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Abstract—In this paper, we introduce MARS, a new scheduling
system for HPC-cloud infrastructures based on a cost-aware,
flexible reinforcement learning approach, which serves as an
intermediate layer for next generation HPC-cloud resource man-
ager. MARS ensembles the pre-trained models from heuristic
workloads and decides on the most cost-effective strategy for
optimization. A whole workflow application would be split into
several optimizable dependent sub-tasks, then based on the pre-
defined resource management plan, a reward will be generated
after executing a scheduled task. Lastly, MARS updates the Deep
Neural Network (DNN) model based on the reward. MARS is
designed to optimize the existing models through reinforcement
mechanisms. MARS adapts to the dynamics of workflow applica-
tions, selects the most cost-effective scheduling solution among
pre-built scheduling strategies (backfilling, SJF, etc.) and self-
learning deep neural network model at run-time. We evaluate
MARS with different real-world workflow traces. MARS can
achieve 5%-60% increased performance compared to the state-
of-the-art approaches.

Index Terms—HPC, Cloud System, Scheduling, Workflow
Management, Reinforcement Learning, Deep Learning

I. INTRODUCTION

As workflow applications grow in complexity, Scientific
Workflow Management Systems (SWMS’s) have become es-
sential components in recent HPC-cloud infrastructure [1]. Ac-
tive research in scientific workflow management has enabled
systems used by scientists in practice, addressing many scien-
tists’ needs and improving system efficiency. Current workflow
management systems, integrated with resource management
systems, offer generic services to handle task management,
distribution, monitoring and failure management on various
types of platforms [2], [3]. Although workflow systems on
cloud and HPC infrastructures have been studied with many
services offering various capabilities, we still lack optimized
and sophisticated scheduler systems, which allow for collab-
oration of scientists running tasks on HPC systems and those
running tasks on cloud systems.

Disparate workflows require different optimizations depend-
ing on the condition of the execution environment, state

of hardware, resource management and task scheduling. For
instance, CPU-intensive tasks need to be optimized to enhance
the instruction throughput. Memory-intensive tasks should be
scheduled in such a way as to minimize the use of global
memory and only write back the final results; this configura-
tion can be achieved by setting the proper configuration in the
existing HPC resource manager.

On the other hand, I/O intensive tasks should minimize the
data transfers between different infrastructures. In some cases,
workflows require different resources. For example, part of the
workflow can be executed on CPU-based HPC, and the rest
would be benefit from GPU-based HPC or cloud infrastructure.
In this case, the cost of executing the tasks of such workflow
on two or more different cloud systems should be considered.

Even though these challenges can be solved partially
through meticulously designed heuristics, two or more of
these factors should be considered for complex workflows.
Pursuing recent research in HPC scheduling algorithms, the
most common designs either apply an optimal solution for
heuristic models or require changes at the system level that
may need to replace the existing resource manager in the
HPC system. This process must be repeated if the system
workload changes or the metric of interest changes (e.g., more
memory-intensive tasks than CPU-intensive tasks). The more
appropriate solution is to use the existing resource manager by
introducing an intermediate layer to create scheduling tasks.
Following this architecture design, we can achieve a better
optimal result without changing the system level resource
manager.

In summary, we illustrate the major challenges within
existing scheduling systems:

• The same scheduling strategy may not necessarily work
for different infrastructures. For instance, in cluster
scheduling, the execution time of a task varies with data
locality, hardware health characteristics, interactions with
other tasks, and interference on shared resources such as
CPU caches, network bandwidth, etc.

• HPC system resources are usually managed by a resource
manager, e.g., SLURM. However, these tools are not
optimized for dynamic changes in workflow performance978-1-6654-4331-9/21/$31.00 ©2022 IEEE
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characteristics. Accordingly, there are no optimizations
for cost-effectiveness based on performance prediction.

• Practical instances have to make online decisions with
noisy inputs and work well under diverse conditions.
The decision between CPU, Memory, I/O and cost can
have different meanings for individual workflow. Sub-
optimization for an individual task may improve after
running a couple of batches on the HPC system.

• Scheduling policy switching between different systems
can be challenging, workflow requirements and system
configuration can be different on an individual HPC
system. In most cases switching the scheduling system
means re-initiating the HPC system, which requires time
and termination of other users’ tasks.

• On basic workflows, optimization can be done using one
dimension (CPU, Memory or I/O) optimization; there is
no need for a multi-layer machine learning scheduler. The
practical applications do not need further optimization.
Simply using the existing resource manager would satisfy
the users’ needs.

• Lastly, workflows might benefit from various multi-level
optimization and using machine learning scheduling tech-
niques. In this case, each task has its own characteristics,
which may be so sophisticated that we need to consider
multi-dimension of the metrics of interest, such as IO,
CPU and Memory.

