UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
A Connection-Free Reliable Transport Protocol

Permalink
https://escholarship.org/uc/item/7m96x874

Authors

Garcia-Luna-Aceves, J.).
Abdulazaz Albalawi, Abdulazaz Albalawi

Publication Date
2020-11-06

Data Availability

The data associated with this publication are within the manuscript.

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/7m96x87z
https://escholarship.org
http://www.cdlib.org/

A Connection-Free Reliable Transport Protocol

J.J. Garcia-Luna-Aceves
Computer Science and Engineering Department
University of California
Santa Cruz, CA, USA
ji@soe.ucsc.edu

Abstract—The Internet Transport Protocol (ITP) is introduced
as an alternative to the Transmission Control Protocol (TCP)
for reliable end-to-end transport services in the IP Internet.
The design of ITP is based on Walden’s early work on host-
host protocols, and the use of receiver-driven Interests and
manifests advocated in several information-centric networking
architectures. The performance of ITP is compared against the
performance of TCP using off-the-shelf implementations in the
ns3 simulator. The results show that ITP is inherently better than
TCP and that end-to-end connections are not needed to provide
efficient and reliable data exchange in the IP Internet.

Index Terms—transport protocols, TCP, connections

I. INTRODUCTION

The two main transport protocols used in the Internet
today are the User Datagram Protocol (UDP), which provides
best-effort delivery between remote two processes, and the
Transmission Control Protocol (TCP), which provides reliable
in-order delivery of data between two remote processes.

The current design of TCP is based on the original proposal
by Cerf and Kahn on the Transmission Control Program [3],
which combined datagram delivery and end-to-end transport
functionality in a single protocol. Like most of the early work
on reliable transport protocols, the Transmission Control Pro-
gram used connections to implement reliable in-order delivery
of data between remote processes. Since then, even after the
original design by Cerf and Kahn [3] was divided into the
Internet Protocol (IP) [10] and TCP [11], connections have
been used to support end-to-end reliable communication.

Section II provides a critique of prior work related to reli-
able communication between remote processes over computer
networks. What is most notable is that, with one exception [1],
no prior transport protocol has been proposed that provides
reliable communication without end-to-end connections over
a datagram-based communication infrastructure.

This paper introduces the Internet Transport Protocol
(ITP), which is the first connection-free reliable transport
protocol that operates over a datagram-based communication

This material is based upon work sponsored by the National Science Foun-
dation (NSF) under Grant CCF-1733884. Any opinions, findings, conclusions,
or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of NSF or the U.S. government.

978-1-7281-9829-3/20/$31.00 ©2020 IEEE

Abdulazaz Ali Albalawi
Computer Science and Engineering Department
University of California
Santa Cruz, CA, USA
aalbalaw @ucsc.edu

infrastructure and uses existing name-resolution services avail-
able in the Internet without modifications.

ITP is based on Walden’s message-switching host-host pro-
tocol [13], the use of manifests and receiver-initiated requests
for content advocated in a number of information-centric
networking (ICN) architectures, and the inclusion of pointers
to manifests in each request for data and response.

Sections III describes how ITP operates. In a nutshell, an
association between two remote processes is established with
a two-way handshake in which a process A requests some
data from a remote process B by sending a data packet,
and process B returns a manifest informing process A what
Interests (requests) to send to obtain the requested data. Once
process A has a manifest, it sends Interests to process B
making reference to the manifest and informing B of what
A needs. Process B simply responds to Interests from process
A, without maintaining any state regarding process A. There
is no need for signaling to start or terminate the association;
process A can end the association when it obtains all it needs
according to the manifest, and process B can simply end the
association after a timeout.

Sections IV and V summarize retransmission and conges-
tion control mechanisms for ITP that were chosen to be very
similar to those currently used in TCP (TCP Reno) to highlight
that ITP is inherently more efficient than TCP.

Section VI compares the performance of ITP and TCP
using the ns3 [12] simulator. The results indicate that ITP
is inherently more efficient than TCP.

Section VII provides our conclusions and discusses promis-
ing future research.

