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Abstract— Addressing increased demand in cloud 

environments is typically achieved through auto-scaling the use 

of further resources allocated. However this comes at the 

trade-off of increased back-end resource stress as well as 

runtime costs. In this paper a request batch aggregation and 

management pattern is proposed and implemented, especially 

for cases of computational load that needs a heavyweight 

environment setup (such as performance prediction and AI 

services). The pattern acts as a preprocessing layer and 

accumulates requests, withholding their forwarding to the 

backend based on the conditions of execution (frequency of 

requests), in order to regulate back-end resource stress without 

adding extra resources. Different controlling logics are tried 

out for batch request release, ranging from simpler ones (batch 

size static regulation, time out interval) to more elaborate ones 

(ANN model predicting the desired batch size) for adapting the 

pattern configuration during runtime. Results indicate severe 

reduction of back-end stress through significantly reducing 

needed containers (therefore costs as well), enhanced response 

time as well as avoidance of system breakdown under heavy 

load. The pattern can be applied in both microservices and 

serverless environments, especially in Edge cases where 

resources are constrained. 

Keywords—design patterns, resource management, 

performance, cost, function as a service, microservices 

I. INTRODUCTION  

A. Motivation 

In many application domains, such as Artificial 
Intelligence, performance estimation, resource management 
etc., service implementations are required to serve incoming 
requests by leveraging heavyweight computational 
environments and libraries. These are used in order to apply 
created models to desired request inputs and respond with the 
according prediction.  

When these functionalities are offered as a service, 
through typical threadpool server implementations, this 
implies that for each incoming request a relevant 
environment needs to be spawned in order to process it. This 
creates extreme stress on a server for mainly two reasons. 
Firstly, the initialization time of such an environment thread 
is typically non negligible. In [1], a performance analysis on 
such a server implementation using the Octave environment 
[33]  indicated that above 70% of the total serving time (1.2 
seconds) for a single client request was due to raising the 
respective Octave environment thread. Only 10 milliseconds 
of computation time were needed for the actual computation, 
indicating an extreme overhead of preparation in relation to 
the actual computation time. 

Secondly, when multiple simultaneous requests are sent 
towards the server, an according number of threads  need to 
be concurrently run and compete for resources such as 
memory and CPU, while interfering with peripheral elements 
such as cache memories. The aforementioned competition 
creates a further increase of.the response times, while 
concurrency overheads can reach levels of 400% of 
performance degradation [10].  

 Similar overheads apply for more modern computing 
models such as serverless and Function as a Service 
environments (FaaS), in which containers with designated 
functions are executed in order to respond to an incoming 
request endpoint. In this case, the process itself of raising the 
containerized environment is even worse than raising another 
thread on an existing server. Overhead inserted by this 
computing model is heralded as one of the main challenges 
of the domain [2] and several approaches have been applied 
at a resource management layer in order to measure it or 
mitigate it. Examples include intra and inter-container 
interference effects [9], cold start reduction [13], pre-warm 
container strategy in FaaS, sharing of container runtimes 
between functions [3], sharing libraries [7] etc. Optimizing 
such aspects in an autonomic manner is key in order to 
support the creation and runtime management of cloud-
native applications [29]. 

B. Contribution of this work 

The aim of this work is to propose the design of a request 
preprocessing layer that targets to improve server 
performance and responsiveness to varying conditions of 
traffic without having to increase used resources. The 
foreseen mechanism aggregates incoming requests into 
groups and forwards them to the service backend based on 
specific traffic criteria and controlling logic (Figure 1). In 
light traffic conditions, each request could result to spawning 
a new computational instance (thread or container), however 
in heavy traffic, the mechanism will create batches of inputs 
and request the serving of the input array from one 
computing instance.   

A direct implication of this strategy is to significantly 
reduce the number of containers needed for serving the 
specific set of requests. If on a private cloud, this regulation 
will aid in reducing the stress of the backend infrastructure 
and orchestration system, especially for edge resource 
clusters with reduced computational capacity. If on public 
cloud setups, it will reduce costs since equivalently the 
number of function invocations (a main billing factor of FaaS 
environments) or load balanced service replicas will be 
reduced. 



 

 

Figure 1: General Overview of the Mechanism 

 
Further contributions of this work relate to the 

examination of deciding logic strategies through which the 
specific pattern is adapting to varying frequencies of request 
arrivals. These include simple rules such as a general time-
out rule release as well as adaptation throughArtificial 
Neural Network (ANN) model investigation. The deciding 
models investigate the quantitative link between the batch 
size after which the accumulated requests need to be 
released, the observed frequency of incoming requests and 
the system response time.  