To overcome these issues, we design a generic scheduling
system, enabling self-learning, performance adaptation and
naturally working with the existing resource manager on HPC
systems.

In this paper, we introduce a malleable actor-critic reinforce-
ment learning scheduler (MARS) to address the challenges
within existing scheduling systems with the following features:

• MARS presents a malleable scheduling policy ensembling
A3C reinforcement learning and heuristic policies.

• MARS optimizes scheduling performance through task
parallelism and workflow classification through graph
comparison and outperforms the state-of-the-art HPC
schedulers by 5-60%.

• MARS requires none to minimal changes to the existing
HPC resource manager such as Slurm and other cloud
resource managers. From a design perspective, MARS is
a good candidate for HPC-cloud heterogeneous environ-
ment.

• MARS design supports both simple and complex work-
flows, and the scheduling profile can be expanded from
one to more dimensionality to bring more optimization
on the desired characteristic.

• MARS requires none to minimal changes in users’ work-
flows configuration, task optimization between user con-
figuration and HPC system is done in the intermediate
layer. Scheduling in such a way that we can benefit
from simple optimization and complex machine learning
schedulers.

The rest of the paper is organized as follows: in section

II-A we discuss HPC workflow requirements and descriptions
along with server parameters and our motivation. We explain
how MARS integrates previous heuristic algorithms along with
asynchronous actor-critic reinforcement learning, and we give
a detailed explanation of the reinforcement learning approach
and our decision on how to select the best suitable schedul-
ing algorithm in section III. We discuss our implementation
methods in section IV. In section V, we discuss our results
and compare them to previous works and present our obser-
vations. We also explain why MARS is outperforming the other
approaches. Lastly, in section VI we discuss prior work in this
area and conclude in section VII.

II. BACKGROUND AND MOTIVATION

A. Background

A workflow application is a set of tasks or instructions
executed on arbitrary input by particular order as steps. Work-
flow can be chained computation in physics, chemistry, etc.
To improve the performance of workflows and create more
meaningful relations between tasks, steps and requirements,
we can use a directed acyclic graph (DAG) based on each
component. As Hongzi M. and et al showed in their approach,
creating DAG from workflows can be done in two categories.
First, it can be done considering pure output related and their
dependency. Second, another DAG can be generated based on
tasks’ resource requirements.

Any workflow can have just one or multiple requirement
DAGs based on the complexity of the workflow. Similarly,
both DAGs can represent the target system resources and
scheduling requirements. System resources are queries from
existing resource manager which are explained in detail in
section III-A1, scheduling requirements are the number of
CPUs per node and/or entire workflow, the amount of memory,
I/O and the cost based on desired parameters such as I/O
throughput, CPU usage, GPU usage, etc. More details are
provided in section III.

In order to better understand how to solve the complexity of
both complicated and straightforward workflows scheduling,
traditional optimization and machine learning techniques need
to be studied. Mu’alem introduced optimization over First
Come First Serve (FCFS) scheduling method, and AAhuva
W. Mu’alem et al. [4], their Backfilling method over well
known FCFS algorithm was to overcome the fragmentation
problem. Backfilling uses dynamic partitioning to schedule
tasks on distributed systems to maximize performance. There
are two major implementations, conservative Backfilling and
Easy Backfilling. However, even though both methods were
introduced to reduce starvation in the case of large work-
flows, both versions can cause starvation. In practice, if the
workflow contains many tasks, it might be more beneficial to
use machine learning techniques. In contrast, the Backfilling
scheduling method would achieve better optimization when
the workflows do not contain enough tasks to train and test
the machine learning model.

The volume of workflows tasks recently caused researchers
to focus on machine learning techniques instead of traditional



methods. One of the most recent and popular methods is rein-
forcement learning. The reinforcement learning (RL) method
uses vector-based image transition. In order to translate the
HPC scheduling parameters into this method, each resource,
CPU, Memory, and I/O would be shaped into images. One
requirement of this method is that the workflows‘ sizes must
be the same. Then the translated images would be used to
train the RL model. The optimal solution can be achieved
after training the system.

Knowing that both methods have limitations, we need to
balance Backfilling and RL methods to support workflows
more diversely. The backfilling method suffers from optimiza-
tion for large workflows, and the reinforcement technique
needs initialization to be optimal, depending on workflow
requirement and the volume scheduling algorithm needs to
switch between these methods.

B. Motivation

The regular Reinforcement Learning (RL) schedulers re-
quire replacing existing HPC resource management tools,
and in most cases, users have to adapt and change their
workflow to satisfy the new system’s requirements. In a more
specific explanation, HPC’s existing resource manager would
be replaced with an RL scheduler, and user configuration
would have to change to use the new scheduler system.

