
A self-adaptive batch request aggregation pattern for

improving resource management, response time and

costs in microservice and serverless environments

George Kousiouris

Department of Informatics and Telematics

Harokopio University of Athens

Athens, Greece
gkousiou@hua.gr

Abstract— Addressing increased demand in cloud

environments is typically achieved through auto-scaling the use

of further resources allocated. However this comes at the

trade-off of increased back-end resource stress as well as

runtime costs. In this paper a request batch aggregation and

management pattern is proposed and implemented, especially

for cases of computational load that needs a heavyweight

environment setup (such as performance prediction and AI

services). The pattern acts as a preprocessing layer and

accumulates requests, withholding their forwarding to the

backend based on the conditions of execution (frequency of

requests), in order to regulate back-end resource stress without

adding extra resources. Different controlling logics are tried

out for batch request release, ranging from simpler ones (batch

size static regulation, time out interval) to more elaborate ones

(ANN model predicting the desired batch size) for adapting the

pattern configuration during runtime. Results indicate severe

reduction of back-end stress through significantly reducing

needed containers (therefore costs as well), enhanced response

time as well as avoidance of system breakdown under heavy

load. The pattern can be applied in both microservices and

serverless environments, especially in Edge cases where

resources are constrained.

Keywords—design patterns, resource management,

performance, cost, function as a service, microservices

I. INTRODUCTION

A. Motivation

In many application domains, such as Artificial
Intelligence, performance estimation, resource management
etc., service implementations are required to serve incoming
requests by leveraging heavyweight computational
environments and libraries. These are used in order to apply
created models to desired request inputs and respond with the
according prediction.

When these functionalities are offered as a service,
through typical threadpool server implementations, this
implies that for each incoming request a relevant
environment needs to be spawned in order to process it. This
creates extreme stress on a server for mainly two reasons.
Firstly, the initialization time of such an environment thread
is typically non negligible. In [1], a performance analysis on
such a server implementation using the Octave environment
[33] indicated that above 70% of the total serving time (1.2
seconds) for a single client request was due to raising the
respective Octave environment thread. Only 10 milliseconds
of computation time were needed for the actual computation,
indicating an extreme overhead of preparation in relation to
the actual computation time.

Secondly, when multiple simultaneous requests are sent
towards the server, an according number of threads need to
be concurrently run and compete for resources such as
memory and CPU, while interfering with peripheral elements
such as cache memories. The aforementioned competition
creates a further increase of.the response times, while
concurrency overheads can reach levels of 400% of
performance degradation [10].

 Similar overheads apply for more modern computing
models such as serverless and Function as a Service
environments (FaaS), in which containers with designated
functions are executed in order to respond to an incoming
request endpoint. In this case, the process itself of raising the
containerized environment is even worse than raising another
thread on an existing server. Overhead inserted by this
computing model is heralded as one of the main challenges
of the domain [2] and several approaches have been applied
at a resource management layer in order to measure it or
mitigate it. Examples include intra and inter-container
interference effects [9], cold start reduction [13], pre-warm
container strategy in FaaS, sharing of container runtimes
between functions [3], sharing libraries [7] etc. Optimizing
such aspects in an autonomic manner is key in order to
support the creation and runtime management of cloud-
native applications [29].

B. Contribution of this work

The aim of this work is to propose the design of a request
preprocessing layer that targets to improve server
performance and responsiveness to varying conditions of
traffic without having to increase used resources. The
foreseen mechanism aggregates incoming requests into
groups and forwards them to the service backend based on
specific traffic criteria and controlling logic (Figure 1). In
light traffic conditions, each request could result to spawning
a new computational instance (thread or container), however
in heavy traffic, the mechanism will create batches of inputs
and request the serving of the input array from one
computing instance.

A direct implication of this strategy is to significantly
reduce the number of containers needed for serving the
specific set of requests. If on a private cloud, this regulation
will aid in reducing the stress of the backend infrastructure
and orchestration system, especially for edge resource
clusters with reduced computational capacity. If on public
cloud setups, it will reduce costs since equivalently the
number of function invocations (a main billing factor of FaaS
environments) or load balanced service replicas will be
reduced.

Figure 1: General Overview of the Mechanism

Further contributions of this work relate to the

examination of deciding logic strategies through which the
specific pattern is adapting to varying frequencies of request
arrivals. These include simple rules such as a general time-
out rule release as well as adaptation throughArtificial
Neural Network (ANN) model investigation. The deciding
models investigate the quantitative link between the batch
size after which the accumulated requests need to be
released, the observed frequency of incoming requests and
the system response time.

A prototype implementation is created and experimented
with, in order to demonstrate the benefits of the approach,
indicating lower response times and container numbers in
medium traffic conditions. In heavy traffic conditions the
main benefit is the increased robustness of the mechanism to
avoid server stalling (in cases of sudden peaks) or the
significant improvement of response times through reduction
of resource contention (in cases of high but gradually
increasing load).

The paper proceeds as follows. In Section 2 related work
with relation to scaling, cost and structural patterns in the
area of microservices and FaaS is investigated in order to
highlight differences and complementary points to this work.
Section 3 presents the proposed pattern design and rationale,
prototype implementation and requirements as well as
limitations for its application. Furthermore it includes the
variations of the controlling logic used for dynamically
setting the operational point of the pattern. Section 4 contains
the experimentation in order to observe the pattern’s effect
on response times, number of active containers and cost
parameters while section 5 concludes the paper.