A prototype implementation is created and experimented 
with, in order to demonstrate the benefits of the approach, 
indicating lower response times and container numbers in 
medium traffic conditions. In heavy traffic conditions the 
main benefit is the increased robustness of the mechanism to 
avoid server stalling (in cases of sudden peaks) or the 
significant improvement of response times through reduction 
of resource contention (in cases of high but gradually 
increasing load). 

The paper proceeds as follows. In Section 2 related work 
with relation to scaling, cost and structural patterns in the 
area of microservices and FaaS is investigated in order to 
highlight differences and complementary points to this work. 
Section 3 presents the proposed pattern design and rationale, 
prototype implementation and requirements as well as 
limitations for its application. Furthermore it includes the 
variations of the controlling logic used for dynamically 
setting the operational point of the pattern. Section 4 contains 
the experimentation in order to observe the pattern’s effect 
on response times, number of active containers and cost 
parameters while section 5 concludes the paper.  

II. RELATED WORK 

In terms of related work, different categories can be 
identified as related to the concepts presented in this work. 
Initially, a general performance strategies overview is 
presented and positioned with relation to this work. 
Following, different types of scaling patterns in typical FaaS 
environments are investigated, in order to detect differences 
with the proposed approach. Related structural or functional 
patterns are also identified and linked to the approach, 
followed by typical cost models in FaaS in order to highlight 
the key billing factors and focus on characteristics that would 
minimize them.  

A. Performance Overview of  cloud environments 

The issue of performance management in cloud 

environments has been extensively analyzed in recent years. 

Approaches around auto-scaling, through direct Proportional 

Integral Derivative (PID) controllers [14], ANN based 

application prediction models [15], feedback loop-based 

Quality of Service (QoS) prediction through optimization 

techniques such as Particle Swarm Optimization [16] focus 

on increasing application related resources in order to 

enhance Key Performance Indicators (KPIs). Other works 

combine issues of benchmarking, modelling and real time 

analysis [34]. Increasing resources is of course a valid 

choice, however it is results to extended costs. Approaches 

such as the pattern described in this work target primarily at 

better utilizing existing resources in order to improve 

application performance, without having to increase them. 

Other works examine interference caused by 

concurrency, either at the Virtual Machine (VM) [10] or the 

container level [9] (including intra or inter container 

overheads) as well as the introduction of microVMs [11].  

With the minimization of container instances needed, 

following the application of the proposed pattern, the 

according interference effects are also anticipated to be 

reduced.  

Alternative approaches try strategies such as dependency 

packages aware affinity scheduling [8] or library sharing 

[7]. These approaches target a lower level of management. 

Therefore they can be applied in parallel to the presented 

work, in order to further enhance the runtime execution of 

the individual containers created after the batch release. 

B. Scaling patterns in FaaS 

In [4], a thorough analysis is presented on the various 
scaling patterns available in serverless offerings such as 
AWS Lambda, Google and IBM Cloud Functions as well as 
Knative and Cloud Run. Based on the findings, two main 
modes of auto-scaling connecting the number of containers 
to function requests are identified, in addition to a third one 
based on node metrics. Per-request scaling (Figure 2a) 
raising a separate container per function request (most 
typical case) and concurrency value scaling (Figure 2b), 
enabling the concurrent execution of multiple functions in 
one container. The proposed pattern in this paper appears in 
Figure 2c. In this case we propose the aggregation or 
incoming requests before submitting them to the back-end. 
Release logic can be on batch size, timeout threshold or a 
combination of both. This would enable reduction of total 
containers running in the system, compared to case (a), while 
removing function concurrency overheads that can occur in 
case (b), especially for computationally intensive workloads. 

One aspect to notice with relation to serverless 
environments is the term “concurrency”. One variation of the 
term relates to the total number of the function activations in 
a namespace that execute across the cluster (in different 
containers) and is more related to throttling aspects, so that a 
specific namespace and its functions does not overwhelm the 
overall quota of function executions available to a user [22]. 
This needs to be distinguished in terminology compared to 
the case of “function concurrency scaling factor” that is 
presented in Figure 2b. An example documentation of the 
second case appears in [21]. 