One reinforcement learning limitation is that the entire
training set must be specific for the HPC system. Otherwise,
the training model would not be optimized. Tuning hyperpa-
rameters and optimizing in favour of all dimensions is one of
the limitations of RL methods.

Existing HPC resource managers suffer from large numbers
of tasks. For better optimization, we need to either replace
them with more specific algorithms depending on workflow or
use an intermediate layer to communicate with the resource
manager. Replacing the resource manager is time-consuming
and requires knowledge of workflows. Since replacing the
resource manager is costly and compromises support for
legacy workflows, in our approach, we do not require to
change the subsystem, and we use the existing tools to increase
the performance [5].

In our approach, we introduce a median layer to the existing
HPC resource manager to avoid replacing the entire system
and not depending on one solution for all possible cases. The
user can specify how many parameter servers and nodes to
use, including the amount of required resource (e.g. CPU,
Memory, GPU, I/O, etc.), then submit the workflow to MARS.
Our Scheduler MARS chooses between simple Backfilling or
an advanced reinforcement learning (A3C) algorithm and then
assigns tasks to nodes for execution by communicating with
the existing resource manager on the HPC system.

III. MARS DESIGN AND IMPLEMENTATION

A. MARS System Overview

Figure 1 shows the overall system structure of MARS. We
assume that the workflow description and generated DAG
graph are provided to the scheduling system. One example

Fig. 1. MARS System Overview

of previous work done in BEEFlow [6], which proposed
an in-situ analysis-enabled workflow management system that
supports multiple platforms using HPC containers.

Our design consists of several parts as shown in the figure 1,
MARS Interface is the API that provides an interface to HPC
users to submit their workflows on an HPC system. MARS
decision-maker is in charge of deciding between Backfilling
and RL-A3C algorithm, where algorithm selection and differ-
ent optimizer can be assigned based on workflows requirement
DAG. As shown, we use heuristic data, users’ configuration,
along randomization for unknown workflows characteristics.
As mentioned before, large workflows can be optimized based
on more than one dimension. In order to achieve the optimal
solution, the RL-A3C needs to train on data, and in our
case, a randomizer helps speed up this process and tune the
hyper-parameters faster. More sophisticated methods such as
population-based (PBT) in ML can surely help but, we observe
it is unnecessary to use more complicated methods. The rest
of our design follows the RL-A3C principle with reward
value read from the HPC resource manager, two policies, the
model parameters from the DNN network, and the initial state
of HPC resources. The Slurm commands and HPC resource
information can be derived from existing resource managers
such as Slurm, MARS uses the same commands to schedule
tasks on an HPC system.

In general, we take the following steps shown in algorithm
1 to accomplish the optimization for each workflow.

The corresponding benefits to our design are:

• Each workflow can be executed independently from oth-
ers

• HPC systems do not depend on a single algorithm
• Workflows can run simultaneously with other workflows.

In respect to users’ workflows are not restricted or limited
by the algorithms used for scheduling



Result: Saved Model M
Input: Created DAG from workflows ζ
Input : Decision D
Input: Policy ν
Input: Available HPC Resources from Existing
Resource Manager (SLURM) HPCR

if Task ι and ιi+1 ! = dependency then
Compare and Parallel Tasks ι+ ιi+1

else
D = MARSDecision(ζ)
ν = MARSP olicy(D)
M = MARS(ζ,ν,HPCR)
return M

end
Algorithm 1: MARS Overall Algorithm

• Since the full optimization is done regardless of existing
HPC systems. We can update saved models based on best
suitable parameters

1) Algorithm Selection: In typical cases, resource manage-
ment in the HPC system is based on CPU, memory, and I/O
utilization. On the other point of interest, considering the cost
of each task execution on other cloud infrastructures can help
scientists minimize the overall cost.

Traditionally schedulers optimize tasks only on one di-
mension. A simple Backfilling scheduler can be an example.
In Backfilling scheduling, the scheduler tries to optimize
CPU usage. In the next step, more sophisticated schedulers
use modern Machine Learning algorithms to optimize tasks
based on CPU, Memory and I/O. However, in most methods,
schedulers either sacrifice one feature for another or find
the average solution. Recent ML schedulers use one specific
reward function to update the trained model and learn from
the previous execution.

In our proposal, MARS can adapt on different reward values
read from the HPC resource manager and decide between a
simple algorithm such as Backfilling to a more complicated
online algorithm such as asynchronous actor-critic reinforce-
ment learning to execute tasks. By creating a model based
on the RL-A3C algorithm and updating that model with the
similar technique that D. Zhang previously introduced and et
al. [7] we can reuse a trained model with similar workflows.
However, the training of the system is highly correlated to the
size and number of tasks in one arbitrary workflow.