II. RELATED WORK

In terms of related work, different categories can be
identified as related to the concepts presented in this work.
Initially, a general performance strategies overview is
presented and positioned with relation to this work.
Following, different types of scaling patterns in typical FaaS
environments are investigated, in order to detect differences
with the proposed approach. Related structural or functional
patterns are also identified and linked to the approach,
followed by typical cost models in FaaS in order to highlight
the key billing factors and focus on characteristics that would
minimize them.

A. Performance Overview of cloud environments

The issue of performance management in cloud

environments has been extensively analyzed in recent years.

Approaches around auto-scaling, through direct Proportional

Integral Derivative (PID) controllers [14], ANN based

application prediction models [15], feedback loop-based

Quality of Service (QoS) prediction through optimization

techniques such as Particle Swarm Optimization [16] focus

on increasing application related resources in order to

enhance Key Performance Indicators (KPIs). Other works

combine issues of benchmarking, modelling and real time

analysis [34]. Increasing resources is of course a valid

choice, however it is results to extended costs. Approaches

such as the pattern described in this work target primarily at

better utilizing existing resources in order to improve

application performance, without having to increase them.

Other works examine interference caused by

concurrency, either at the Virtual Machine (VM) [10] or the

container level [9] (including intra or inter container

overheads) as well as the introduction of microVMs [11].

With the minimization of container instances needed,

following the application of the proposed pattern, the

according interference effects are also anticipated to be

reduced.

Alternative approaches try strategies such as dependency

packages aware affinity scheduling [8] or library sharing

[7]. These approaches target a lower level of management.

Therefore they can be applied in parallel to the presented

work, in order to further enhance the runtime execution of

the individual containers created after the batch release.

B. Scaling patterns in FaaS

In [4], a thorough analysis is presented on the various
scaling patterns available in serverless offerings such as
AWS Lambda, Google and IBM Cloud Functions as well as
Knative and Cloud Run. Based on the findings, two main
modes of auto-scaling connecting the number of containers
to function requests are identified, in addition to a third one
based on node metrics. Per-request scaling (Figure 2a)
raising a separate container per function request (most
typical case) and concurrency value scaling (Figure 2b),
enabling the concurrent execution of multiple functions in
one container. The proposed pattern in this paper appears in
Figure 2c. In this case we propose the aggregation or
incoming requests before submitting them to the back-end.
Release logic can be on batch size, timeout threshold or a
combination of both. This would enable reduction of total
containers running in the system, compared to case (a), while
removing function concurrency overheads that can occur in
case (b), especially for computationally intensive workloads.

One aspect to notice with relation to serverless
environments is the term “concurrency”. One variation of the
term relates to the total number of the function activations in
a namespace that execute across the cluster (in different
containers) and is more related to throttling aspects, so that a
specific namespace and its functions does not overwhelm the
overall quota of function executions available to a user [22].
This needs to be distinguished in terminology compared to
the case of “function concurrency scaling factor” that is
presented in Figure 2b. An example documentation of the
second case appears in [21].

C. Structural and Functional Patterns in Cloud

environments

Patterns, or architectural styles, are considered a key element
of cloud software application development in order to
increase code reuse and ensure a number of issues such as
fault tolerance or performance in distributed environments
[17]. A very interesting survey on existing patterns appears
in [3]. From the mentioned ones, the queue based load

levelling resembles the rational of the function input
aggregator, in the sense that it does not allow the requests to
reach the backend in order not to create unpredictable peaks
in load. For this reason, it accumulates messages in a queue,
from which the consuming function/service retrieves them at
its own pace. The main difference here is that the queue
based load levelling pattern does not aggregate function
inputs into one function execution in order to optimize costs
and improve response times, but it only acts as a queue from
which the back-end can retrieve tasks at its own pace. Thus
significant waiting time is added to the requests. The
Aggregator pattern is also mentioned, however this refers to
aggregation of functionalities from multiple services and
offering them through a single endpoint, thus it has no actual
resemblance, other than a partially similar name.

Figure 2: Scaling Patterns (a),(b) from [4] compared to

the proposed pattern (c)

In some cases, the existence of a pattern formalism for a

common action such as retrying a failed request can be seen

as an overkill for such a simplistic concept. The same could

be argued for the concept of batching requests together.

However one needs to take under consideration the overall

context of execution, what parameters can be set, effects of

various settings (e.g. extensive retrying can further stress a

problematic server), what strategy to follow etc. An example

of how even such a simplistic pattern such as the Retry

pattern can evolve to a more complex, self-regulating and

generic software component is the Circuit Breaker [5]. This

pattern is primarily intended for handling errors in calls in a

dynamic manner and at the client side. The pattern foresees

three states, the Closed state (in which all calls go through to

the target), the Open state (no call goes through since

previous errors have indicated that the target experiences

issues) and the Half-open state (some of the calls are tried

out in order to check the state of the target service).

Thresholds (either for successful or unsuccessful calls in a

period) regulate the transition between states as well as

timers for remaining in a state. In this case, the use of the

pattern (fault tolerance) is of course different, but the

interesting feature is the self-regulation rationale, with

which the pattern can decide which mode to apply, based on

current conditions of executions. Further more sophisticated

logic has also been proposed on top of the typical Circuit

Breaker pattern [32].The use of the Circuit Breaker pattern

is proposed alongside the pattern proposed in this paper as

will be highlighted in Section IV.D.