C. Structural and Functional Patterns in Cloud 

environments 

Patterns, or architectural styles, are considered a key element 
of cloud software application development in order to 
increase code reuse and ensure a number of issues such as 
fault tolerance or performance in distributed environments 
[17]. A very interesting survey on existing patterns appears 
in [3]. From the mentioned ones, the queue based load 



levelling resembles the rational of the function input 
aggregator, in the sense that it does not allow the requests to 
reach the backend in order not to create unpredictable peaks 
in load. For this reason, it accumulates messages in a queue, 
from which the consuming function/service retrieves them at 
its own pace. The main difference here is that the queue 
based load levelling pattern does not aggregate function 
inputs into one function execution in order to optimize costs 
and improve response times, but it only acts as a queue from 
which the back-end can retrieve tasks at its own pace. Thus 
significant waiting time is added to the requests. The 
Aggregator pattern is also mentioned, however this refers to 
aggregation of functionalities from multiple services and 
offering them through a single endpoint, thus it has no actual 
resemblance, other than a partially similar name.   

 

 

Figure 2: Scaling Patterns (a),(b) from [4] compared to 

the proposed pattern (c) 

 

In some cases, the existence of a pattern formalism for a 

common action such as retrying a failed request can be seen 

as an overkill for such a simplistic concept. The same could 

be argued for the concept of batching requests together. 

However one needs to take under consideration the overall 

context of execution, what parameters can be set, effects of 

various settings (e.g. extensive retrying can further stress a 

problematic server), what strategy to follow etc. An example 

of how even such a simplistic pattern such as the Retry 

pattern can evolve to a more complex, self-regulating and 

generic software component  is the Circuit Breaker [5]. This 

pattern is primarily intended for handling errors in calls in a 

dynamic manner and at the client side. The pattern foresees 

three states, the Closed state (in which all calls go through to 

the target), the Open state (no call goes through since 

previous errors have indicated that the target experiences 

issues) and the Half-open state (some of the calls are tried 

out in order to check the state of the target service). 

Thresholds (either for successful or unsuccessful calls in a 

period) regulate the transition between states as well as 

timers for remaining in a state. In this case, the use of the 

pattern (fault tolerance) is of course different, but the 

interesting feature is the self-regulation rationale, with 

which the pattern can decide which mode to apply, based on 

current conditions of executions. Further more sophisticated 

logic has also been proposed on top of the typical Circuit 

Breaker pattern [32].The use of the Circuit Breaker pattern 

is proposed alongside the pattern proposed in this paper as 

will be highlighted in Section  IV.D.  

Self-adaptation, e.g. based on models, is considered key 

for ensuring interactivity with the environment, i.e. a static 

configuration may not adapt in varying workload conditions, 

as anticipated in elastic cloud environments. Flexibility-

based patterns, based on resource increase or replacement at 

the workflow level are studied in [18].The presented work 

complies with these principles, both in the usage of 

performance model driven variations of the pattern as well 

as the exploitation of runtime information such as request 

frequency in order to adapt the pattern rationale, as will be 

presented in Section III.E. 

A very detailed list of numerous cloud design patterns, 

along with the benefits and shortcomings of each one, as 

well as means of mitigating weaknesses through pattern 

combinations, is included in [28]. No similar pattern to the 

one described in this paper has been identified. 

D. Cost models in FaaS 

FaaS cost models charge customers based on performance 
metrics such as execution time, memory or number of 
invocations [25]. This implies that there is a combined need 
as well as incentive to tackle the performance-cost tradeoff, 
especially for runtime management ([2],[12]). The proposed 
pattern reduces the number of invocations, as well as the 
execution time (given the lower need for environment 
initialization), and thus is expected to aid towards 
minimizing cost aspects. 

 Approaches including analytical modelling can help 
improve prediction and estimation of running costs [19] 
based on used resources and could be used to regulate the 
batch size in this work, although analytical modelling may 
need adaptations per service case of investigation. Other 
works that can be combined include the investigation of 
trade-off after which a switch to serverless mode is beneficial 
for the customer [26]. Predicting accurately costs [20] can 
also be used in combination with this approach. This can be 
helpful in cases where one needs to regulate/minimize cost 
directly and not for example based on frequency, if 
performance is considered less important. 