II. RELATED WORK

Walden [13] proposed a message-switching host-host pro-
tocol for the ARPANET; however, connections have become
the way to support reliable communication between remote
processes in the Internet.

Considerable work has been reported over the years on
transport protocols that provide reliable end-to-end communi-
cation [8], [9], and most reliable transport protocols use byte
streams as the abstraction for retransmission and congestion-
control.

A plethora of proposals have been made to improve the
performance and functionality of TCP, including more efficient
flow control and retransmission strategies, the use of multiple

connections, enabling multihoming of the remote processes
exchanging data reliably (e.g., [7]), and even the use of
machine learning in TCP congestion control (e.g., [6]).

What is so striking about the prior work on reliable transport
protocols operating over a datagram infrastructure is that, with
one exception [1], all of the transport protocols require the
use of end-to-end connections to specific addresses. This has
become a problem because of the growing need to support
location-independent Internet services and content.

Several information-centric networking (ICN) architectures
have been proposed to date, and it is worth noting that the
congestion-control schemes proposed for such architectures
are very similar to those used in TCP [2].

III. INTERNET TRANSPORT PROTOCOL
A. Nexus: Implementing Associations without Connections

For two remote processes to communicate with one another
reliably, one must be able to address the other and they must
understand what they communicate to each other. We call these
two requirements of an association between two processes
as addressing and context. The current use of pairs of IP
addresses and ports satisfies the addressing requirement of an
association in the IP Internet. But what about the context?

If by necessity the communicating processes have no means
of discerning the structure of the data they are exchanging,
then they must agree on a method whereby they agree syn-
chronously on the state of their exchange using a common
representation for that state. In this light, the evolution of
TCP into a connection-based transport protocol makes sense
given the state of computing technology back in the 1970’s
and 1980’s when TCP was developed. Implementing an asso-
ciation using a connection uses limited computing resources
by establishing an agreement for the reliable exchange of a
byte stream with an initial sequence number and provides
enough context for processes to agree on how many bytes
have been successfully delivered. However, the price paid
for such efficiency in resource utilization is big in terms
of functionality. The context of the reliable communication
between the remote processes must be established in real time,
because there is no information regarding the structure of the
data to be exchanged, and hence must also be updated and
terminated jointly. Furthermore, a connection is ephemeral and
the context of the association is lost if the connection is broken.

ITP overcomes the inherent functionality limitations of end-
to-end connections by establishing asynchronous associations
between processes that are not lost if physical connectivity
is lost. This is done based on two insights: (a) no correct
connection-based protocol can be defined if delays are un-
bounded and nodes may lose connection state; and (b) the
names of data objects can be defined to be permanent and
uniquely associated with the objects they denote.

ITP takes advantage of the uniqueness and immutability
of data objects’ names to establish the needed context of an
association independently of network delays or the occurrence
of node or link failures, out-of-order datagram delivery, or
packet replication. The manifest of a data object is itself a

data object and specifies: (a) The unique immutable name of
the data object, (b) the structure of the data object consisting
of object chunks (OC) that can be sent in messages, and (c)
the procedure that should be used to decode the data object
from a set of OC’s. Additional metadata can be made part of
the manifest of a data object, such as the names and size of
object chunks and a list of IP addresses to contact to request
them. Provided that communicating processes can refer to
the same manifest, they can exchange elements of the data
object described in the manifest on a transactional basis, and
a consumer process is free to contact multiple processes using
the same nexus provided by the manifest.

We use the term nexus to denote the establishment of
the context of an association between processes by means of
manifests and references to them.

Figure 1 illustrates how a producer transmits a data object
D to a consumer in ITP based on a nexus. As in other modern
transport protocols, ITP messages use UDP headers stating
the address and port of the consumer and producer; this is
indicated in the figure with “UDP” The manifest of a data
object D is denoted by M (D).

application _ - application

Name(D) data packet Name(D)
i _d “““ AT~ (e.g., HTTP GET) i
., producer consumer
v P m APP [name (D)] |~
. - Interest Control
Manifest RS Block (ICB)
Control Block N e

M(D)

Consumer Buffer (CB)