Self-adaptation, e.g. based on models, is considered key

for ensuring interactivity with the environment, i.e. a static

configuration may not adapt in varying workload conditions,

as anticipated in elastic cloud environments. Flexibility-

based patterns, based on resource increase or replacement at

the workflow level are studied in [18].The presented work

complies with these principles, both in the usage of

performance model driven variations of the pattern as well

as the exploitation of runtime information such as request

frequency in order to adapt the pattern rationale, as will be

presented in Section III.E.

A very detailed list of numerous cloud design patterns,

along with the benefits and shortcomings of each one, as

well as means of mitigating weaknesses through pattern

combinations, is included in [28]. No similar pattern to the

one described in this paper has been identified.

D. Cost models in FaaS

FaaS cost models charge customers based on performance
metrics such as execution time, memory or number of
invocations [25]. This implies that there is a combined need
as well as incentive to tackle the performance-cost tradeoff,
especially for runtime management ([2],[12]). The proposed
pattern reduces the number of invocations, as well as the
execution time (given the lower need for environment
initialization), and thus is expected to aid towards
minimizing cost aspects.

 Approaches including analytical modelling can help
improve prediction and estimation of running costs [19]
based on used resources and could be used to regulate the
batch size in this work, although analytical modelling may
need adaptations per service case of investigation. Other
works that can be combined include the investigation of
trade-off after which a switch to serverless mode is beneficial
for the customer [26]. Predicting accurately costs [20] can
also be used in combination with this approach. This can be
helpful in cases where one needs to regulate/minimize cost
directly and not for example based on frequency, if
performance is considered less important.

III. PATTERN DESIGN, PARAMETERS AND IMPLEMENTATION

A. Batch Request Aggregator Pattern Definition

As mentioned in [30], there is no common ground as to what

a pattern consists of. Numerous definitions are included in

the aforementioned work from existing literature. The most

complete and generic seems to be the one provided by [31],

which mentions that a pattern is “a proven series of

activities which are supposed to overcome a recurring

problem in a certain context, particular objective, and

specific initial condition”. In the particular case the

according fields are defined as follows:

 Context: Server-based (threadpool) or serverless

environments that rely on heavyweight runtimes

and libraries (e.g. AI, numerical computation etc.)

 Recurring problem: even a small number of

requests can create performance bottlenecks due to

high environment initialization time and

concurrency overheads

 Objective: improve response time without having

to increase resources, adapt to varying traffic

conditions

 Initial condition: ability to measure frequency of

request arrival, ability to process batch requests in

groups

 Series of activities: the structure defined in Figure

1, which is further analyzed in the following

sections.

Analysis of the pattern limitations is also performed, as

commonly found in relevant documentation [28]. Proof of

the benefits will be provided in Section IV.

B. Pattern Mechanism Rationale and Design

The main purpose of the mechanism is to gather the

incoming requests, create arrays of inputs (batches) and

launch one processing instance for each batch. This is

expected to reduce the number of computational instances

for serving the requests and therefore the stress towards the

back-end server. In order to achieve the functionality, the

pattern needs supporting logic that is presented in Figure 3.

The pattern consists of the following main building blocks:

 A submission endpoint accepting external requests

and assigning a message id to each one

 A request accumulation layer that stores the

requests in a queue, including a map for indicating

which external requests have been included in the

batch, based on their message id.

 Release logic that launches the request batch once

specific criteria are met (see Section E for details).

This logic may include the calculation of request

arrival frequency over a time window.

 A response creation layer in which the original

incoming messages wait until the response from

the main operation is available. When the overall

response is available, it is broken down based on

the id map, the individual messages are completed

and returned to the clients.

A functional programming framework based on function

workflows and message passing between function nodes

(such as node.js) is a good candidate in order to implement

such a logic.

Figure 3: Batch Request Aggregator Pattern Structure

C. Pattern Requirements

In order to apply the respective pattern, the main code
modification of the typical function (or microservice)
includes its ability to accept an array of the necessary input
argument type (regardless of the argument type i.e. integer,
double, array, object etc). Then for each element of this array
it should process each request, while returning an array of
responses in the same order the inputs where received. In
case of asynchronous implementations, potential further
actions may be required primarily at the pattern side
(inclusion of an existing id along with the input). Then the
function can include that id in the response in order for the
pattern to filter outputs based on input id and recreate the

proper responses. The pseudo code for the function
modification appears in Figure 4.

Figure 4: Necessary code modification for pattern

application (support for array arguments)

D. Pattern Limitations

One limitation of the pattern is in case some information or

state needs to be retrieved from an external repository. Such

a case would be for example a function flow in FaaS that

retrieves an AI model from object storage. Given that the

array input now is executed in sequence, rather than in

parallel in the case of multiple function containers, the

model retrieval is also executed in sequence which may

produce large response time delays. In this case alternate

configurations or adjustments may be made such as:

 Batching together only requests that target the

same model ID

 Keeping model repositories in volumes that are

attached dynamically to the containers

Furthermore, global context usage can not be guaranteed

and multitenancy issues may exist (if batching requests from

different users). However the latter may be mitigated if

presigned URLs (or the Valet Key pattern [3]) are used in

order to retrieve the tenant’s model from a private

repository. Another limitation refers to the fact that the

pattern needs to be applied against requests targeting the

same function (or service endpoint).