III. PATTERN DESIGN, PARAMETERS AND IMPLEMENTATION 

A. Batch Request Aggregator Pattern Definition 

As mentioned in [30], there is no common ground as to what 

a pattern consists of. Numerous definitions are included in 

the aforementioned work from existing literature. The most 

complete and generic seems to be the one provided by [31], 

which mentions that a pattern is “a proven series of 

activities which are supposed to overcome a recurring 

problem in a certain context, particular objective, and 

specific initial condition”.  In the particular case the 

according fields are defined as follows: 

 Context: Server-based (threadpool) or serverless 

environments that rely on heavyweight runtimes 

and libraries (e.g. AI, numerical computation etc.) 

 Recurring problem: even a small number of 

requests can create performance bottlenecks due to 

high environment initialization time and 

concurrency overheads 

 Objective: improve response time without having 

to increase resources, adapt to varying traffic 

conditions 

 Initial condition: ability to measure frequency of 

request arrival, ability to process batch requests in 

groups  



 Series of activities: the structure defined in Figure 

1, which is further analyzed in the following 

sections.  

Analysis of the pattern limitations is also performed, as 

commonly found in relevant documentation [28]. Proof of 

the benefits will be provided in Section IV. 

B. Pattern Mechanism Rationale and Design 

The main purpose of the mechanism is to gather the 

incoming requests, create arrays of inputs (batches) and 

launch one processing instance for each batch. This is 

expected to reduce the number of computational instances 

for serving the requests and therefore the stress towards the 

back-end server. In order to achieve the functionality, the 

pattern needs supporting logic that is presented in Figure 3. 

The pattern consists of the following main building blocks: 

 A submission endpoint  accepting external requests 

and assigning a message id to each one 

 A request accumulation layer that stores the 

requests in a queue,  including a map for indicating 

which external requests have been included in the 

batch, based on their message id. 

 Release logic that launches the request batch once 

specific criteria are met (see Section E for details). 

This logic may include the calculation of request 

arrival frequency over a time window.  

 A response creation layer in which the original 

incoming messages wait until the response from 

the main operation is available. When the overall 

response is available, it is broken down based on 

the id map, the individual messages are completed 

and returned to the clients.  

A functional programming framework based on function 

workflows and message passing between function nodes 

(such as node.js) is a good candidate in order to implement 

such a logic. 

 
Figure 3: Batch Request Aggregator Pattern Structure 

C. Pattern Requirements 

In order to apply the respective pattern, the main code 
modification of the typical function (or microservice) 
includes its ability to accept an array of the necessary input 
argument type (regardless of the argument type i.e. integer, 
double, array, object etc). Then for each element of this array 
it should process each request, while returning an array of 
responses in the same order the inputs where received. In 
case of asynchronous implementations, potential further 
actions may be required primarily at the pattern side 
(inclusion of an existing id along with the input). Then the 
function can include that id in the response in order for the 
pattern to filter outputs based on input id and recreate the 

proper responses. The pseudo code for the function 
modification appears in Figure 4. 

 

Figure 4: Necessary code modification for pattern 

application (support for array arguments) 

D. Pattern Limitations 

One limitation of the pattern is in case some information or 

state needs to be retrieved from an external repository. Such 

a case would be for example a function flow in FaaS that 

retrieves an AI model from object storage. Given that the 

array input now is executed in sequence, rather than in 

parallel in the case of multiple function containers, the 

model retrieval is also executed in sequence which may 

produce large response time delays. In this case alternate 

configurations or adjustments may be made such as: 

 Batching together only requests that target the 

same model ID 

 Keeping model repositories in volumes that are 

attached dynamically to the containers 

Furthermore, global context usage can not be guaranteed 

and multitenancy issues may exist (if batching requests from 

different users). However the latter may be mitigated if 

presigned URLs (or the Valet Key pattern [3]) are used in 

order to retrieve the tenant’s model from a private 

repository.  Another limitation refers to the fact that the 

pattern needs to be applied against requests targeting the 

same function (or service endpoint). 
 

E. Control Releasing Logic/Self regulation  

The release logic may determine the conditions under which 

the aggregated request batch can be forwarded as one 

message in the backend layer. It is evident that the 

frequency of request arrivals plays a key role in this 

decision. If for example requests are sparse, having a large 

batch size will imply that the first requests need to wait for a 

considerable time until the batch is complete, resulting in 

higher waiting times and overall response time. On the other 

hand, if requests are very frequent, having a small batch size 

will lead to higher container numbers.  