Manifest Message
MO || [uoe[M@ >
Producer Buffer (PB)

rodues Bufter (7 \

Interest

UDP| MP(D)
.
data packet /

| uop [Mp(D) [oC

nexus starts with
transmission of
manifest message

nexus starts with
reception of
manifest message

nexus ends after all
object chunks in data
object D are received

nexus ends after
timeout

empty PB if needed

Delete ICB; empty CB

time time

Fig. 1. Nexus in ITP

The application running at the consumer site asks ITP to
send a data packet, which requests a data object (e.g., an HTTP
GET). In response to that request, the producer specifies a
number of parameters through a specific system call, includng
the content to send, the IP and port address of the client, and
additional control information depending on the system call it
used. Rather than setting up a connection to send the data, the
ITP process constructs a manifest and sends it to the client as a
data packet called Manifest Message in Figure 1, and creates
a Manifest Control Block (MCB) that specifies the manifest
M (D), points to the memory location for D, and includes a
Producer Buffer if additional memory space must be allocated
for efficiency. The OC’s of D are stored in a Content Store
(CS) at the producer, and can be copied to the producer buffer
to reduce latencies.

The nexus for D at the producer starts when it creates
the MCB for D and ends after a nexus timeout that must be

long enough to allow consumer(s) to obtain the OC’s in D,
without having to reallocate memory for the Producer Buffer.
The nexus timeout is restarted each time the producer sends a
data packet with an OC of D.

The nexus for D at the consumer starts when it receives the
manifest M (D). After receiving M (D), a consumer creates
an Interest Control Block (ICB) for D and allocates memory
for a Consumer Buffer (CB) to store OC’s of D. The ICB
includes M (D) and the ICB status indicating the OC’s that
have been received and those that are missing. The nexus at
the consumer ends when it has all the OC’s needed for D, at
which point it deletes the ICB for D. Once the consumer has
a nexus for D, it obtains the data in D by sending Interests
for D. An Interest for D is denoted by I(D) and states: (a)
the names of the consumer and producer; (b) the name of
the data object; and (c) a manifest pointer (M P(D)) that
references M (D) and states implicitly or explicitly the OC’s
that the consumer is missing and those that it has obtained. The
producer responds to an Interest /(D) with one or multiple
data packets. Each data packet contains the manifest pointer
M P(D) of the Interest that prompted it and OC’s that are part
of D. The use of manifest pointers stated in Interests free the
producer from having to maintain per-consumer state, and its
nexus is simply with the data object D and its structure.

B. Software Architecture

As Figure 2 shows, the ITP software architecture consists
of five data structures: Producer, Consumer, Manifest control
block (MCB) list, Interest control block (ICB) list, and Content
Store. All entities in ITP have the same structure, making it a
bi-directional messaging protocol.

API

Producer ﬁ@(—l—» Consumer

A A

A A

UDP API

Fig. 2. ITP software architecture

ITP messages are encapsulated in UDP packets, which
ensures that no alterations are needed for the network stack
and minimal changes are required for the application because
most network devices support UDP packets. As a result, ITP
can operate completely in user-space, allowing us to rapidly
develop and experiment with the protocol without any change
to the transport layer. This implementation makes ITP interface
on one side to user or application processes and the other side
to the UDP interface. The UDP socket is created once the
application process creates an ITP socket. Eventually, the UDP
module calls on the Internet module to transmit each segment
passed by the ITP layer.

Producer & Consumer: An ITP producer is responsible
for sending a data object, and an ITP consumer is responsible
for consuming the object. When the server application sends
out its reply, it is the ITP producer’s responsibility to construct
the manifest for this data and send it to the ITP consumer
at the other end. It is also its responsibility to send data
packets in response to received Interests. The ITP consumer
is responsible for retrieving the data using Interests based on
the information provided by the manifest. The same occurred
when the client application sent out a request (e.g., an HTTP
GET). However, applications that consume data are naturally
different from applications that produce data. Therefore, we
specified different system calls to send the data over ITP that
fits the application need. For example, when the client sends
an HTTP GET request, it is done through a different system
call than the one used by the server application to send an
HTTP response. This system call triggers the ITP producer
at the client side to deliver the Data packet that encapsulates
the HTTP GET request instead of constructing a manifest and
sending it to the ITP consumer at the server end.