E. Control Releasing Logic/Self regulation

The release logic may determine the conditions under which

the aggregated request batch can be forwarded as one

message in the backend layer. It is evident that the

frequency of request arrivals plays a key role in this

decision. If for example requests are sparse, having a large

batch size will imply that the first requests need to wait for a

considerable time until the batch is complete, resulting in

higher waiting times and overall response time. On the other

hand, if requests are very frequent, having a small batch size

will lead to higher container numbers.

Thus one needs to regulate the parameters of the pattern

based on the current conditions of execution in order to

optimize the overall result. Indicative approaches for this

case can include:

 a simple timeout period, during which the requests

are batched. Each arriving request checks the

elapsed period from the previous checkpoint and, if

complete, it populates a msg.complete field that

alerts the next layer to release the batch. Setting the

timeout period as a percentage of the typical

response time in single request scenarios can help

predict the final response time. For example, a

10%*(averageResponseTime) timeout period will

result in only 10% according increase in the final

experienced response time, compared to the

response time of the service under sparse load.

 a set batch size that needs to be completed before

the batch is released. However in this case the

batch size needs to be dynamically regulated

during runtime, so that it is set to 1 if the request

frequency is low or higher if the frequency is high.

The control of the batch size can be based on

various methods (already investigated in Section

II.B), such as PID controllers or other modelling

techniques (based e.g. on neural networks),as

investigated in the related work. These need to

create a model of the response time, that will be fed

with the current conditions of the system (i.e.

request arrival frequency) and direct the needed

metric (e.g. batch size or timeout interval) (as

indicated in Figure 1). An example form of such an

ANN model appears in Figure 5. Having the

response time as the output is needed primarily for

validation reasons.

Figure 5: Model Structure for deciding batch size with

relation to expected response time

F. Pattern Prototype Implementation

The prototype implementation is built on the Node-RED
environment [6]. Node-RED is a visual programming
environment for event driven applications, built on top of
node.js. It provides a large number of readymade function
blocks as well as the ability to include ad-hoc code in
functions inside a workflow. To implement the logic of
Figure 3, the function flow of Figure 6 was created. Each
node receives a triggering message (in our case the initial
message is the incoming request for the service), applies the
node function logic and passes it to the next, coordinated by
the runtime engine. Supporting flows were also created in
order to aid in management decisions, such as frequency
measurement of requests from the system scope as well as
requests towards the controlling logic decision function.
Monitoring subflows for logging running container numbers
is also included. The pattern and supporting flows
implementation is available as open source in [24].

G. Target Application Use Case

 For the measurements of Section IV, a service created in
the context of [23] was used, that appears in Figure 7. This is
a performance estimation service that has created ANN-
based performance models, stored in a container volume, and
enables the enquiry of these models through a REST

endpoint. Whenever a request is received, an equivalent
container is launched in order to serve the request, run the
environment and give back the prediction. The environment
is based on the GNU Octave numerical computation tool, an
open source equivalent of Matlab. Based on the structure and
operation, this service is a hybrid between serverless and
microservice environments (REST endpoint and equivalent
container launch for serving a request). It is also the same
environment in which the model for correlating batch size to
input frequency and response time was created (Figure 5).

In principle, any service that includes large preparation
overheads compared to the actual useful computation is a
target. Such example services are typically AI-based ones
(such as model inference) or approaches that create a large
number of requests (e.g. Monte Carlo methods) and are
based on heavyweight libraries or frameworks. Given the
fact that the pattern acts as a preprocessing layer, it can be
applied in both typical microservice, threadpool based
servers (in order to reduce the number of concurrent threads
in the server) as well as in front of the function invocation
gateway (in the case of serverless architectures).

IV. EXPERIMENTATION

In order to test the performance and benefits of the pattern, a

series of experiments were performed, in order to stress the

system and observe the altered behavior. The application

used is the one described in Section III.G and the

orchestration platform was Docker Swarm with a single VM

node (4 CPUs, 10GB RAM). No extra resources were made

available to the service load in order to evaluate the effect of

the pattern without the need to increase the resources. As the

main system performance metric, the response time of the

service to the various request scenarios and frequencies was

considered. Details on these experiments are presented in

the subsequent sections.

A. Initial Investigation of Batch Size and Request Period on

Response time

Initially a set of separate measurements is performed in order
to investigate the effect of the batch size on response times.
For this reason a number of different periods (every 0.01, 1
and 5 seconds) of incoming requests and an according
diverse batch size (1, 5, 10, 50) is investigated in order to
observe their effect on the average response time. The results
appear in Figure 8. The timeout is set to 120000
milliseconds, so the respective values in the graph indicate
an unresponsive system due to resource contention and high
container numbers. The typical mode is 1 container per
request without the usage of the pattern. The aggregated
mode with a batch size of 1 applies again 1 container per
request but this time through the pattern, in order to
investigate delays inserted by the pre and post processing
layers.