Thus one needs to regulate the parameters of the pattern 

based on the current conditions of execution in order to 

optimize the overall result. Indicative approaches for this 

case can include: 

 a simple timeout period, during which the requests 

are batched. Each arriving request checks the 

elapsed period from the previous checkpoint and, if 

complete, it populates a msg.complete field that 

alerts the next layer to release the batch. Setting the 



timeout period as a percentage of the typical 

response time in single request scenarios can help 

predict the final response time. For example, a 

10%*(averageResponseTime) timeout period will 

result in only 10% according increase in the final 

experienced response time, compared to the 

response time of the service under sparse load. 

 a set batch size that needs to be completed before 

the batch is released. However in this case the 

batch size needs to be dynamically regulated 

during runtime, so that it is set to 1 if the request 

frequency is low or higher if the frequency is high. 

The control of the batch size can be based on 

various methods (already investigated in Section 

II.B), such as PID controllers or other modelling 

techniques (based e.g. on neural networks),as 

investigated in the related work. These need to 

create a model of the response time, that will be fed 

with the current conditions of the system (i.e. 

request arrival frequency) and direct the needed 

metric (e.g. batch size or timeout interval) (as 

indicated in Figure 1). An example form of such an 

ANN model appears in Figure 5. Having the 

response time as the output is needed primarily for 

validation reasons. 

 

 
 

Figure 5: Model Structure for deciding batch size with 

relation to expected response time   

 

F. Pattern Prototype Implementation 

The prototype implementation is built on the Node-RED 
environment [6]. Node-RED is a visual programming 
environment for event driven applications, built on top of 
node.js.  It provides a large number of readymade function 
blocks as well as the ability to include ad-hoc code in 
functions inside a workflow.  To implement the logic of 
Figure 3, the function flow of Figure 6 was created. Each 
node receives a triggering message (in our case the initial 
message is the incoming request for the service), applies the 
node function logic and passes it to the next, coordinated by 
the runtime engine. Supporting flows were also created in 
order to aid in management decisions, such as frequency 
measurement of requests from the system scope as well as 
requests towards the controlling logic decision function. 
Monitoring subflows for logging running container numbers 
is also included. The pattern and supporting flows 
implementation is available as open source in [24]. 

G. Target Application Use Case 

 For the measurements of Section IV, a service created in 
the context of [23] was used, that appears in Figure 7. This is 
a performance estimation service that has created ANN-
based performance models, stored in a container volume, and 
enables the enquiry of these models through a REST 

endpoint. Whenever a request is received, an equivalent 
container is launched in order to serve the request, run the 
environment and give back the prediction. The environment 
is based on the GNU Octave numerical computation tool, an 
open source equivalent of Matlab. Based on the structure and 
operation, this service is a hybrid between serverless and 
microservice environments (REST endpoint and equivalent 
container launch for serving a request). It is also the same 
environment in which the model for correlating batch size to 
input frequency and response time was created (Figure 5). 

In principle, any service that includes large preparation 
overheads compared to the actual useful computation is a 
target. Such example services are typically AI-based ones 
(such as model inference) or approaches that create a large 
number of requests (e.g. Monte Carlo methods) and are 
based on heavyweight libraries or frameworks. Given the 
fact that the pattern acts as a preprocessing layer, it can be 
applied in both typical microservice, threadpool based 
servers (in order to reduce the number of concurrent threads 
in the server) as well as in front of the function invocation 
gateway (in the case of serverless architectures). 

IV. EXPERIMENTATION 

In order to test the performance and benefits of the pattern, a 

series of experiments were performed, in order to stress the 

system and observe the altered behavior. The application 

used is the one described in Section III.G and the 

orchestration platform was Docker Swarm with a single VM 

node (4 CPUs, 10GB RAM). No extra resources were made 

available to the service load in order to evaluate the effect of 

the pattern without the need to increase the resources. As the 

main system performance metric, the response time of the 

service to the various request scenarios and frequencies was 

considered. Details on these experiments are presented in 

the subsequent sections. 

A. Initial Investigation of Batch Size and Request Period on 

Response time 

Initially a set of separate measurements is performed in order 
to investigate the effect of the batch size on response times. 
For this reason a number of different periods (every 0.01, 1 
and 5 seconds) of incoming requests and an according 
diverse batch size (1, 5, 10, 50) is investigated in order to 
observe their effect on the average response time. The results 
appear in Figure 8. The timeout is set to 120000 
milliseconds, so the respective values in the graph indicate 
an unresponsive system due to resource contention and high 
container numbers. The typical mode is 1 container per 
request without the usage of the pattern. The aggregated 
mode with a batch size of 1 applies again 1 container per 
request but this time through the pattern, in order to 
investigate delays inserted by the pre and post processing 
layers. 

