.
As a consequence of this heterogeneity, a single detection
method might not work to detect insiders in all cases [9].
Using an ensemble learning strategy can represent a solution
to this issue. Most of the ensemble method uses a combination
of classifiers to obtain a more accurate final prediction. For
instance, we can compare the detection performance of the
base methods composing the ensemble of learners. For the
final prediction, one option is to select the base-method with
the best accuracy. Another option can be to use a voting
scheme to make all the base-methods contribute to the class
prediction. In this article, we propose a way to detect insiders
in multiple settings. Our approach combines bagging and
boosting techniques by using a unite and conquer strategy.

This approach consists of making collaborate several
boosted methods (i.e. called co-methods) in a bagging context
to solve the problem of insider threat detection. These two
ensemble learning techniques are specifically used to handle
the high bias (i.e. underfitting) and high variance (i.e. overfit-
ting) problems. A classifier suffers from high bias when it’s
unable to fit the structure of the training set. On the other
end, a classifier suffers from high variance when it’s too
specialized on the training set. Bagging solves the problem
of overfitting by diversifying the training set distribution
stochastically and share it with multiple classifiers. Boosting
can handle underfitting by specializing a classifier list to a
training set, capturing its underlying structure. However, this
operation can result in over-specialization on the training set,
increasing the overfitting risk. Hence a combination of the
two methods can help to manage the bias-variance tradeoff.
Balancing this tradeoff is the ability for a classifier to gen-
eralize beyond its training set. This is an essential advantage
for insider threat detection since this behavior analysis system
is bound to analyze new activities records continuously. The
intrinsic parallelism in bagging is an advantage of this method,
mainly when most of today’s applications deal with vast data
quantities and need their processing and analysis on parallel
and distributed architectures.

We call the proposed framework UCEL (i.e. for unite and
conquer ensemble learning). Given several boosting methods
able to learn employees’ post-login behavior individually. The
UCEL framework uses a combination in an extended manner
of bagging and boosting methods to create behavior profiles.
These profiles are built by learning usual employees’ conduct
and work patterns, from activity data recorded on their com-
panies’ information systems. These individual profiles can be
used to analyze and classify the employee’s recent or on-going
activities as a normal activity, unusual or insider activities. We

name this particular instance of UCEL, a behavior profiler
model (see Figl). We give more detail about this framework
in the Section 3.B.

: Method 1
~———» Training
: Phase

6 Synchronization

and threshold
testing

() [> Method 2
e Bag ————> Training
(2) Phase

e > Method 3
> Training

(3 Phase

() e > Method 4
Baq’—b Training
a) Phase

I‘.Overaamplmg ‘
Unit

- o
Raw User ' ‘

Activity .
data

Feedback Igep

| False -
| Positive |
i, Chunks

[e Sending identified False

8 4
i Best
i Training }
L Set ! -

Mast Efficient

| “Classifier

Fig. (1) Behavior profiler

A. Unite and Conquer based method

Unite and conquer is an approach initially used in linear
algebra to solve large-size sparse linear systems and/or eigen-
value problems [10]. This approach consists of making collab-
orate several iterative methods (i.e. also called co-methods) to
solve the same problem. This process accelerates the system’s
overall convergence by making use of intermediate results
issued from an iteration of each co-method by all the others.
This can be seen as a set of collaborative co-methods that
share their restarting cycle parameters to choose the best of
them and to reach convergence more quickly. Precisely, the
aim of this sharing is to combine the intermediate results
in order to define the best restarting information for each
cycle of each of the co-methods allowing the global method
to reach convergence faster. Let P be a large numerical
problem to solve linear system, eigenvalue problem, etc. Let
Ly, Lsy,..., L, be a set of iterative methods allowing to solve
P, If be the initial condition (with & = 0) and restarting
condition (with k > 0) of L; (for i = 1,--- ,¢) and S¥ be
the approximated solution obtained by L; at the end of its
k-th iteration/cycle with I¥ initial condition. The main steps
of this approach to solve P are presented in algorithm 1.