From the measurements it can be portrayed that the pattern
includes some delay due to the request management layer
(when comparing typical versus aggregated mode of 1 batch
size) in the area of ~ 1 second (or <10% of the total response
time). But also the benefit from the pattern application is
portrayed, in the case of high frequency requests (inter-
arrival period of 0.01 seconds). In this case the typical
system that was previously unresponsive, when applying the
aggregation mode with a sufficiently large batch size (~50)
manages to stabilize its behavior as well as

Figure 6: Node-RED flow implementation of the pattern (implementation of Design described in Figure 3)

Figure 7: Target service use case (AI based model

prediction) for pattern experimentation

Figure 8: Investigation of batch size and inter-arrival

period on the response time average

maintain an average response time that is very close to the

average of a single request (10.763 seconds of average

response in a period of 0.01 seconds and batch size of 50

versus 10.046 seconds of a typical mode for 1 request every

5 seconds). On the other hand, once the period between

requests starts to get higher, the drawback of the pattern is

portrayed, given that it needs to wait a large amount of time

until the batch size is complete.

B. Runtime Container Numbers for gradually increasing

request frequency

In order to investigate the overall performance of the

pattern, a series of measurements was performed, applying

the timeout variation of the release logic mentioned in

Section III.D. Overall the pattern was tested under a

scenario in which the request inter-arrival period was

gradually reduced, starting from 10 seconds and being

reduced to 5,1,0.5, 0.1 and 0.01 seconds of inter-arrival.

Each setup was set to run for 15 minutes, unless the

platform started to get saturated from container numbers in

which case the experiment was halted.

The two main variations that were tested were

static delays of 500 and 1000 milliseconds before releasing

the batch, which is approximately 5% and 10% of the

average response time in a single request. During this time

the framework accumulated requests coming in. The results

of the experiment are presented in the following figures and

are compared to the typical, no-batch implementation. It is

indicative that as the experiment progresses and frequencies

increase, the batch size (accumulated messages during the

timeout interval) increases (Figure 9). This enables the

pattern to maintain a constant rate (~20 active containers) of

container generation (Figure 10) even at high frequencies

(as indicated by Figure 11), in the 10% timeout case (1000

milliseconds of waiting for gathering and batching requests).

The no-batch implementation quickly gets saturated (at

around sample ~1500 of the experiment), as indicated also

from the response times that reach the request timeout limit

(Figure 12), reaching very quickly the saturation point of

around 80 active containers. This is mapped to a frequency

of around 2 messages per second (Figure 11). The 5%

timeout is still not sufficient, although it gets saturated a bit

later (around sample 5000 of the experiment), achieving a

frequency of around 10 messages per second.

C. ANN Model Static Accuracy

The results from the previous runs were subsequently used

in order to train an ANN model predictor, based on the

description of Figure 5, for getting the expected average

response delay (output) for different frequencies (input 1)

and different batch sizes applied (input 2). ANNs were

chosen since they represent black-box universal

approximators and can be applied based on an available

dataset, without further knowledge of the internals of the

system. In contrast, PID controllers (examined in the

Related Work and Section III.E) require a more tailored

approach in order to determine the relevant metrics of the

system as well as controlled entity, as well as a calibration

step. In this case, the main point of interest is whether the

pattern can be functionally enriched with an adaptive

approach, as well as a comparison of the batch effect

compared to the no batch case. Inclusion of comparisons

between different adaptive approaches will be pursued in the

future.

The ANN model was optimized based on the

process defined in [1], using a genetic algorithm in order to

determine the main model structural characteristics (number

of layers, type of neurons per layer and number of neurons

for hidden layers). The network type is based on back-

propagation, feed forward architecture and the resulting

model was selected from a pool of approximately 450

candidate networks that portrayed an intermediate validation

error of less than 20%, based on its performance on a test

set. The finally selected network consisted of 5 layers (3

hidden). The first 4 were configured with the tansig transfer

function while the output layer with the purelin function.

Figure 9: Average batch size of requests (Y axis) in the

system as the experiment progresses (X axis:sample

number of experiment)

Figure 10: Average number of containers (Y axis) in the

system as the experiment progresses (X axis:sample

number of experiment)

Figure 11: Average frequency of requests (Y axis) in the

system as the experiment progresses (X axis:sample

number of experiment)

Figure 12: Response time of requests (Y axis) in

milliseconds (timeout at 120000) as the experiment

progresses (X axis:sample number of experiment)

After the selection of the best model, a further

acceptance test was performed to simulate runtime usage.

From the available 30k values, ~7k of them were reserved

for this purpose. These values were not utilized in whatever

manner during the training or optimization process of the

model design. The Mean Absolute Percentage Error of

11.73% was achieved (Figure 13), which is considered

usable.

Figure 13: Model Error in final validation cases

The surface plot of the resulting model appears in Figure 14,

in the model normalized range. Input 1 is the frequency,

input 2 the set batch size and the predicted output is the

request response time.

Figure 14: Surface Plot of Model Predictor in the

normalized range (Input1: Frequency, Input2: Batch

Size, Output: Response Time)

D. Dynamic Adaptation based on the ANN model

In order to test the model’s response during runtime, and

especially in bursts of load, an experiment was performed

with varying loads including sudden peaks (Figure 15). This

was performed in order to observe also the effect of the

delay in getting the response and how the system gets

affected by it in actual conditions, despite the good accuracy

of the model in the static validation. In order to decouple

this delay from the conditions in the system, the pattern

adaptation model was running on a separate node to ensure

timely reaction to sudden peaks of load.