Control Blocks and Content Store: An ITP producer
uses the Manifest Control Block or MCB to remember several
variables for each manifest it creates. Some of these variables
represent the manifest itself, the manifest timeout, and con-
sumers authorized to retrieve the data object. These structures
are stored in a list. The MCB is similar to the transmission
control block (TCB) used in TCP to maintain data about
a connection. However, the MCB is only used to maintain
consumer-independent state, because the ITP consumers are
tasked with remembering nexus variables specific to them and
state their values in the manifest pointers included in their
Interests.

An ITP consumer stores the variables needed for each data
object it needs to retrieve in a data structure known as Interest
Control Block or ICB. As with the MCB, all these structures
are stored in a list. A consumer creates an ICB for each
new manifest it receives. The ICB includes variables such
as manifest name, list of ITP producers to contact, Interest
timeout and so forth. Once all the OC’s of a data object are
satisfied, the ICB tigers the ITP consumer to deliver the data
object from the Content Store to the application.

The Content Store (CS) in ITP resembles the NDN content
store and TCP send buffers. An ITP producer can use object
chunks (OC) in the CS to satisfy Interests from different
consumers, depending on the application need. A data object
being retrieved is buffered in the CS until all its OC’s are
received and then it is delivered to the application by the ITP
consumer. The decision of when to deliver the data to the
application is issued by its ICB as mentioned before. The CS
stores the OC’s based on their names.

C. Data Naming and Transparent Caching

Each data object in ITP carries a name, including the man-
ifest. The name of the manifest is mapped to a specification
of messages to be sent. A simple approach to name OC’s in
ITP is by using sequencing with the content name from the

manifest. Using this method an ITP consumer appends a chunk
number to the content name of the outgoing Interest and keeps
incriminating it until it receives all the data packets with the
OC’s of the data object. An alternative way to name OC’s in
ITP is by using a cryptographically secure hash function of
their content. The hash digest for OC’s in a manifest can be
thought of as the sequence number in TCP used to identify
streams of bytes. This means that a manifest is a data object
with a hash digest as its name that describes an ordered
collection of OC’s and their corresponding hash digest. The
combination of the OC’s stated in the manifest and carried out
according to the method indicated in the manifest renders the
original data object.

Large data objects can be organized into a hierarchy of
decoding manifests. To prevent fragmentation and reassembly,
an OC should be small enough to fit in any link-level frame.

ITP can support transparent caching by having a data object
name prefixed with the ITP producer’s IP address and appli-
cation’s port number. This makes OC names to be globally
unique and prevents hash collision at in-network caches.

D. Application Dialogue over ITP

The interaction between transport protocols and applications
can differ from one protocol to another. For example, the
TCP API calls bind (), listen() and accept () are
specific for server sockets and connect () is specific for
client socket, while send () and recv () are common for
both types. Given that no connection is established from the
client to the server, the client just sends messages to the server
using a FORCE_SEND () call that forces the ITP producer
at the client side to send the message directly to the server
without constructing a manifest. Also, the server in ITP does
not need to accept a connection, and instead, it just waits for
messages to arrive. When a message arrives at the server, it
contains the address (IP, Port) of the sender, which then the
server can use to reply back to the client through a system
call SEND (). It is up to the application dialogue to handle
this. Because sockets by themselves are fully duplexed, an
application can simply send back to the port of origin, as
we mentioned before. An ITP server application can close
its socket after the dialog ends; however, because there is no
notion of a connection between the two ends, a server can
simply close its socket.

IV. RETRANSMISSION STRATEGY

ITP uses a receiver-driven selective-repeat retransmission
strategy inspired by the work by Jacobson et al. [5] and based
on the fact that both consumer and producer have the manifest
of the data object being exchanged.

Consumer Steps: The consumer keeps track of the status
of its control buffer (CB) to ensure that a data object is
passed to the application correctly. The initial status of the
CB is set with all OC’s missing when the consumer sends
its first Interest to the producer for a data object D, and the
CB status is updated with each OC received correctly from
the producer. Depending on the application using ITP, the

consumer may have to receive all the OC’s of a data object
before it passes them to the application process and then empty
its ICB. Alternatively, the consumer may be allowed to pass to
the application OC’s that are in order and without any missing
OC’s, and delete those OC’s from its CB.

