
Exploiting Hierarchy in Parallel Computer Networks to Optimize

Collective Operation Performance

Nicholas T. Karonis

High{Performance Computing Laboratory

Department of Computer Science

Northern Illinois University

DeKalb, IL 60115

karonis@niu.edu

Bronis R. de Supinski

Center for Applied Scienti�c Computing

Lawrence Livermore National Laboratory

Livermore, CA 94551

bronis@llnl.gov

Ian Foster

Argonne National Laboratory

Argonne, IL 60439

The University of Chicago

Chicago, IL 60637

foster@mcs.anl.gov

William Gropp

Ewing Lusk

John Bresnahan

Mathematics and Computer Science Division

Argonne National Laboratory

Argonne, IL 60439

fgropp,lusk,bresnahag@mcs.anl.gov

Abstract

The eÆcient implementation of collective commu-

nication operations has received much attention. Ini-

tial e�orts modeled network communication and pro-

duced \optimal" trees based on those models. How-

ever, the models used by these initial e�orts assumed

equal point-to-point latencies between any two pro-

cesses. This assumption is violated in heterogeneous

systems such as clusters of SMPs and wide-area \com-

putational grids", and as a result, collective operations

that utilize the trees generated by these models perform

suboptimally. In response, more recent work has fo-

cused on creating topology-aware trees for collective

operations that minimize communication across slower

channels (e.g., a wide-area network). While these ef-

forts have signi�cant communication bene�ts, they all

limit their view of the network to only two layers. We

present a strategy based upon a multilayer view of the

network. By creating multilevel topology trees we take

advantage of communication cost di�erences at every

level in the network. We used this strategy to imple-

ment topology-aware versions of several MPI collective

operations in MPICH-G, the Globus-enabled version of

the popular MPICH implementation of the MPI stan-

dard. Using information about topology discovered by

Globus, we construct these topology-aware trees auto-

matically during execution, thus freeing the MPI ap-

plication programmer from having to write special �les

or functions to describe the topology to the MPICH li-

brary. We present results demonstrating the advan-

tages of our multilevel approach by comparing it to the

default (topology-unaware) implementation provided by

MPICH and a topology-aware two-layer implementa-

tion.

1. Introduction

The problem of building \optimal" trees for collec-

tive operations has received much attention over re-

cent years. The telephone model, which assumes that

send and receive times are equal, implies that the op-

timal broadcast algorithm uses a binomial tree. Under

models that expand the telephone model to account for

message latency, such as the postal [1] or LogP [5] mod-

els, the communication topology of an optimal broad-

cast algorithm becomes a generalized Fibonacci tree.

All these approaches construct optimal trees for collec-

tive operations by �rst modeling the communication

characteristics of a network with a set of parameters

and then building the optimal trees based on parame-

ter values and their model.

Underlying all of this work is the assumption that

the communication times between all process pairs in

the computation are equal. While this is a reason-

able approximation when the entire computation is

performed on a single machine, it is not reasonable

when the computation is executed on a cluster of sym-

metric multiprocessors (SMPs) in a local-area network

or worse, in a computational grid [10, 6] environment,

in which multiple parallel computers are connected by

local area, campus-area, or even wide-area networks.

Rapid improvements in network performance have en-

gendered considerable interest in parallel computing in

the latter context, as evidenced by such experiments

and initiatives as the I-WAY [8], National Technology

Grid [17], and Information Power Grid [14].

Under these circumstances the trees produced by

the conventional models perform suboptimally. In such

heterogeneous environments, communication costs at

di�erent levels in the hierarchy can di�er by an order

of magnitude or more. In these situations, topology-

aware algorithms can achieve dramatic improvements

in performance. For example, in the case of N pro-

cessors distributed into two clusters, a traditional re-

duction algorithm may generate O(log N) intercluster

messages, while a topology-aware algorithm generates

only 1, for a cost saving of a factor of O(log N) if in-

tercluster message costs dominate.

Previous work [13, 15] has demonstrated that

topology-aware collective operations can indeed reduce

communication costs by reducing the amount of com-

munication performed over slow channels. However,

this work limited the depth of network strati�cation to

only two levels: other processors are either near or far.