Based on our observation, small workflows such as a simple
RNA search would be an inefficient model. On the other hand,
complex and large workflows in RL, such as Blast, would
cause an over-fitting of the network. This phenomenon would
result in an inefficient reward value and model. In our ap-
proach, by combining time window and custom loss function,
the reward value and model generated from the workflow
would be more accurate compared to previous approaches.

B. Policy Model and Algorithm

Our policy model depends on the size of the workflow.
In terms of small workflows that can be optimized with the
simple FCFS algorithm, MARS bypasses the RL algorithm and

creates a simple schedule for tasks ready to be executed on
HPC. On the other hand, when workflows contain a large
subsection of tasks and the running time requires hours to
days, MARS selects an arbitrary RL-A3C algorithm based on
previously saved models.

The reinforcement learning module in MARS contains a
scheduler agent, environment, and neural network based on
server parameters input and reward value from the HPC envi-
ronment. At each time step t the agent observes the parameters
on HPC state st, then chooses an action at. Following that
action, the environment’s state would proceed to st+1 and the
agent receives reward rt. The state transitions and rewards are
stochastic and are assumed to have the Markov property; i.e.
the state transition probabilities and rewards depend only on
the state of the environment st and the action taken by the
agent at.

In most RL approaches, learning is done by performing
gradient-decent on the policy parameters. The critical idea
in policy gradient methods is to estimate the gradient by
observing the trajectories of executions obtained by following
the policy. Similar to Monte Carlo Method [8], samples are
taken of multiple trajectories, and the empirically computed
cumulative discounted reward is used. However, this approach
is based on a naive algorithm and usually calculates a lo-
cal maximum instead of the global maximum. In order to
overcome this limitation, we use a similar method as other
researchers , RL with Actor-Critic Algorithm (ACA) in MARS.

1) Reinforcement Learning Objects: Based on the def-
inition for objective function for policy gradients, in our
approach, parameters are read from the existing resource
manager, and the action taken upon optimizing task execu-
tion is done by MARS. Using well-known machine learning
techniques [9], [10], mapping between HPC server parameters
and RL properties, we can redesign reinforcement learning to
support HPC systems.

2) Reinforcement Learning Using Actor Critic : We can
define the Actor-Critic method, where the Critic estimates the
value function, which can be Q-Value or state value V-Value
[11]. In our approach, we took the state value from an existing
resource manager such as Slurm. MARS uses Slurm manager
outputs to calculate the reward value. 2 MARS Policy RL-A3C
Algorithm:

As we explained earlier, the computation of the reward
value can have different meanings. The critic is a state-value
function, MARS can be optimized based on Parameter Server
values read from Slurm or any other resource manager, and
final value results can be used to determine if there was an
improvement or not.

Figure 2 shows the Policy Structure of MARS. User’s
workflow description can be in any standard format such as
Common Workflow Language (CWL), The Workflow Descrip-
tion Language (WDL), Standard Workload Format (SWF),
etc. As mentioned before in section II preferably, the DAG is
generated from workflow description containing tasks (tasks)
to execute and the dependency between them. In our example,
one workflow can be as simple as one task or have multiple



Result: HPC Reward Estimation πθ ≈ π∗
Input: HPC Scheduling Action based on State
Parameters π(a|s, θ) Input: HPC CPU, Memory, I/O,
Cost Values v̌(s,w)

Algorithm parameters: step sizes αθ >0, αw >0
Initialize policy parameter θ ∈ Rd′ and state-value
weights w ∈ Rd(e.g., to 0) Set weights to 0 at
beginning,

Initializing C as the Cost Probability added to
evaluation;

while for each epochs do
Initialize S (first state of episode);
I ← 1;
while S is not terminal (for each time step) do

A ≈ π(·|S, θ);
Take action A, Observe S′, R;
δ ← R+ γ v̌(S′, w)−v̌(S,w)(if S′ is terminal,

then v̌(S′, w) = 0);
w ← w + αwIδ∇wv̌(S,w);
θ ← θ + αθIδ∇θlnπ(A|S, θ);
θ ← θ +∇C;
I ← γI;
S ← S′;

end
end

Algorithm 2: MARS RL-A3C Policy

dependent parts, such as the Blast example, or similar to a
linear search workflow. The generated data then would be
fed to our categorizing module, which determines the depth
of the workflow based on the description, graph comparison
algorithm and heuristic generated models.