The consumer is in charge of retransmissions, and simply
persists sending Interests to the producer asking for the OC’s
needed to decode the data object, and each Interest includes a
manifest pointer that reflects the latest snapshot of the CB
status. As such, each Interest can be viewed as including
a vector of acknowledgments informing the producer about
the OC’s that have been received correctly and those that
are missing. The consumer maintains a list of Interests based
on the local times when they were transmitted. The manifest
pointer of each Interest includes the local transmission time
or a sequence number that differentiates it from any other
Interest, even when multiple Interests carry manifest pointers
stating the same CB status. Hence, each data packet received
can be matched uniquely with a transmitted Interest and the
consumer can accurately update its round-trip time (RTT)
estimate with every data packet it receives, even when data
packets and Interests are lost or delivered out of order.

To facilitate efficient retransmissions, the consumer applies
a retransmission timeout (RTO) for each Interest it sends
to the producer; the RTO is updated based on Jacobson’s
algorithm [4]. This allows ITP to obtain better RTO estimates
by measuring the correct RTT with each data packet. The
consumer retransmits an Interest ¢ originally sent at time ¢; in
two cases: (a) after the RTO for Interest ¢ expires, or (b) when
a data packet for an Interest j sent at time t; > ¢; arrives at
time t4 and t4—t; > RTT. The latter allows for fast retransmits
without incurring unnecessary Interest retransmissions.

Producer Steps: A producer simply responds to Interests
from any consumer regarding a data object D using the
information about D stored in its MCB and the manifest
pointer included in each Interest. The manifest pointer carried
in an Interest identifies the consumer and the OC’s that it
needs. The order in which a producer receives Interests is
not critical, and the occurrence of Interest losses or Interest
duplicates does not confuse a producer, because each Interest
carries a manifest pointer.

V. CONGESTION CONTROL

We describe a congestion-control strategy for ITP that
mimics the approach used in TCP Reno, but takes advantage
of the receiver-driven retransmission strategy using manifest
pointers in Interests and data packets. Using a congestion-
control strategy that mimics TCP Reno allows us to illustrate
the inherent benefits of the connection-free receiver-initiated
approach used in ITP compared to the connection-based
sender-initiated approach used in TCP.

We adopt a simple Interest-based approach for congestion
control in which one Interest from the consumer elicits one
data packet from the producer. This is the original approach
advocated in CCN [5] and NDN [?]. However, more sophisti-
cated approaches could and should be implemented in which

a window of packets or packets with multiple OC’s are sent
in response to Interests.

Producer Steps: Data packets are the main cause of
congestion in ITP, because the size of an Interest is relatively
small compared to a data packet. The use of receiver-driven
Interests allows the data traffic in ITP to be controlled by
controlling the rate at which the consumer issues Interests.
This frees the producer from having to maintain any per-
consumer congestion state. Accordingly, the producer’s role
in congestion control is minimum and consists of simply
submitting requested OC’s upon reception of Interests from
consumers.

Consumer Steps: The consumer controls the flow of data
traffic with the producer by controlling its Interests’ sending
rate using a congestion window. The congestion window
defines the maximum number of outstanding Interests allowed
to send without receiving their data packets.

The window size is adjusted by the consumer based on the
AIMD (Additive Increase Multiplicative Decrease) mechanism
commonly used in TCP for the congestion window. Similar to
TCP Reno, the consumer in ITP starts in slow-start with a
congestion window of size one. The value of the congestion
window size is increased for each data packet received. This
continues until either a loss is detected or the congestion
window reaches the slow-start threshold, ssthresh. Once the
consumer exceeds the ssthresh, it enters the congestion avoid-
ance state as in TCP [4]. During this state, the consumer
increases its congestion window by one Interest every round-
trip time.