B. User behavior modeling with UCEL

In a corporate environment, the vast majority of employees
are not insiders; there is a natural class imbalance in their
activity data. This means that there are many more samples of
good activities recorded than there are of malicious activities.
For example, if we focus on a single employee, insider action
can be seen as a change in his/her usual work practices. These
elements confirm that if we register the post-logging activities
of companies’ employees for an extended period, we will
most likely have an imbalanced dataset. Since the flow of

Satisfying accurac

Algorithm 1 Unite and Conquer Algorithm

1. Start. Choose a starting matrix [I{, -, I7],
let £ =0.
Iterate. For i = 1,--- , ¢ do in parallel

Compute SF by L; with initial condition I*

if (accuracy of S¥ is good enough) then STOP
Share S information with all other processes j
(G=1,---,fand j #1).

6: Restart. Update initial condition [IF*?, ... [FT1]
for restarting by f(ST,---,SF) and go to 2.

activity data is continuous, labeling activity and balancing
data before testing for insider threat might be more risky
and costly for companies than the operation of characterizing
anomalies when they are found. Hence, we propose to opt at
first for the use of semi-supervised anomaly detection based
UCEL method. We can then combine it with a supervised
learning-based UCEL method when we have enough labeled
and balanced data (i.e. using human operators to label the data
or oversampling strategies [11] to deal with the imbalances).
Hence the co-methods methods are chosen to be classic
anomalies detection methods or supervised classification.

In a semi-supervised context [12], anomaly detection meth-
ods add samples with known labels to their data distribution
to have extra information to their classification process. This
action improves the decision boundary of classic unsupervised
anomaly detection methods [2]. A behavior profiler with
anomaly detection as co-methods can be alimented with a
continuous feed of FP/FN samples, labeled by another security
system, or human action. This profiler would work without
a balanced dataset. It is important to note that individually
none of base classification methods can’t be considered as well
adapted to all the situations. Each has unique advantages and
disadvantages and can match the specificities of the companies
activities. To enjoy the benefits of these methods, we propose
their combination to the UCEL framework.

Before analyzing employee behavior by the proposed pro-
filers, it is necessary to perform a data pre-processing step. In
this step, we start by selecting samples from the raw activity
data of a single employee and samples from an insider threat
attack scenarios databases. We then perform classic feature
engineering and finish by building a training, validation, and
testing set from the cleaned data. The second step is to apply
the main principle of unite and conquer to machine learning.
The idea is to design our classification method using the same
architecture of the unite and conquer methods for restarted it-
erative methods. We establish correspondence points between
the two techniques. The system matrix corresponds to the
original training data set. The subspace becomes a bag of
data built with random sampling with replacement (RSR)
and weighted random sampling (WRS). For instance, in the
anomaly detection case, the co-methods or base-methods can
be mainstream methods such as: (IForest), (OcSVM), robust
covariance (Robcov) and local outliers factor (LOF). In the
supervised learning case, we can also choose co-methods, such
as: multilayer perceptron (MLP), gaussian naive bayes (GNB),

KNN, and SVC. We can also build a solution using the same
method but with different hyperparameters (i.e. changing the
initial conditions). In other words, we can use the instances
of the same base-method, which is equivalent to create the
particular case of the UCEL methods called multiple base-
method such as multiple IForest or multiple Robcov. However,
the advantage of using co-methods differently is that it helps
to build a heterogeneous consensus on the nature hypothesis
of an analyzed behavior.

We start the first iteration by training the co-methods with
bags generated with an RSR on the initial training data. We
then test the co-methods with the validation set by computing
the AUC-score of each co-methods. After that step, we then
try to combine the strength of each co-method and build a
weighted voting classifier (WVC) with their results. We then
test its AUC-score against the score of the co-methods and
the chosen detection threshold. The third step corresponds to
the restarting step. We apply the principle of boosting on the
previous training bag if the detection threshold is not reached.
We start by gathering all the FP/FN of the co-methods and
weigh them in the function of their popularity. The training
data of the next iteration of a co-method is obtained by
combining its most accurate training bag during the previous
iterations, with the most popular FP/FN. Here, we use a RSR
and a WRS again to build the new training bags. All the best
bags correspondent to the co-method and WVC are stored, in
order to use them in the following iterations. They are only
updated when a new bag presents a better prediction score. We
repeat the same process until the detection threshold, or the
desired number of iteration is reached. The restarting strategy
is a critical part of our model. It launches a new cycle of
classifier training and testing. In theory, the new period has
better starting conditions than the previous ones. For now,
we used a simple restarting strategy. Still, the proposition of
the ones with more effectiveness and sophistication will be
the subject of our future research works (i.e. we can consider
sending in addition to the best bag, the best hyperparameters
in a multi-UCEL case).