The algorithm selector module decides whether to use
RL-A3C or basic FCFS, as mentioned before, for simple
workflows which require only limited execution time. If no
other workflows are running, and the description requires most
system resources, running RL-A3C would cause overhead.
However, in case MARS can combine multiple independent
workflows and run RL-A3C, it would switch back to using
the RL-A3C algorithm and build the best suitable model for
that specific type. We kept the traditional algorithms such as
FCFS, Backfilling, etc.

In order to support legacy workflows and save on training
time and in case an HPC system is not equipped with a GPU,
a small optimization based on the known graph combining
algorithm [12] would run next to combine the parallel tasks.
Compared to the standard Reinforcement Learning technique,
we use this graph search algorithm to identify the best possible
model to gain an optimal outcome and user input as a variable
to differentiate between CPU, Memory, I/O, and Cost of
each task. The generated model will train the system for
optimization and feedback output.

Next, MARS queries the available resources from Slurm,
knowing the current state of the system and workflow de-
scription. Next MARS creates a state description based on
Job type, the number of time slots run, remaining epochs,

allocated resources on HPC, the number of workers based
on the workflow description, and the number of parameters.
Based on the previous discussion, we build a policy and value
network, calculate a baseline, and initiate action; then, using
the Slurm interface on HPC, we initiate a batch of tasks on
HPC (Action).

In addition, MARS needs to decide the best split between
tasks and parallelism based on available resources, knowing
that each workflow can be divided into sub-workflows based
on searching paths, MARS categorizes tasks into groups. After
this separation, it generates a deep neural network based on
user input and CPU, Memory and I/O values.

Finally, using Slurm CTL MARS queries about remain-
ing available resources, current executing tasks, previously
executed times, and corrupted previous tasks. MARS then
calculates the reward value and uses a baseline. It updates
the neural network. In order to overcome training overhead
and inefficient models, MARS creates an arbitrary base network
based on heuristic workflow data. If the data is absent from the
database, we generate a similar workflow with smaller tasks
to train the network.

3) Graph Comparison and Parallel Optimizer: In most
RL-based schedulers, the generated workflow graph and cost
are not considered. The deep neural network is purely based
on workflow input data or previous execution. However, if we
consider the graph generated from the workflow and use search
algorithms to find the similarities in individual tasks, we can
predict and categorize each task based on their CPU, Memory,
I/O intensity. In addition, we can also consider the cost of each
execution. Based on a predefined table, we can calculate how
much each task would cost to run on some arbitrary cloud
infrastructure.

In practice, Directed Acyclic Graphs (DAGs) have tens or
hundreds of stages with different requirements and execution
times. Based on the dependencies and requirements, each task
can be executed in parallel or wait for other tasks to be
completed. This complexity can be challenging in terms of
scheduling, and to solve this issue MARS needs to execute
tasks in parallel as much as possible without wasting CPU, or
Memory utilization [13].

As mentioned before, graph comparison is algorithmically
hard, similar to C. Delimitrou and et al. [14] approach, we use
a scale-up and scale-out method to achieve the categorization.
Assuming that the individual parts of a workflow’s DAG can
be categorized and compared to each other based on size and
resources, MARS tries to combine the independent tasks as a
single parallel task.

4) Decision Making: MARS decision making is based on
comparing the DAG and heuristic data, using a heuristic
data model, DAG classification, or based on the size of the
workflow MARS chooses the best suitable algorithm between
basic back-filling and RL-A3C to execute an arbitrary work-
flow 2. In complementing combining CPU, Memory, I/O and
creating a general neural network, we generate an individual
network based on graph comparison and user input for RL-
A3C candidate workflows. Complementary to the previous



Fig. 2. MARS Policy Network

method, the users’ variable is used to determine the intensity
of requirements and also, in order to achieve a better result, the
logs from the target HPC system will be used in the evaluation.

In the case of RL-A3C workflows, the first initiation and
task execution would have to be on a more general deep neural
network with a more straightforward reward function due to
the lack of training data. However, after a couple of workflow
executions, the first network can be replaced with a more
complex network. After that process, MARS would get the
output from the HPC system and calculate the universal reward
means. As we know, returning a positive value from the reward
function can identify the desired settings then and would cause
MARS to continue optimizing on the same network for similar
workflows. On the other hand, the cumulative negative reward
value would cause a feature selection change in the network
and update the loss function.

Algorithm 3 shows the basic decision making of the MARS
scheduler. Our design uses workflow size and configuration to
decide on the algorithm policy. In our experiment, we observe
that workflows with a size less than 512 are not sufficient to
run directly on RL-A3C. In order to improve this issue, we
either combine the following workflow with the previous one
or run the heuristic algorithm. In the algorithm’s first part, we
combine the following workflow with the current workflow.
Next, if the compatibility of dimension fails or the existence
of the following workflow is absent, then MARS chooses the
heuristic algorithm. Next, for the large workflows, we split
those into sub-workflows and execute the RL-A3C algorithm
to avoid over-fitting the network. In each step, we save the
RL-A3C model for future use.