From the measurements it can be portrayed that the pattern 
includes some delay due to the request management layer 
(when comparing typical versus aggregated mode of 1 batch 
size) in the area of ~ 1 second (or <10% of the total response 
time). But also the benefit from the pattern application is 
portrayed, in the case of high frequency requests (inter-
arrival period of 0.01 seconds). In this case the typical 
system that was previously unresponsive, when applying the 
aggregation mode with a sufficiently large batch size (~50) 
manages to stabilize its behavior as well as



 

                 

Figure 6: Node-RED flow implementation of the pattern (implementation of Design described in Figure 3) 
 

 

Figure 7: Target service use case (AI based model 

prediction) for pattern experimentation 

 

 
Figure 8: Investigation of batch size and inter-arrival 

period on the response time average 

  

maintain an average response time that is very close to the 

average of a single request (10.763 seconds of average 

response in a period of 0.01 seconds and batch size of 50 

versus 10.046 seconds of a typical mode for 1 request every 

5 seconds). On the other hand, once the period between 

requests starts to get higher, the drawback of the pattern is 

portrayed, given that it needs to wait a large amount of time 

until the batch size is complete.  

B. Runtime Container Numbers for gradually increasing 

request frequency 

In order to investigate the overall performance of the 

pattern, a series of measurements was performed, applying 

the timeout variation of the release logic mentioned in 

Section III.D. Overall the pattern was tested under a 

scenario in which the request inter-arrival period was 

gradually reduced, starting from 10 seconds and being 

reduced to 5,1,0.5, 0.1 and 0.01 seconds of inter-arrival. 

Each setup was set to run for 15 minutes, unless the 

platform started to get saturated from container numbers in 

which case the experiment was halted.  

The two main variations that were tested were 

static delays of 500 and 1000 milliseconds before releasing 

the batch, which is approximately 5% and 10% of the 

average response time in a single request. During this time 

the framework accumulated requests coming in. The results 

of the experiment are presented in the following figures and 

are compared to the typical, no-batch implementation. It is 

indicative that as the experiment progresses and frequencies 

increase, the batch size (accumulated messages during the 

timeout interval) increases (Figure 9). This enables the 

pattern to maintain a constant rate (~20 active containers) of 

container generation (Figure 10) even at high frequencies 

(as indicated by Figure 11), in the 10% timeout case (1000 

milliseconds of waiting for gathering and batching requests). 

The no-batch implementation quickly gets saturated (at 

around sample ~1500 of the experiment), as indicated also 

from the response times that reach the request timeout limit 

(Figure 12), reaching very quickly the saturation point of 

around 80 active containers. This is mapped to a frequency 

of around 2 messages per second (Figure 11). The 5% 

timeout is still not sufficient, although it gets saturated a bit 

later (around sample 5000 of the experiment), achieving a 

frequency of around 10 messages per second.  



C. ANN Model Static Accuracy  

The results from the previous runs were subsequently used 

in order to train an ANN model predictor, based on the 

description of Figure 5,  for getting the expected average 

response delay (output) for different frequencies (input 1) 

and different batch sizes applied (input 2). ANNs were 

chosen since they represent black-box universal 

approximators and can be applied based on an available 

dataset, without further knowledge of the internals of the 

system. In contrast, PID controllers (examined in the 

Related Work and Section III.E) require a more tailored 

approach in order to determine the relevant metrics of the 

system as well as controlled entity, as well as a calibration 

step. In this case, the main point of interest is whether the 

pattern can be functionally enriched with an adaptive 

approach, as well as a comparison of the batch effect 

compared to the no batch case. Inclusion of comparisons 

between different adaptive approaches will be pursued in the 

future. 

The ANN model was optimized based on the 

process defined in [1], using a genetic algorithm in order to 

determine the main model structural characteristics (number 

of layers, type of neurons per layer and number of neurons 

for hidden layers). The network type is based on back-

propagation, feed forward architecture and the resulting 

model was selected from a pool of approximately 450 

candidate networks that portrayed an intermediate validation 

error of less than 20%, based on its performance on a test 

set. The finally selected network consisted of 5 layers (3 

hidden). The first 4 were configured with the tansig transfer 

function while the output layer with the purelin function. 