Depending on input data, even with the boosting process,
some co-methods might not be efficient do detect the insiders.
Hence, they are not contributing to accelerate the convergence
through the iteration. In those cases, UCEL still provides
good results because the focus is always shifted to the best
method and the best bags. This highlights the fault-tolerance
capabilities of this approach. The bags are stochastically
selected. So in the same conditions, the performance might
drop if at a cycle the selection is unlucky. However, since we
choose the best bag from the start, combined with the situation
where the classifier is mistaken, the AUC-score is susceptible
to oscillate and rise again. The stop condition for classic unite
and conquer consists in reaching the chosen tolerance. The
stop condition of the behavior profiler training is to have a
base-classifier AUC-score reaching the chosen threshold. At
that point, the trained co-method with or the weighted voting
classifier the highest AUC since the first iteration is chosen
to be the behavior profile.

IV. PARALLEL PROGRAMMING MODEL FOR UCEL

One important aspect of the UCEL framework is its intrinsic
multi-level parallelism. That means we can exploit coarse-
grain inter co-methods as well as fine-grain intra co-method
parallelism. Moreover, communications between co-methods
can be synchronous or asynchronous. In this article, we focus
on a synchronous implementation. Despite a loss of time due
to the synchronization, the advantage of this model is the
simplicity of its implementation and the existence of a certain
determinism in the calculations. Another important aspect
of UCEL framework is its heterogeneity. Indeed, the pro-
cesses corresponding to base-classifiers could all be different.
Thereby, it is possible to use an adapted hardware processor
for each of them according to their natural parallelism. We
assume that the targeted parallel architecture has a set of
nodes; each of them could be itself a parallel processor. For the
parallel implementation of UCEL, we consider a programming
model where the nodes of underlying architecture act as
a computing server (SN) or controller (CN). Under these
hypotheses, each SN trains a classifier allowing predicting
classes, selecting miss-classified data, and computing its AUC-
score. Then, all of SN send the set of their results to the CN,
which is in charge of determining which is the best set among
them before sending this set to all the SN. This computation
task of the CN constitutes a synchronization step and can
be seen as a critical section. Consequently, its execution
time will have a significant impact on the execution speed
of the whole algorithm. According to the best information
received, SN update starting conditions for a new cycle of
their corresponding boosting classifier. In each cycle, if the
detection accuracy threshold is reached by one of the co-
methods or by the voting classifier, all the processes stop.
Otherwise, a new cycle is launched where the best new
training bag is created and transferred to SN for a new cycle.

Let Ts be the training set, Vg the validation set, and ¢ be the
number of learners and bags of size m, L° = [LY,--- , L9] be
a set of initial learners, Wj be the set of miss-classiﬁed data
issued from the jth cycle of the ith classifier and, By, , be
the training set with the best AUC-score among BY, - , Bj.
This bag is associated with Lj.; the most accurate learner
and Wy, the lightest FP/FN set. A classifier is considered as
sufficiently trained if its AUC-score is larger than a precision
threshold 6. The algorithm 2, called behavior profiler, depicts
a parallel implementation of the UCEL framework according
to the above programming model. Let a function V that creates
a weighted voting classifier, and a function f that selects
(B] ., L. .., W) as the best results of each co-method

best? ““best’ "7 best
received from all ¢ € [1,£] processes.

V. EXPERIMENTS AND PERFORMANCE EVALUATION

We implemented the behavior profiler (BP) with anomaly
detection and supervised methods as co-methods. In order
to evaluate the performances of this BP, we make use of
two main performance metrics. The first one is the AUC-
score allowing measurement of prediction performance and,
consequently, (in)validating the approach. The second metric
is speedup giving the gain of time due to the exploitation

Algorithm 2 Parallel behavior profiler
BP (in: Ts Vs, £, q, 0; out: Byest, Lyest)

1: Start. Choose ¢, m, L° the ¢ learners, ...
2: Iterate. For i = 1,--- , ¢ do in parallel
3: Iterate. For j =1, --- ,q
4: Training and testing on SN;
Train L7~ on B/, produce L/, test L7 on Vs and
select WJ
5: Commumcatwn send from SN, to CN
Send (Bj L] Wj AUC- score(LJ)) from CN; to SN
6: Computatwn and stopping test on CN

WVC; = V(L], AUC(LY))
Bieet’ best’Wgeat f(Lj BJ W] WVC)

If (AUC-score(Ly,,,) > 0) then STOP all processes
7: Commumcatwn send from CN to SN,

Send (B, .,, L],.., Wi..,) to all node i for i € [1,].
8: Sampling on SN, _
Set the bag B/ ™' = (1— o) * Wi, U(a)* R} where

R? is the set of (m; — k) correctly predicted data
in B]_, with k} = card(Wbest) and « is the
updated weight given to miss-predicted data.