IV. IMPLEMENTATION

The MARS algorithms are implemented using Tensorflow
[15] and Gym OpenAI [16]. For the training process we used
Proximal Policy Optimization (PPO) algorithm derived from
OpenAI Spinning Up library [10], [17].

We used a randomly generated data set based on real
workflows and actual real-world data from different sources
to evaluate the proposed solution. The real-world workflows
are based on SWF archive data as shown in Table I.

TABLE I
LIST OF WORKLOAD TRACES

Name CPU Month(s) Date
SDSC IBM-SP2 128 24 1998
SDSC IBM-Blue 1152 32 2000
High Performance Computing Center 240 42 2002
Argonne National Laboratory Intrepid 163840 8 2009
Synthetic G001 256 12 2019
Synthetic G002 1024 6 2019

In our experiment, we aim to compare the previous works
with MARS. We compare MARS with heuristic job scheduling
algorithms, shown in Table II. The table II shows the heuristic
scheduling policies infused with MARS, which can improve
the performance of legacy and modern workflows. MARS is
compared with two well-known policies: First Come First
Served (FCFS), where the arrival order schedules tasks; and
Shortest Job First (SJF), where tasks with shorter processing
times are scheduled ahead of the other tasks. Some other
comparative policies are WFP3, and UNICEF [18], which are
based on the processing time, requested number of cores and
waiting time of the tasks. WFP3 favours shorter and older
tasks over large ones without starvation, and UNI favours
small tasks by using a fast turnaround policy for performance



Result: Best Suitable Action α
Input: Workflow χ & Workflow size η
Initializing workflow task size, Queue, Task, Model:
η ← χ , Q, ω, M

if η <MEDIAN then
if χi+1 == TRUE & χi+1 is compatible

(RL-A3C vector dimensions) with χi then
χ = χi + χi+1 >MEDIAN ;
Q← η;
M ←MARS −RL−A3C(Q);

else
if η <MIN then

Q← η;
SJF(Q);

else
Q← η;
UNICEF(Q);

end
end
M ←MARS −RL−A3C(Q);

else
while η >MAX do

ω = ω
2

Q← ω;
MARS −RL−A3C(ω)
M ←MARS −RL−A3C(Q);

end
Q← ω;
MARS −RL−A3C(ω)
M ←MARS −RL−A3C(Q);

end
Algorithm 3: MARS Decision Making Policy

enhancement. Policy F1, F2, F3, and F4 [19] represent the
nonlinear machine learning-based scheduling algorithms for
minimizing the average bounded slowdown of tasks. Based
on our observation, switching to known heuristic algorithms
and RL-A3C increases the performance and saves a noticeable
amount of time in training for the basic legacy workflows.

TABLE II
HEURISTIC SCHEDULING POLICY USED

Name Function
FCFS ABS(t) = st
SJF ABS(t) = rt
WFP3 ABS(t) = −(wt/rt)3 ∗ nt
UNICEP ABS(t) = −wt/(log2(nt) ∗ rt)
F1 ABS(t) = log10(rt) ∗ nt + 8.70 ∗ 102log10(st)
F2 ABS(t) =

√
rt ∗ nt + 2.56 ∗ 104 ∗ log10(st)

F3 ABS(t) = rt ∗ nt + 6.86 ∗ 106log10(st)
F4 ABS(t) = rt ∗

√
nt + 5.30 ∗ 105log10(st)

In an HPC system, workflow tasks may arrive continuously.
In order to train the model using RL-A3C, we save the training
results after a predefined window time, and then we let the
actor-critic algorithm improve the model. After building a
basic model based on the RL algorithm, the Actor-Critic part
evaluates the network. This strategy would create a training
batch for the workflow. If the batch size is too small, MARS’
decision module gives two options if the remaining workflow

size is sufficient enough MARS combine sub-workflows. On
the other hand, in the absence of sufficient size, MARS would
switch back to back-filling or FCFS algorithm.

In our experiment running basic workflows on RL-A3C
takes a significant amount of time to train and causes inef-
ficiency in HPC systems. In order to overcome this issue,
a combination of legacy and RL-A3C algorithms would be
more appropriate. Another issue in RL-A3C is over-fitting the
model due to the large batch size and exponential growth of
the number of possible tasks. In order to solve this issue,
we introduce a median layer to create sub-workflows. Based
on our observation, the best training sets are between 512 to
20000 running on 2000 to 4000 epochs for RL-A3C. Knowing
that the smaller or larger batch sizes could introduce an issue,
the MARS decision module would combine or split the sub-
workflows.