 

 
Figure 9: Average batch size of requests (Y axis) in the 

system as the experiment progresses (X axis:sample 

number of experiment) 

 
 

Figure 10: Average number of containers (Y axis) in the 

system as the experiment progresses (X axis:sample 

number of experiment) 

 
 

Figure 11: Average frequency of requests (Y axis) in the 

system as the experiment progresses (X axis:sample 

number of experiment) 

 
 

Figure 12: Response time of requests (Y axis) in 

milliseconds (timeout at 120000) as the experiment 

progresses (X axis:sample number of experiment) 

 

After the selection of the best model, a further 

acceptance test was performed to simulate runtime usage. 

From the available 30k values, ~7k of them were reserved 

for this purpose. These values were not utilized in whatever 

manner during the training or optimization process of the 

model design. The Mean Absolute Percentage Error of 

11.73% was achieved (Figure 13), which is considered 

usable. 

 
Figure 13: Model Error in final validation cases 

 

The surface plot of the resulting model appears in Figure 14, 

in the model normalized range. Input 1 is the frequency, 

input 2 the set batch size and the predicted output is the 

request response time. 

 



 
Figure 14: Surface Plot of Model Predictor in the 

normalized range (Input1: Frequency, Input2: Batch 

Size, Output: Response Time) 

 

D. Dynamic Adaptation based on the ANN model 

In order to test the model’s response during runtime, and 

especially in bursts of load, an experiment was performed 

with varying loads including sudden peaks (Figure 15). This 

was performed in order to observe also the effect of the 

delay in getting the response and how the system gets 

affected by it in actual conditions, despite the good accuracy 

of the model in the static validation. In order to decouple 

this delay from the conditions in the system, the pattern 

adaptation model was running on a separate node to ensure 

timely reaction to sudden peaks of load. 

The model was queried at a regular interval (every 

10 seconds) based on the current conditions of execution 

(frequency). Given that the model takes approximately 10 

seconds to respond, this results in a decision update for the 

batch size every 20 seconds. Predictions were obtained for 

different batch sizes (ranging from 1 to 70 with a step of 

10). The one achieving the lowest predicted response time 

was selected and used to configure the pattern. Given that 

there is a direct relation between frequency and anticipated 

batch completion, one can also utilize this information in 

order to configure the time out interval. One of the lessons 

learned during the first runs was the fact that the model 

query process needed to run on a different server than the 

main framework. If not, then due to the saturation caused by 

the sudden peaks of containers, the model querying process 

delayed significantly, which led to very delayed responses 

and server stalling, before being able to adapt.  

The results are portrayed in Figure 15 and Figure 

16 from the client side (for each individual request sample) 

and Figure 17, Figure 18 and Figure 19 from inside the 

system, by taking samples every 1 second for processed 

frequency, active container numbers and batch size (set and 

measured). The set is obtained from querying the external 

model service. From the figures it can be seen that when the 

increase is gradual (e.g. from 0.2 messages/sec to 4) the 

system has the time to adapt (Figure 16 in terms of response 

times and Figure 18 in terms of active containers). Although 

there is an initial increase in response times, this is fixed by 

the increased batch size (Figure 19). A further increase from 

4 to 8 messages per second (around sample 2000 of Figure 

15) does not influence the system, given that the batch size 

is already high. In this period we also observe further 

decrease in response times, as would be anticipated by the 

average times portrayed in Figure 8.  

When the load peak is more sudden (from 0.2 to 20 

messages/sec), the delay in adaptation leads to a very high 

response time (in essence reaching the 120000 milliseconds 

timeout) due to the high number of accumulated messages 

and according containers. However one major benefit of the 

pattern in this case is the fact that the system does not stall 

(like in the case of Figure 10), it only experiences a periodic 

denial of service. This could be handled either by larger 

timeout times or by applying in combination with this 

pattern the Circuit Breaker pattern to refrain the client from 

generating more requests temporarily.  

Another interesting conclusion is that there are 

sudden peaks in container numbers in the transition time 

from high to low frequency, not justified by the amount of 

traffic at that time (tailing of container numbers in Figure 18 

following the drop of the peak around sample 400 of Figure 

17). This indicates that there are a number of lingering 

requests, already measured in the frequency, in node.js 

queues, that start to request resources. However when the 

frequency is detected as reduced, the system returns to the 1 

batch size, making these lingering requests raise one 

container each. This is an indication that a potentially 

improved predictor for the ANN would be the number of 

active containers and not the request frequency. It is also an 

indication that in other types of adapters (e.g. PID 

controllers) the past values element (i.e. Integral factor) 

should be strengthened in order to achieve a graceful, 

gradual reduction in batch set sizes.     