In this paper, we present new algorithms that allow col-

lective operations to exploit knowledge concerning the

structure of a multilevel network, in which the neigh-

bors are processors that are categorized according to

their expected point-to-point communication charac-

teristics.

In order to permit experimental studies, we have

implemented our algorithms for three of the collec-

tive operations supported by the Message Passing In-

terface (MPI) standard: MPI_Bcast, MPI_Reduce, and

MPI_Barrier. We use the MPICH-G [7, 9] version of

the popular MPICH implementation [12] of the MPI

standard [16], which uses services provided by the

Globus toolkit to support execution in heterogeneous

and distributed environments. This use of MPICH-G

enables experimentation within realistic wide-area en-

vironments that would not otherwise be easily accessi-

ble. In addition, we are able to use information pro-

vided by the Globus system to determine a particular

computer system's topology automatically.

In the sections that follow, we brie
y discuss recent

topology-aware e�orts. Next, we describe our multi-

level topology approach. We present experimental re-

sults that illustrate the bene�ts of our multilevel ap-

proach by comparing it to the topology-unaware im-

plementation currently distributed with MPICH and

to MagPIe [15], one of the topology-aware two-level

implementations of collective operations. We conclude

with a discussion of future work.

2. Recent Work

Recent e�orts have focused on creating \optimal"

trees for collective operations where point-to-point

communications are not necessarily equal between any

two processes. Husbands and Hoe present MPI-

StarT [13], an MPI implementation for a cluster of

SMPs interconnected by a high-performance intercon-

nect. They reported signi�cant improvements after

modifying the MPICH broadcast algorithm, which uses

binomial trees. Their modi�cations use information

that describes their cluster topology by minimizing in-

tercluster communication during collective operations.

MagPIe [15] is another MPI system designed to con-

struct collective operation trees in heterogeneous com-

munication environments. MagPIe recognizes a two-

layer communication network that distinguishes be-

tween local- and wide-area communication. By min-

imizing wide-area communication, much in the same

way MPI-StarT minimizes intercluster communication,

MagPIe has seen signi�cant improvements in all the

MPI collective operations.

Both e�orts have produced impressive results and

clearly demonstrate that there are signi�cant ad-

vantages to implementing collective operations in a

topology-aware manner. However, both limit their

view of the network to only two layers; MPI-StarT

distinguishes between intra- and intercluster commu-

nication within the same local-area, and MagPIe dis-

tinguishes between local- and wide-area communica-

tion. There are opportunities for further optimization

by using trees that stratify the network deeper than

two layers.

3. Multilevel Topology Aware Approach

Figure 1 depicts an MPI application involving 32

processes distributed over three machines located at

Lawrence Livermore National Laboratory (LLNL) and

Argonne National Laboratory (ANL). At LLNL we de-

pict 16 processes on the IBM SP equipped with 4-way

SMP nodes, 4 processes per SMP node. At ANL we

depict 8 processes on the SGI Origin2000 and another

8 processes on the IBM SP. The slowest communica-

tion is between sites, which use TCP over the wide-area

ANL

IBM SPSGI Origin 2000

WAN LAN

LLNL

IBM SP with 4-way SMP nodes

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

1716 18 19

20 21 22 23

24 25 26 27

28 29 30 31

Figure 1. An example of a grid computation in-
volving 16 processes on one IBM SP at LLNL
and another 16 processes distributed evenly
across an IBM SP and an SGI Origin2000 at
ANL.

node 0 node 1 node 2 node 3

IBM SP SGI Origin

LLNL ANL

IBM SP

Level 0

Level 1

Level 2

Level 3

cid=0 cid=1

cid=0 cid=0 cid=1

cid=3cid=2

cid=0,...7 cid=0,...7

cid=0,...3 cid=0,...3 cid=0,...3 cid=0,...3

cid=1cid=0

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

Figure 2. A multilevel view of a grid computa-
tion annotated with cluster ids at each level.

network, with faster communication between the Ori-

gin2000 and the IBM SP, which use TCP over their

local-area network, and the fastest communication, of

course, within each machine. To take full advantage of

the communication cost di�erences at all levels, we de-

pict this con�guration with the multilevel topology tree

in Figure 2.