When an Interest times out, the consumer retransmits the
Interest and reduces its congestion window to one. It sets the
ssthresh to half the congestion window size before the timeout,
and then goes into slow-start. If it detects a packet loss using
fast retransmit, the consumer reduces its congestion window
by one half and sets the ssthresh to the new window size
causing it to go into congestion avoidance.

VI. PERFORMANCE COMPARISON

We evaluated the performance of ITP, TCP (New Reno),
and NDN using the ns3 [12] asimulator, and considered the
efficacy of congestion control methods and fairness.

A. Efficacy of Congestion Control

We compared the congestion-control and retransmission
mechanisms of ITP and TCP assuming a scenario consisting
of a simple network of a single source and a single sink.

The topology of the network is a single path of four nodes
with a single sink at one end and a server at the other end.
Both ends share a common bottleneck of 1.5 Mbps and no in-
network caching takes place. The propagation delay between
the two ends is set to 40ms. Consumers in ITP issue Interests
for the content served at the other end, where the client in
TCP consume traffic generated by the server. The size of the
object chunks in ITP are equal to the segment size in TCP,
and fixed at 1500 bytes. Both ITP and TCP share the same
fixed-header size.

Figure 3(a) shows the evolution of the congestion window
every 50ms for the three protocols during the first 30s of
the downloading a content of 3.69M B, a total of 2465
chunks/segments. The growth of the congestion windows for
all three protocols matches the expected behavior of the AIMD
algorithm. However, a consumer in NDN cannot detect the
data source, which prevents the use of out-of-order delivery
methods to detect packet losses.

The ITP retransmission policy allows receivers to detect and
recover from a packet loss faster than in TCP, where it took
the consumer a total of 35.5s to download the file. This is
mainly due to the fact that ITP does not use connections and
applies a fast retransmission strategy enabled by manifests.

A consumer in ITP has a complete picture of which OC’s
were received correctly and which were lost, and does not
rely on partial ACK’s like TCP does. Accordingly, it imme-
diately goes into congestion avoidance state, instead of fast
recovery. As a result, ITP continues increasing its congestion
window normally. This gives ITP the advantage of utilizing
the bottleneck’s buffer compared to TCP, where it has to go
into fast recovery, during which the sender can only transmit
new data for every duplicate ACK received. Figure 3(c) shows
the queue size of the bottleneck’s buffer for only five seconds
of the simulation to highlight the idle periods of each protocol.
It can be seen from the figure that TCP has more extended
idle periods compared to ITP. As a result, ITP achieved
higher average throughput due to better utilization of the link’s
capacity and the buffer size.

Table 1 shows the average simulation results for TCP and
ITP for the same scenario with few changes to the topology.
The round-trip time between the two ends is set to 60ms.
The bottleneck of the topology is set to 10Mbps. The access
links at the server, and the client is set to 100 Mbps. The
client requests/receives data for the duration of the simulation,
which is 30s. The start times of the client’s session are
randomly chosen between 1s and 5s. The simulation was
repeated 10 times, and results were measured at the client-
side. The simulation time does not take into account the TCP
handshake used to close a connection. As shown from the
table, the consumer in ITP achieves higher throughput than
TCP, resulting in more bytes received. This is mainly due to
ITP connectionless nature, which gives it the ability to detect
and react to congestion faster than TCP, resulting in fewer
packet losses.

Protocol | Throughput | Bytes Received | Packet Loss
(Mbps) (Mbyte)

ITP 9.020282 31.85985 1155
+0.01438 +1.84591 +0.52705

TCP 8.110141 28.83405 220
+0.05913 +1.75277 +0.00000

TABLE I
SINGLE-FLOW RESULTS
B. Fairness

We evaluated fairness among flows in ITP assuming a
topology consisting of two consumers and two producers

-104

Queue size (bytes)

40 3
2 a
° =)
E]
£ 5 2
(=%
a =
g 20 %‘)
g1
Vi b
0 0
0 10 20 30 0 10
Time
(a) CWND Size

Time

(b) Throughput

20 30

Time

(c) Router’s Buffer Occupancy

Fig. 3. Single-flow scenario for TCP and ITP

connected via a bottleneck link with 1Mbps capacity. The
queue size is set to 20 packets and the file size is 10 MB. Both
producers transmit the manifests for the file at the beginning
of the simulation at the same time. Both consumers start
issuing Interests to retrieve the data from the producer after
receiving the manifests. We used Jain’s fairness index F as
our performance metric for this scenario which is defined as
F =0 2)*(nd>, 2?)~ !, where z; is the throughput
for the ¢th connection and n is the number of users sharing
the same bottleneck resource. The fairness index F' is bounded
between 1/N and 1, where 1 corresponds to the case in which
all N flows have a fair allocation of the bandwidth (best case),
and 1/N refers to the case in which all the bandwidth is given
to only one user (worst case).