E. Cost Comparison for FaaS cost models 

As mentioned in the related work section, typical cost 

models of FaaS are dependent on the execution duration. 

Hence in this case a series of measurements was performed 

in order to investigate what is the overall execution time for 

a prediction request with multiple input lines, compared to 

running the model for only one input row for estimation.  

 
Figure 15: Client side request generation frequency 

measured per sample 

 
Figure 16: Client Side Response Times per sample 



 
Figure 17: System side measured frequency per 1 second 

interval 

 
Figure 18: Active (running) containers in the system 

 
Figure 19: Batch Size Setting by ANN model and 

according system side application of the setting 

 

The performed requests include an interval of 15 

seconds between them, in order to investigate the baseline 

execution time when only 1 container is active in the 

system. Input size variations included 1, 100 and 450 input 

rows for which predictions were needed. Calls to the service 

were performed for a duration of 10 minutes per case. The 

results appear in Table 1 and are associated to the estimated 

costs. The estimation is based on a number of assumptions. 

All calls are considered as cold-start ones and include also 

the time to raise the container (which is not billed in actual 

FaaS offerings). However they are intended as a rough 

overview of potential benefits.  

As a baseline, the cost model of AWS Lambda (US 

East-Ohio) [27] is used. The containers were allowed to use 

the overall memory available (10GB). Thus the price of 

0.0000001667 dollars per 1 msec of runtime was used and 

multiplied by the runtime duration, while the cost per input 

row also appears in the table. This depicts significant 

difference, which is also evident when taking under 

consideration the other billing factor (number of requests set 

at 0.2$ per 1 million of requests) that is also affected by the 

reduced overall number of calls needed for one to obtain 1 

million predictions.     

 

Table 1: Cost Estimation of GB-second based on AWS 

Lambda pricing model 

 Input 

Rows 

Average 

Response 

Time 

Delay 

(msec) 

Estimated 

GB-Second 

Cost Per 

Input Row 

Cost of 

Requests 

for 1M 

predictions 

1 10051.25 0.001675 0.2 

100 10082.62 0.000016807 0.002 

450 10228.29 0.000003789 0.000444 

V. CONCLUSIONS AND FUTURE WORK 

The work presented in this paper formulates as a pattern 
an initially simplistic approach such as request batching, 
augmented with relevant self-adaptation means and methods. 
In terms of controlling logic, different approaches have been 
tried out, starting from simpler ones like static waiting 
intervals to more complex ones such as training neural 
networks to undertake the role of pattern parameters setting 
during runtime. The application of the pattern has indicated 
significant benefits in terms of improved application 
performance with the same amount of resources, enhanced 
stability and responsiveness as well as adaptation to dynamic 
conditions of execution.  Quantification of the benefits has 
also been measured. Average client response times are stable 
even in high request frequencies, compared to a high 
increase in the case of no pattern application. This happens 
because needed containers are significantly reduced due to 
the pattern application.  Thus the ability to serve more 
requests with the same number of nodes and the same 
response time is a clear indication of an improved system 
performance, especially when the comparison to the no 
pattern application case is overwhelming. This applies 
specifically to cases where resource pools are smaller in size 
and can not be easily scaled (e.g. edge environments). 

The requirements for applying the pattern include 
interface modifications, while relevant limitations have been 
highlighted. A weakness of the pattern in sudden load peaks 
has been identified, leading to client timeouts but not a 
complete system halting. This weakness can be 
complemented by the Circuit Breaker pattern. This is a 
common case in pattern design, in which a designed pattern 
may fit a subset of purposes, while its coupling with other 
patterns enables the mitigation of its weak points. An 
alternative mean of mitigation is the coupling with a time 
series prediction mechanism that will detect upcoming bursts 
and will be able to set a priori the increased batch size. An 
application agnostic pattern prototype has been developed in 
Node-RED as a functional flow, that can be applied in front 
of any service endpoint to provide the benefits of the pattern 
and has been provided as open source. 

For the future, aspects to be investigated for extending 
this work refer to including more experimentation regarding 
controller technology, including PID or control theory 
approaches. Furthermore, variations of the model creation by 
taking under consideration active containers directly as the 
main metric will be investigated. Finally, the porting of the 
prototype implementation to a more native functional 
framework (such as native node.js) may be pursued.  
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