9: Result.
Set L. the best individual co-method or best
weighted combination of co-methods during the
iterations of all ¢ processes

of parallelism in the BP algorithm. The dataset used for the
experiments presented is the open-source CERT Insider threat
R4.2. The Computer Emergency Response Team (CERT)
dataset is an artificial insider threat dataset created by the
CERT National Center for Internal Threats (NITC) division.
It is a set of data composed of employees’ normal post-
connection activity in a synthetic context and insider attack
scenario perpetrated by synthetic malicious actors. These
scenarios are abnormal and suspicious activities that can
be dangerous for businesses. To show the reliability of the
BP algorithm, we presented the application of UCEL on
three insider threat attack scenarios. However, we particularly
focused on the following scenario: User begins surfing job
websites and soliciting employment from a competitor. Before
leaving the company, she/he uses a thumb drive (at markedly
higher rates than their previous activity) to steal data. The
other two scenarios description are available in the CERT
dataset archive (i.e. in the scenario.txt file).

Method TT Without UCEL | TT with UCEL
10 Robcov 0.61 - 0.53 0.96 - 0.96
4 AD 0.75 - 0.52 0.95 - 0.95
10 MLP 0.95 - 0.50 0.97 - 0.96
5 SM 0.98 - 0.98 0.99 - 0.99

TABLE (I) Train-Test AUC for BP with and without UCEL

In order to validate our methods, we conducted three
experimentations in a sequential execution context. First of all,
we focus on the scenario 2 to check the benefice of the UCEL
approach. We compared the behavior profiler training result to
the classic boosting technique applied iteratively to the base-

Robeov Behavior profiler

~@- UCEL RobCow(10)- AUC-06 18
—w— Boosted RobCov - AUC-88.77

0 2 4 6 8

(a) UCEL Robcov(10) vs Independant Boosted Robcov

Anomaly Detection Behavior Profiler

@~ UCEL - AUC o507
—~— Boosted RobCov - AUC: 8877
—+— Boosted LOF - AUG: 64.04
OcSVM - AUC: 7378
—— Boosted IForest - AUC: 90.68

(b) 4AD vs independant Boosted 4AD method
Fig. (2) UCEL vs Boosting

methods. For the presented experiments the input values of
the Algorithm 2 are the following [= 4, ¢ = 10 and 6 = 1.0.
The sub-figure 2(a) presents the comparison of a behavior
profiler built with 10 instances of the Robcov methods (i.e.
UCEL(Robcov(10))) and an independent iteratively boosted
Robcov(i.e. with its own FP/FN). For this experimentation,
the UCEL(Robcov(10)) clearly outperforms the Robcov with
the best hyperparameters. The figure 2(b) present the same
type of comparison with a behavior profiler built with 4
different anomaly detection co-methods (4AD) trained using
UCEL (i.e. UCEL(Robcov, LOF, IFOREST, OCSVM)), and
the 4 boosted base-methods working independently. The result
of this first test highlights that the behavior profiler with
the UCEL approach presents a better AUC-score than the
independently boosted base-methods. This approach uses the
co-methods iteration’s information to improve the classifiers’
initial score to a greater extent. It leads to better final AUC-
score and helps to reach a state of convergence faster.

For the second series of experiments, we tried to check the
benefit of our UCEL approach to manage the bias and variance
tradeoff. The sub-figure 3(a) and 3(b) showcase the AUC-
score evolution of the co-methods during the training phase
of the behavior profiler. These figures present the evolution
of each co-method AUC-score when they receive the extra
information gain of UCEL. The sub-figure 3(a) is an execution
of 10 instances of the robust covariance classifiers. The
different instances of Robcov are named Robcov_I(k), with
k € [1,10]. In the subfigure 3(b) 4 distinct anomaly detection