The model was queried at a regular interval (every

10 seconds) based on the current conditions of execution

(frequency). Given that the model takes approximately 10

seconds to respond, this results in a decision update for the

batch size every 20 seconds. Predictions were obtained for

different batch sizes (ranging from 1 to 70 with a step of

10). The one achieving the lowest predicted response time

was selected and used to configure the pattern. Given that

there is a direct relation between frequency and anticipated

batch completion, one can also utilize this information in

order to configure the time out interval. One of the lessons

learned during the first runs was the fact that the model

query process needed to run on a different server than the

main framework. If not, then due to the saturation caused by

the sudden peaks of containers, the model querying process

delayed significantly, which led to very delayed responses

and server stalling, before being able to adapt.

The results are portrayed in Figure 15 and Figure

16 from the client side (for each individual request sample)

and Figure 17, Figure 18 and Figure 19 from inside the

system, by taking samples every 1 second for processed

frequency, active container numbers and batch size (set and

measured). The set is obtained from querying the external

model service. From the figures it can be seen that when the

increase is gradual (e.g. from 0.2 messages/sec to 4) the

system has the time to adapt (Figure 16 in terms of response

times and Figure 18 in terms of active containers). Although

there is an initial increase in response times, this is fixed by

the increased batch size (Figure 19). A further increase from

4 to 8 messages per second (around sample 2000 of Figure

15) does not influence the system, given that the batch size

is already high. In this period we also observe further

decrease in response times, as would be anticipated by the

average times portrayed in Figure 8.

When the load peak is more sudden (from 0.2 to 20

messages/sec), the delay in adaptation leads to a very high

response time (in essence reaching the 120000 milliseconds

timeout) due to the high number of accumulated messages

and according containers. However one major benefit of the

pattern in this case is the fact that the system does not stall

(like in the case of Figure 10), it only experiences a periodic

denial of service. This could be handled either by larger

timeout times or by applying in combination with this

pattern the Circuit Breaker pattern to refrain the client from

generating more requests temporarily.

Another interesting conclusion is that there are

sudden peaks in container numbers in the transition time

from high to low frequency, not justified by the amount of

traffic at that time (tailing of container numbers in Figure 18

following the drop of the peak around sample 400 of Figure

17). This indicates that there are a number of lingering

requests, already measured in the frequency, in node.js

queues, that start to request resources. However when the

frequency is detected as reduced, the system returns to the 1

batch size, making these lingering requests raise one

container each. This is an indication that a potentially

improved predictor for the ANN would be the number of

active containers and not the request frequency. It is also an

indication that in other types of adapters (e.g. PID

controllers) the past values element (i.e. Integral factor)

should be strengthened in order to achieve a graceful,

gradual reduction in batch set sizes.

E. Cost Comparison for FaaS cost models

As mentioned in the related work section, typical cost

models of FaaS are dependent on the execution duration.

Hence in this case a series of measurements was performed

in order to investigate what is the overall execution time for

a prediction request with multiple input lines, compared to

running the model for only one input row for estimation.

Figure 15: Client side request generation frequency

measured per sample

Figure 16: Client Side Response Times per sample

Figure 17: System side measured frequency per 1 second

interval

Figure 18: Active (running) containers in the system

Figure 19: Batch Size Setting by ANN model and

according system side application of the setting

The performed requests include an interval of 15

seconds between them, in order to investigate the baseline

execution time when only 1 container is active in the

system. Input size variations included 1, 100 and 450 input

rows for which predictions were needed. Calls to the service

were performed for a duration of 10 minutes per case. The

results appear in Table 1 and are associated to the estimated

costs. The estimation is based on a number of assumptions.

All calls are considered as cold-start ones and include also

the time to raise the container (which is not billed in actual

FaaS offerings). However they are intended as a rough

overview of potential benefits.

As a baseline, the cost model of AWS Lambda (US

East-Ohio) [27] is used. The containers were allowed to use

the overall memory available (10GB). Thus the price of

0.0000001667 dollars per 1 msec of runtime was used and

multiplied by the runtime duration, while the cost per input

row also appears in the table. This depicts significant

difference, which is also evident when taking under

consideration the other billing factor (number of requests set

at 0.2$ per 1 million of requests) that is also affected by the

reduced overall number of calls needed for one to obtain 1

million predictions.

Table 1: Cost Estimation of GB-second based on AWS

Lambda pricing model

 Input

Rows

Average

Response

Time

Delay

(msec)

Estimated

GB-Second

Cost Per

Input Row

Cost of

Requests

for 1M

predictions

1 10051.25 0.001675 0.2

100 10082.62 0.000016807 0.002

450 10228.29 0.000003789 0.000444

V. CONCLUSIONS AND FUTURE WORK

The work presented in this paper formulates as a pattern
an initially simplistic approach such as request batching,
augmented with relevant self-adaptation means and methods.
In terms of controlling logic, different approaches have been
tried out, starting from simpler ones like static waiting
intervals to more complex ones such as training neural
networks to undertake the role of pattern parameters setting
during runtime. The application of the pattern has indicated
significant benefits in terms of improved application
performance with the same amount of resources, enhanced
stability and responsiveness as well as adaptation to dynamic
conditions of execution. Quantification of the benefits has
also been measured. Average client response times are stable
even in high request frequencies, compared to a high
increase in the case of no pattern application. This happens
because needed containers are significantly reduced due to
the pattern application. Thus the ability to serve more
requests with the same number of nodes and the same
response time is a clear indication of an improved system
performance, especially when the comparison to the no
pattern application case is overwhelming. This applies
specifically to cases where resource pools are smaller in size
and can not be easily scaled (e.g. edge environments).