2
2 30 — consumerl 'g — consumerl
2 ~ consumer2 S 15 ~ consumer2
g ~
& g 1
B3
2 %
e 0.5
o =
0
0 25 50 0 25 50
Time Time

(a) CWND Size (b) Throughput

Fig. 4. Multiple-flows with homogeneous start

Figure 4(a) shows the evolution of CWND for both con-
sumers. As seen from the figure, ITP CWND behavior follows
the usual TCP sawtooth behavior since both are based on an
AIMD congestion-control algorithm. The fairness between the
two flows is I’ = 0.99; this can also be seen from Figure 4(b),
where both consumers achieve a similar average throughput.

VII. CONCLUSIONS AND FUTURE WORK

We introduced ITP, the first connection-free reliable trans-
port protocol that operates using the existing datagram com-
munication infrastructure and name resolution services of the
IP Internet. ITP integrates the message-switching approach

first discussed by Walden [13] with the use of manifests and
receiver-driven requests for content.

We chose to make the retransmission and congestion-control
algorithms used in ITP very similar to those used in TCP
Reno today to show the inherent benefits of ITP over TCP;
however, much more efficient algorithms developed recently
for TCP can be adapted to ITP. Furthermore, the use of
manifest pointers in ITP enables far more efficient congestion
and retransmission control by providing receivers with more
control for how and when transmissions and retransmissions
should occur.

ITP allows for all application data to be cached transparently
on the way to consumers using ITP caching proxies, and this
is an area for further study.

REFERENCES

[1] A. A. Albalawi, and J.J. Garcia-Luna-Aceves, “Named-Data Transport:

An End-to-End Approach for an Information-Centric IP Internet,” Proc.

ACM ICN 20, 2020.

Q. Chen et al., “Transport Control Strategies in Named Data Networking:

A Survey,” IEEE Communications Surveys and Tutorials, 2016.

V.G. Cerf and R.E. Kahn, “A Protocol for Packet Network Intercommu-

nication,” IEEE Transactions on Communications, May 1974.

V. Jacobson, “Congestion Avoidance and Control, Proc. ACM SIGCOMM

‘88, Aug. 1988.

V. Jacobson et al., “Networking Named Content,” Proc. ACM CoNEXT

‘09, Dec. 2009.

N. Jay et al., “A Deep Reinforcement Learning Perspective on Internet

Congestion Control,” Proc. 36th Int’ Conf. Machine Learning, 2019.

A. Langley et al., “The QUIC Transport Protocol: Design and Internet-

Scale Deployment,” Proc. ACM SIGCOMM ‘17, August 2017.

G. Papastergiou et al., “De-Ossifying the Internet Transport Layer:

A Survey and Future Perspectives,” IEEE Communications Surveys &

Tutorials, Nov. 2016.

M. Polese et al., “A Survey on Recent Advances in Transport Layer

Protocols,” IEEE Communications Surveys & Tutorials, Aug. 2019.

[10] J. Postel, “DoD Standard Internet Protocol,” RFC 760, Jan. 1980.

[11] J. Postel, “DoD Standard Transmission Control Protocol,” RFC 671, Jan.
1980.

[12] ns-3 Network Simulator [Online]. Available: https://www.nsnam.org

[13] D.C. Walden, “Host-To-Host Protocols,” in Tutorial: A Practical View
of Computer Communications Protocols (J.M McQuillan and V.G. Cerf,
Eds.), pp. 172-204, IEEE, 1978.

(2]
(3]
(4]
(5]
(6]
(71

(8]

(91