As we described in Section III, in RL-A3C, the state is
the input of the DNN agent, and the representation of state is
a vector containing available resources and pending tasks. In
HPC number of pending and arriving tasks can vary. However,
in DNN, the vector to create the network should be fixed-sized.
In order to overcome this issue, we took the same approach
as previous works and added extra 0s to the end of the vector
[20].

V. EVALUATION

In this section, we present our results obtained by running
MARS scheduler on a simulated environment using data traces
generated from HPC data centers. First, we describe the en-
vironment setup and workflow traces used in our experiment,
then we evaluate different algorithms and compare them to
our approach. We discuss the performance evaluation under
different conditions and workloads of HPC environments. Our
simulator was inspired by a similar method used by D. Zhang
et al. [7]. However, to comply with our approach, we extended
the simulator with Gym and OpenAI to return the proper
reward values from the environment. Running the training set
on an actual HPC environment requires an enormous number
of iterations to learn, considering that most HPC environments
are not capable of running the RL-A3C algorithm due to
lacking GPU capability or available resources for non-HPC
applications. The best approach is to either dedicate an arbi-
trary external server to train the model or run the simulation
in a local environment.

A. Simulation Environment

We simulate a homogeneous HPC environment executing
tasks based on moving forward the timestamp instead of
running those tasks. These workflows were based on traces
collected from real systems, but we use the CWL and SWF
workflows formats to guarantee compatibility. When a work-
flow is generated, if the resources required to run an arbitrary
task belonging to the generated workflow are not present, the
simulator uses the back-filling method to run smaller tasks
first.



Fig. 3. Performance of scheduling policies with different workload traces.

Fig. 4. Performance of MARS under different learning ratios

B. HPC Reward and Metrics

HPC scheduling metrics are mostly based on response time,
and it is defined as the total wall-clock time from the instant
at which the task is submitted to the system until it finishes
its run. The most basic method to calculate the running time
and wait time for tasks is slowdown, slowdown = Tw+Tr

Tr
. A

more sophisticated method is to take the average slowdown to
minimize the wait time [21]. Table III shows different evalua-
tion metrics. The problem with the slowdown metric is that it
overemphasizes the importance of short jobs; to overcome this

issue, Feitelson et al. [22] have suggested Bounded-slowdown.
The behaviour of this metric depends on the choice of τ , which
is the threshold value. Zotkin and et al. [23] have introduced
a new problem where tasks that do the same amount of
work with the same response time may lead to different
slowdowns results due to their shape, which is the ratio of
processors to time. This introduces another metric known as a
per-processor slowdown. We used average bounded slowdown
instead of per-processor because, in our workflow examples,
the shape of our test systems are identical to each other.



In our approach we set the goal as minimizing the average

TABLE III
SCHEDULING METRICS Tr IS THE EXECUTION TIME OF THE JOB, Tw IS

THE TIME SPENT IN TURNAROUND [24]

Metric Formula

Slowdown Tw+Tr
Tr

Bounded-slowdown max{ Tw+Tr
max{Tr,τ}

, 1}

pp-slowdown max{ Tw+Tr
P∗max{Tr,τ}

, 1}

bounded slowdown = −max{ Tω+Tr

max{Tr,τ} , 1}(−ABS). At the
start of the algorithm, calculating the average is not possible,
instead we return 0 as a reward. After finishing the entire task
sequence then the RL-A3C agent gets the average as −ABS.

C. Results

In this section, we show that MARS, by using a combina-
tion of heuristic and the RL-A3C algorithms, can improve
the performance, time and avoid over-fitting the network
for scheduling tasks on HPC systems. Most reinforcement
learning algorithms need to be configured with proper param-
eters from HPC. Figure 3 shows the different policies based
on different configurations, where the y-axis is the average
bounded slowdown, and the x-axis is the different scheduling
policies.

Our scheduler ratio of training and testing was 70% to 30%,
similar to most other RL algorithms. We categorized three
different configurations and sizes for our testbed: the small
data-set contained between 512 to 2000 tasks, the medium size
data-set was from 2000 to 9000 tasks, and lastly, the large data-
set was between 10000 to 25000 tasks. We randomly selected
tasks from different data sets and performed experiments
with different configurations. We considered the number of
iterations per task in DNN and the delay between task arrival.
By experimenting with different configurations, we showed
that the proper configuration causes a significant difference
in result in reinforcement learning and heuristic algorithms.
Lastly, we added the cost-aware probabilities after creating
the RL-A3C model.