The requirements for applying the pattern include
interface modifications, while relevant limitations have been
highlighted. A weakness of the pattern in sudden load peaks
has been identified, leading to client timeouts but not a
complete system halting. This weakness can be
complemented by the Circuit Breaker pattern. This is a
common case in pattern design, in which a designed pattern
may fit a subset of purposes, while its coupling with other
patterns enables the mitigation of its weak points. An
alternative mean of mitigation is the coupling with a time
series prediction mechanism that will detect upcoming bursts
and will be able to set a priori the increased batch size. An
application agnostic pattern prototype has been developed in
Node-RED as a functional flow, that can be applied in front
of any service endpoint to provide the benefits of the pattern
and has been provided as open source.

For the future, aspects to be investigated for extending
this work refer to including more experimentation regarding
controller technology, including PID or control theory
approaches. Furthermore, variations of the model creation by
taking under consideration active containers directly as the
main metric will be investigated. Finally, the porting of the
prototype implementation to a more native functional
framework (such as native node.js) may be pursued.

ACKNOWLEDGMENT

The research leading to the results presented in this paper
has received funding from the European Union's Project
H2020 PHYSICS (GA 101017047).

REFERENCES

[1] G. Kousiouris et al., "Parametric Design and Performance Analysis of
a Decoupled Service-Oriented Prediction Framework Based on
Embedded Numerical Software," in IEEE Transactions on Services
Computing, vol. 6, no. 4, pp. 511-524, Oct.-Dec. 2013, doi:
10.1109/TSC.2012.21.

[2] Van Eyk, E., Iosup, A., Seif, S. and Thömmes, M., 2017, December.
The SPEC cloud group's research vision on FaaS and serverless
architectures. In Proceedings of the 2nd International Workshop on
Serverless Computing (pp. 1-4).

[3] Taibi, D., El Ioini, N., Pahl, C. and Niederkofler, J.R.S., 2020.
Patterns for Serverless Functions (Function-as-a-Service): A
Multivocal Literature Review. In CLOSER (pp. 181-192).

[4] Mahmoudi, N. and Khazaei, H., 2021. SimFaaS: A Performance
Simulator for Serverless Computing Platforms, to be published in
"The 11th IEEE International Conference on Cloud Computing and
Services Science (CLOSER 2021)".

[5] Vergara, S., González, L. and Ruggia, R., 2020, March. Towards
formalizing microservices architectural patterns with Event-B. In
2020 IEEE International Conference on Software Architecture
Companion (ICSA-C) (pp. 71-74). IEEE.

[6] Node-RED event driven programming environment, available at:
https://nodered.org/

[7] Ferreira, J.B., Cello, M. and Iglesias, J.O., 2017, August. More
sharing, more benefits? A study of library sharing in container-based
infrastructures. In European Conference on Parallel Processing (pp.
358-371). Springer, Cham.

[8] G. Aumala, E. Boza, L. Ortiz-Avilés, G. Totoy and C. Abad, "Beyond
Load Balancing: Package-Aware Scheduling for Serverless
Platforms," 2019 19th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID), 2019, pp. 282-291,
doi: 10.1109/CCGRID.2019.00042.

[9] D. N. Jha, S. Garg, P. P. Jayaraman, R. Buyya, Z. Li and R. Ranjan,
"A Holistic Evaluation of Docker Containers for Interfering
Microservices," 2018 IEEE International Conference on Services
Computing (SCC), 2018, pp. 33-40, doi: 10.1109/SCC.2018.00012.

[10] Kousiouris, G., Cucinotta, T. and Varvarigou, T., 2011. The effects of
scheduling, workload type and consolidation scenarios on virtual
machine performance and their prediction through optimized artificial
neural networks. Journal of Systems and Software, 84(8), pp.1270-
1291.

[11] J. Park, H. Kim and K. Lee, "Evaluating Concurrent Executions of
Multiple Function-as-a-Service Runtimes with MicroVM," 2020
IEEE 13th International Conference on Cloud Computing (CLOUD),
2020, pp. 532-536, doi: 10.1109/CLOUD49709.2020.00080.

[12] Eivy, A. and Weinman, J., 2017. Be wary of the economics of"
Serverless" Cloud Computing. IEEE Cloud Computing, 4(2), pp.6-12.

[13] Mohan, A., Sane, H., Doshi, K., Edupuganti, S., Nayak, N. and
Sukhomlinov, V., 2019. Agile cold starts for scalable serverless. In
11th {USENIX} Workshop on Hot Topics in Cloud Computing
(HotCloud 19).

[14] da Silva, R.F., Filgueira, R., Deelman, E., Pairo-Castineira, E.,
Overton, I.M. and Atkinson, M.P., 2019. Using simple pid-inspired
controllers for online resilient resource management of distributed
scientific workflows. Future Generation Computer Systems, 95,
pp.615-628

[15] Bouras, I., Aisopos, F., Violos, J., Kousiouris, G., Psychas, A.,
Varvarigou, T.A., Xydas, G., Charilas, D. and Stavroulas, Y., 2019.
Mapping of Quality of Service Requirements to Resource Demands
for IaaS. In CLOSER (pp. 263-270).