Robeov Behavior profiler

-~ o
T~ @ UCEL-AUG:0618
== RobCov._I1 - AUC: 96.18
—+— RobCov_I2 - AUC- 94.00
—+— RobCov_13 - AUC: 9238
—+— RobCov_I4 - AUC: 89.62
RobCov_I5 - ALIC: 86,44
RobCov_l6 - AUC- 8427
—+— RobCov._IT - AIC: 79.50
“+— RobCov_IB - AUC: 7628
—+— Roblov_18 - AUC: 7081
RobCav_I10 - AUC: 64.88
& WVC- AUC: B6 42

0 2 1 6 B

(a) Anomaly Detection with multiple Robcov with 10 co-methods

Anomaly Detection Behavior Profiler

—+— IForest - AUG: BB.70
—— OcSVM- AUC: 7708
—+— RobCov - AUC: 85.07
—+— LOF- AUG:68.15
-@- UCEL-AuCs 07
4 WVC-AUC: 9178

0 2 1 6 B

(b) Anomaly Detection Behavior Profiler with 4 co-methods

Fig. (3) AUC-score evolution throughout iterations in BP algo-
rithm

classifiers are used as co-methods(i.e. L = [IForest, OcSVM,
Robcov, LOF]). Since the score is pretty low after the first
iteration, we can suspect that, individually, the co-methods
suffer either from underfitting, overfitting, poor calibration of
the hyperparameters, or don’t have enough sample to establish
a correct decision boundary. UCEL boosts their initial low
AUC-score through the iterations. Some co-methods showcase
a little drop of performance after reaching their peak or
oscillating between low and high values from an iteration
to another. For example, the OcSVM co-method doesn’t
seem to benefit from this boosting strategy after the second
iteration. We suspect that it’s also badly tuned. However, we
need to do further investigation, particularly at the level of
its objective function and the establishment of the decision
boundary when we inject new elements. In the sub-figure 3(a)
and 3(b) the precision threshold is never reached, but the
AUC-score increases from 0.53 to 0.96 for (a), and 0.52 to
0.95 for (b). If we focus on the sub-figure(a), UCEL mostly
improves the training accuracy from the methods with an
initially low AUC-score. This is a direct consequence of the
use of this particular combination of boosting and bagging,
which improves weak learners’ training errors by handling
bias and variance tradeoff. However, the Robcov instances 19
and I10 don’t seem to be improving a lot by UCEL. This
is indicative of a poor selection of hyperparameters. This
implies that tuning a classifier plays a non-negligible role
in the performance of UCEL. Hence, except for the 9th and

MLP Behavior profiler

—— WLP_I1-AUC: 8730
—— WLP_2-AUGC:87.78
—— MLP_I3- AUC: 57.68

MLP_i4 - AUC: 97.67
—— WLP_I5-AUC: 97.75
~— MLP_I6 - AUC: 87,58
—— WLP_I7-AUG:87.75

MLP_i8 - AUC: 50.00

AUC-score

MLP 18 - AUC: 50.00
—+— MLP_10 - AUC: 50.00
@ UCEL-AUC778
& WVC-AUC: 0750

(a) Anomaly Detection with multiple MLP with 10 co-methods

UCEL Supervised Behavior Profiler

—t—t——a—t—0
ettt

—o
-

—— MLP-AUC: 0784
—+— 5VM-AUG: 8880

ars —~— QDA-AUC: 96 66
KNN - AUC: 92.67

—— GBN-AUC: 96.56
4 WvC- AUC: 0013
@~ UGEL- AUGS8.13

o 2 a o B

(b) Anomaly Detection with 4 different co-methods

Fig. (4) AUC-score evolution throughout iterations in behavior
profiler

10th instances, the methods starting with low training AUC-
score get improved by the restarting process injection of the
wrongly classified element. This also indicates that even when
two of the co-methods do not contribute to the classification
performance, the UCEL approach still allows the other co-
methods to get better classification results.