In figure 3 part (a), we choose a large data-set from IBM
SDSC Blue with 20000 tasks to train and 6000 tasks to test.
However, since the data configuration was chosen randomly,
the reinforcement learning algorithm reacts worst than MARS.
Similarly, in part (b), we selected 15000 random tasks and
observed the same result; however, if the workflow size is
large enough and the data is consistent with the configuration
of DNN, the RL-A3C algorithm will improve. Figure 3 part
(c) was HPC2N data-set with 4000 selected tasks, and Figure 3
part (d) contains small selected tasks from ANL Intrepid data-
set. All three experiment configurations were chosen randomly.

As discussed, the MARS scheduler tries to solve this issue
in two ways: it either combines the tasks to generate a proper
size for training and testing in RL-A3C or switches back to
a heuristic algorithm. In our experiment, we showed that in
the case of a proper and ideal configuration 3 (e), RL-A3C

performs better compared to MARS. However, since in HPC,
achieving the ideal configuration is rather difficult, in other
cases, such as Figure 3 part (f), using the suggested method
derives a better performance. Our experiment shows MARS on
average can achieve between 5% to 60% better performance
compared to other policies.

Another issue in reinforcement learning to consider is over-
fitting the network. In figure 4 we observe that based on data-
set configuration and learning ratio, we can achieve different
performances. Figure 4 part (a) is a large data-set with 50000
iterations per task, which causes RL-A3C learning to interact
frequently with the HPC system.

Figure 4 part (b) is the optimal configuration with the proper
size data-set; however, in part (c), the configuration and HPC
parameters change randomly, and that causes the RL-A3C
agent to interact with HPC more often. Figure 4 part (d)
and part (e) shows the comparison of different experiments
together, and lastly, part (f) shows an insufficient data-set size
to train. To resolve these issues, MARS tries to update the
reward values from HPC after each iteration, and by selecting
a heuristic algorithm for small data-set sizes, we bypass the
inefficient training model.

In our test experiment, the cost of each task was randomly
generated, and after RL-A3C soft-max values, we incorporate
costs as another probability function as a probability between
0 and 1. We used Gaussian distribution to add the cost factor to
the final step of the DNN soft-max calculation. As discussed
before, adding the cost to the training model would result in a
unique data model. As a consequence of keeping the model’s
generality, the cost would be incorporated after creating the
DNN network. A more specific reward value can be derived
from the HPC system by calculating the cost with each action
taken by the agent. As shown in figure 3, with random
configuration for RL-A3C, the performance decreases between
5% to 60%. However, by using MARS policy and combining
heuristic and RL-A3C with cost-awareness, the performance
improves back to an optimal solution.

VI. RELATED WORK

HPC task scheduling has been a long-time research topic.
Countless studies have been done, including heuristic al-
gorithms such as First Come First Serve (FCFS), Shortest
Job First (SJF) and more sophisticated policies like WEP3,
UNICEF and even machine learning approaches. MARS is
clearly different from the existing studies as it takes advantage
of existing resource management on HPC systems and it com-
bines the best suitable algorithm to maximize the performance
and reduce the training time [18], [19].

Mirhoseini et al. [25], [26] use DRL to optimize placement
of computation graph, Xu et al. [27] use the same method
to select routing paths between network nodes for traffic, and
Mao et al. [28] used the same principle to select video stream
rates dynamically.

Recently, several studies also started to leverage deep rein-
forcement learning in resource allocation and job scheduling in
a distributed environment, such as DeepRM [29], and Decima



[20]. However, none of these uses existing HPC resource
management and combines the heuristic algorithm with deep
reinforcement learning.

Although they used similar DRL methods as MARS, these
studies are not designed for scheduling HPC tasks, which are
fixed, rigid, and non-preemptable.

These differences led to different designs and optimizations
in MARS, detailed in Section III-A. The most recent HPC
tasks scheduling [19] uses brute force simulations to generate
a large number of data samples, each of which shows the
best scheduling decision given a random job sequence. Then,
applying machine learning methods on these data samples to
build scheduling functions that can best fit these samples.

VII. CONCLUSION

In this study, we proposed a new cost-aware reinforcement
learning policy for task scheduling on HPC systems using the
existing resource manager, allowing the system administrators
and users to optimize the scheduling of tasks based on any
preferred algorithm and cost-effectiveness. We showed that
using MARS, which combines heuristic and deep reinforcement
learning actor-critic algorithm, HPC systems can be optimized
for both legacy and complex workflows. We performed better
by choosing different configurations and switching between
heuristic and RL-A3C. MARS can improve the modularity
and support for both legacy and complex workflows, and it
can optimize task execution based on the most appropriate
approach.
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