[16] Xing Chen, Haijiang Wang, Yun Ma, Xianghan Zheng, Longkun
Guo, Self-adaptive resource allocation for cloud-based software
services based on iterative QoS prediction model, Future Generation
Computer Systems, Volume 105, 2020, Pages 287-296, ISSN 0167-
739X, https://doi.org/10.1016/j.future.2019.12.005.

[17] Claus Pahl, Pooyan Jamshidi, and Olaf Zimmermann. 2018.
Architectural Principles for Cloud Software. ACM Trans. Internet

Technol. 18, 2, Article 17 (March 2018), 23 pages.
DOI:https://doi.org/10.1145/3104028

[18] I. B. Fraj, Y. B. Hlaoui and L. BenAyed, "A control system for
managing the flexibility in BPMN models of cloud service
workflows," 2020 IEEE 13th International Conference on Cloud
Computing (CLOUD), 2020, pp. 537-543, doi:
10.1109/CLOUD49709.2020.00081.

[19] C. Lin and H. Khazaei, "Modeling and Optimization of Performance
and Cost of Serverless Applications," in IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 3, pp. 615-632, 1 March
2021, doi: 10.1109/TPDS.2020.3028841.

[20] R. Cordingly, W. Shu and W. J. Lloyd, "Predicting Performance and
Cost of Serverless Computing Functions with SAAF," 2020 IEEE Intl
Conf on Dependable, Autonomic and Secure Computing, Intl Conf on
Pervasive Intelligence and Computing, Intl Conf on Cloud and Big
Data Computing, Intl Conf on Cyber Science and Technology
Congress (DASC/PiCom/CBDCom/CyberSciTech), 2020, pp. 640-
649, doi: 10.1109/DASC-PICom-CBDCom-
CyberSciTech49142.2020.00111.

[21] Function Concurrency in Openwhisk containers, available at:
https://github.com/apache/openwhisk/blob/master/docs/concurrency.
md

[22] Function Concurrent activation across namespace, available at:
https://github.com/apache/openwhisk/blob/master/docs/reference.md

[23] George Kousiouris and Dimosthenis Kyriazis. 2021. Enabling
Containerized, Parametric and Distributed Database Deployment and
Benchmarking as a Service. In Companion of the ACM/SPEC
International Conference on Performance Engineering (ICPE '21).
Association for Computing Machinery, New York, NY, USA, 77–80.
DOI:https://doi.org/10.1145/3447545.3451188

[24] Pattern implementation prototype, available at : http://bigdatastack-
tasks.ds.unipi.gr/gkousiou/adw/-
/blob/master/adwdocker/patterns/request_aggregation_pattern

[25] Grogan, J., Mulready, C., McDermott, J., Urbanavicius, M., Yilmaz,
M., Abgaz, Y., McCarren, A., MacMahon, S.T., Garousi, V., Elger, P.
and Clarke, P., 2020, September. A Multivocal Literature Review of
Function-as-a-Service (FaaS) Infrastructures and Implications for
Software Developers. In European Conference on Software Process
Improvement (pp. 58-75). Springer, Cham.

[26] Lin, X.C., Gonzalez, J.E. and Hellerstein, J.M., 2020. Serverless
Boom or Bust? An Analysis of Economic Incentives. In 12th
{USENIX} Workshop on Hot Topics in Cloud Computing (HotCloud
20).

[27] AWS Pricing model, available at:
https://aws.amazon.com/lambda/pricing

[28] Microsoft Cloud Design Patterns Catalogue and documentation,
available at: https://docs.microsoft.com/en-
us/azure/architecture/patterns/index-patterns

[29] Kosińska, J. and Zieliński, K., 2020. Autonomic Management
Framework for Cloud-Native Applications. Journal of Grid
Computing, 18(4), pp.779-796.

[30] Asma Hachemi. 2020. Software Development Process Modeling with
Patterns. In Proceedings of the 2020 The 2nd World Symposium on
Software Engineering (WSSE 2020). Association for Computing
Machinery, New York, NY, USA, 37–41.
DOI:https://doi.org/10.1145/3425329.3425339

[31] Agung Wahyudi, George Kuk and Marijn Janssen. A Process Pattern
Model for Tackling and Improving Big Data Quality. Information
Systems Frontiers (2018) 20:457–469. Springer.
https://doi.org/10.1007/s10796-017-9822-7

[32] Mohammad Reza Saleh Sedghpour, Cristian Klein, and Johan
Tordsson. 2021. Service mesh circuit breaker: From panic button to
performance management tool. In Proceedings of the 1st Workshop
on High Availability and Observability of Cloud Systems (HAOC
'21). Association for Computing Machinery, New York, NY, USA, 4–
10. DOI:https://doi.org/10.1145/3447851.3458740

[33] GNU Octave Scientific Programming Tool, available at:
https://www.gnu.org/software/octave/index

[34] T. Cucinotta et al., Virtualised e-learning on the IRMOS real-time
cloud, Service Orient. Comput. Appl. (2011). doi: 10.1007/s11761-
011-0089-4 (pages 116).