Table I shows the result of the training and testing AUC-
score without and with the UCEL approach. Let 4AD rep-
resents an execution UCEL with four anomaly detection
methods and 5SM a UCEL with five different supervised
methods. The train-test(TT) results showcase high bias and
high variance issues from the best method of the ten Robcov
instances, and the four anomaly detection classifiers without
UCEL. This points out that UCEL helps to manage bias and
variance tradeoff to obtain better testing results. In the super-
vised learning case, the sub-figures 4(a) and 4(b) respectively
present 10 MLP instances in (a) and 5 different supervised
classifiers in (b). In this case, we also remark that UCEL
only improves the co-methods with starting low AUC-score
and doesn’t improve the ones with an already high score.
This a consequence of boosting and bagging working well
only with weak learners as base-method. Strong learners can
get improvement using this strategy, but not to the same
extent than weak learners [9]. For instance, the KNN, GNB,
and SVM classifiers are not improved by the UCEL process.
Their AUC-score stays rather good and stable through the
iterations. This is also indicative of well-tuned classifiers for

this problem. However, in (b), the WVC of UCEL using all
the co-methods produces better results than the individual
classifiers. Hence the WVC was then chosen as the best
model for the behavior profiler. In table I, we can observe
that the best method of 10 MLP instances is still suffering
from overfitting since the train test score varies from 0.95-
0.50. The UCEL framework fixes this issue and helps to
obtain a train-test score of 0.97-0.96. In the example with
the five supervised learning methods, the AUC-score is 0.98,
so pretty high for the individual co-methods. Despite that,
UCEL adds an improvement of 1% to their scores. We can
conclude that UCEL helps to improve the class prediction
performance of the training and the testing error by managing
the bias-variance tradeoff. Even if the classifiers are already
performing well, UCEL might add a slight improvement with
its weighted voting mechanism.

Our last experimentation is an overall study of our behavior
profilers performance for the three scenarios of insider attacks.
We obtained mostly satisfying test AUC-score and we present
the results in Table II. In most of the scenarios, we tend to see
better classification AUC-score for supervised methods than
anomaly detection methods. This confirms the best strategy is
to adopt the use of semi-supervised methods when the data
is imbalanced, and then use supervised methods when the
companies dispose of enough feedback. They’re also the pos-
sibility to apply oversampling techniques to the imbalanced
dataset before using supervised learning methods [11].

Scenario | 10 Robcov 4AD | 10 MLP | 4 SM
1 0.95 0.95 0.95 0.96
2 0.96 0.95 0.96 0.99
3 0.82 0.64 0.98 0.93

TABLE (II) Test AUC for 3 insider attack scenarios

A. Parallel performance analysis

We highlighted that the UCEL approach gives reliable
results to detect insiders. To study the performance of the
parallel version of the behavior profiler, we ran an imple-
mentation of parallel algorithm 2 on the GRID5000 platform.
On the Lille cluster of GRID5000 we used 9 nodes with 4
cores each for our experimentation. The Python language and
the Multiprocessing, Multithreading, and mpi4py APIs and
libraries are used to express the algorithm’ parallelism. The
performance of the implemented BP is measured in terms
of speedup that we can obtain when dataset size increases.
We recall that speedup represents the ratio of the serial and
parallel execution time of an implementation.

Figure 5 shows a significant speedup which reaches 4.3
when the mpi4py library is used. This is because the co-
methods are working in parallel for their training and testing
phase. This confirms that mpi4py is more fit to benefit from
cluster hardware than the other one. Even though the execution
is always faster for the parallel implementation, we can
notice a limitation on the speedup gains when the number
of data records increases past 500000. A small drop in the
performance might occur due to the stochastic nature of the al-
gorithm used. However, after 500000 records, the performance
loss is continuous, and for all the parallelization libraries. This

U&C Parallel implementation Speedup

—— MPI Speedup vs Data size
—+— MT Speedup vs Data size
4.0 —&— MP Speedup vs Data size

0.00 0.25 0.50 0.75 1.00 1.25 150 175 2.00
Size 1le6

Fig. (5) Parallel behavior profiler on GRID’5K (8 co-
methods run on 9 nodes)

UCEL Scalability Test
50
~0 MULMLF spacdups:

25 50 75 0.0 25 150 75 >0
Number of corss

Fig. (6) Parallel behavior profiler strong scalability on
GRID’5K (10 co-methods)

drop in performance is probably due to the multiplications
of the communications at the synchronization steps. The co-
methods have relatively different execution times. So the
synchronization imposes the faster methods to wait for the
slowest, before restarting a cycle. Clearly, we can conclude
that a better execution time can be obtained when behavior
profiler model is run in a high performance mode. However,
the synchronizations in UCEL algorithms, limit those benefits.
We will take into account the asynchronous communications
in the future implementation of our BP model. Figure 6
presents the strong scalability test of supervised BP. We
run this test using a UCEL implementation with 10 MLP
as co-methods, and a fixed activity dataset size of 500000
entries. The result of this test highlights that the speedup of
our parallel behavior profiler rises from 1 to approximately
4.5 when we increase the number of processing cores. This
figure demonstrates the scalability character of the UCEL
implementation.

VI. CONCLUSION

Due to the evolution of the threat landscape and continuous
hacker innovation, user behavior analysis software has become
an essential tool to counter insider threats. Based on the
monitoring of user activities, the goal is to detect insiders
in a company environment. In this article, we presented a
new detection model based on the application of the unite

and conquer approach to ensemble learning techniques, and
addressed issues that insider detection software, face today.
We highlighted that this framework, called UCEL, gives
reliable results to detect insiders. Indeed, we show that UCEL
increases the accuracy of all weak learners participating to
behavior profiler. On the other hand, UCEL doesn’t have a
beneficial impact on strong learners. But the presence of these
latter, as co-methods, has a positive impact on the results
of the global method. By studying three attack scenarios,
we also showed that the UCEL framework is reliable and
gives good results. In addition, the study of these scenarios
confirmed that the best strategy is to adopt the use of semi-
supervised methods when the data is imbalanced, and then
to use supervised methods when the companies dispose of
enough feedback. To study the performance of a parallel ver-
sion of our behavior profiler, we ran a kind of parallel client-
server implementation of the algorithm 2 on the GRID5000
platform. The presented results show that we can obtain up
to 4.3 speedup. Nevertheless, due to a synchronization step
in each boosting iteration, this speedup decreases when the
dataset size increases. The solution to this issue is to address
the asynchronous communication in the algorithm. Indeed,
the asynchronous communication would allow overlapping
communications with computation.

REFERENCES

[1]1 L. Sun, S. Versteeg, S. Boztas, and A. Rao, “Detecting anomalous user
behavior using an extended isolation forest algorithm: an enterprise case
study,” In Computer Research Repository(CoRR), 2016.

[2] D. Haidar and M. M. Gaber, “Adaptive one-class ensemble-based
anomaly detection: an application to insider threats,” in 2018 Interna-
tional Joint Conference on Neural Networks (IJCNN), pp. 1-9, IEEE,
2018.

[3] A. Gamachchi, L. Sun, and S. Boztas, “A graph based framework
for malicious insider threat detection,” in 50th Hawaii International
Conference on System Sciences, 2017.

[4] A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, and S. Robinson,
“Deep learning for unsupervised insider threat detection in structured
cybersecurity data streams,” The Workshops of the The Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

[5] S. Kotsiantis and P. Pintelas, “Combining bagging and boosting,”
International Journal of Computational Intelligence, vol. 1, no. 4,
pp. 324-333, 2004.

[6] A.Khwaja, A. Anpalagan, M. Naeem, and B. Venkatesh, “Joint bagged-
boosted artificial neural networks: Using ensemble machine learning to
improve short-term electricity load forecasting,” Electric Power Systems
Research, vol. 179, p. 106080, 2020.

[7] K. Fauvel, V. Masson, E. Fromont, P. Faverdin, and A. Termier,
“Towards sustainable dairy management-a machine learning enhanced
method for estrus detection,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
pp. 3051-3059, 2019.

[8] S. Masoudnia and R. Ebrahimpour, “Mixture of experts: a literature
survey,” Artificial Intelligence Review, vol. 42, no. 2, pp. 275-293, 2014.

[91 A.J. Hall, N. Pitropakis, W. J. Buchanan, and N. Moradpoor, “Predict-

ing malicious insider threat scenarios using organizational data and a

heterogeneous stack-classifier,” in 2018 IEEE International Conference

on Big Data (Big Data), pp. 5034-5039, IEEE, 2018.

N. Emad and S. Petiton, “Unite and conquer approach for high scale

numerical computing,” Journal of computational science, vol. 14, pp. 5—

14, 2016.

N. M. Sheykhkanloo and A. Hall, “Insider threat detection using super-

vised machine learning algorithms on an extremely imbalanced dataset,”

International Journal of Cyber Warfare and Terrorism (IJCWT), vol. 10,

no. 2, pp. 1-26, 2020.

N. Gornitz, M. Kloft, K. Rieck, and U. Brefeld, “Toward supervised

anomaly detection,” Journal of Artificial Intelligence Research, vol. 46,

pp. 235-262, 2013.

[10]

[11]

[12]