Each level of the tree represents a di�erent commu-

nication channel: TCP over a wide-area network at

level 0, TCP over a local-area network at level 1, and

so forth, with the slowest channel at the top. Pro-

cesses are grouped into subtrees or clusters based on

their ability to communicate with each other relative

to a particular level. For example, processes 0{15 all

have a common ancestor at level 0 because they are all

at the same site. We represent the tree by assigning to

each process a depth and cluster identi�er, or cluster id,

at each level. The cluster ids for each process appear in

Figure 2. For example, at levels 0 and 1, processes 0{15

all have a cluster id 0; and at level 2 processes 0{4 have

a cluster id 0 while processes 4{7 have cluster id 1. The

depth of processes 0{15 is four, while the depth of the

remaining processes is only three. This re
ects the fact

cluster[0] = copy of user level communicator;

For (i = 1; i < MPID_Depth; i++)

MPI_Comm_split (cluster[i-1],

MPID_Clusterid(i),

0, &cluster[i]);

cluster_rank = 0;

For (i = MPID_Depth - 1; i > 0; i--)

MPI_Comm_split (cluster[i-1], cluster_rank,

0, &master[i]);

if (cluster_rank != 0)

/* this task not a level i master */

MPI_Comm_free (&master[i]);

MPI_Comm_rank (cluster[i], &cluster_rank);

Figure 3. Pseudo-code for the hidden commu-
nicator creation algorithm.

that the IBM SP has two methods of communication:

internode communication over the IBM switch, and the

faster intranode communication over shared memory.

Using information about network topology discovered

by Nexus [11], the communication component within

Globus, the depths and cluster ids are determined au-

tomatically during execution by MPICH-G. Users do

not need to modify their application, write special func-

tions, or describe the topology in special �les.

We augmented the MPICH Abstract Device In-

terface (ADI) API to include two new functions

(MPID_Depth and MPID_Clusterid) that query the

MPICH abstract device for a process's depth and clus-

ter id. MPICH, by relying on its underlying ab-

stract device to determine this information, can imple-

ment topology-aware collective operations in a device-

independent manner. We then modi�ed the MPICH

implementations of three of the collective operations;

broadcast, reduction, and barrier. Below, we describe

our modi�cations for the MPI_Bcast function in detail.

3.1. Topology-aware Broadcast

Our approach to providing topology-aware collective

communications is a natural extension of MPICH's cur-

rent implementation. Each time a new MPI communi-

cator is created, the current release of MPICH creates

a hidden communicator that is used for all collective

communication; we use the depth and cluster ids to

create a set of hidden communicators that capture the

communication topology of the system. These commu-

nicators allow our collective communication routines to

minimize use of the slowest levels of the communication

hierarchy.

Conceptually, our set of hidden communicators is

partitioned into two sets: cluster communicators and

master communicators. The cluster communicators

capture the clusters to which each task belongs at each

level of the system. We pick one task to represent each

cluster during collective communications for interclus-

ter communication at that level; in other words, the

task acts as master of the cluster. The master commu-

nicators are composed of these master tasks.

Figure 3 shows an abstract version of the algorithm

that creates the hidden communicators for a new user-

level communicator. First, the algorithm makes a copy

of the user level communicator that serves as the level

zero cluster communicator; this communicator is iden-

tical to the hidden communicator used by the current

version of MPICH. Then, a loop over MPI_Comm_split

operations creates the remaining cluster communica-

tors, each one dividing a cluster of the previous level

into its constituent clusters. Finally, a second set of

MPI_Comm_split operations gathers a representative

from each of the constituent clusters into the master

communicator for that level.

Note that we discard the master communicator if

the task is not rank zero in the constituent cluster.

This strategy results in a single master per constituent

cluster. We use the rank zero member of each of the

constituent clusters as its master because every con-

stituent cluster must have at least one member, while

there is no guarantee that the discarded communicators

have a representative of each constituent cluster. We

discuss how we use the master communicators shortly.

The abstract version of our algorithm is not very

eÆcient. Each call to MPI_Comm_split requires two

collective communications: one to allocate contexts for

the new communicator and one to distribute the colors

(which are all zero in our calls) and keys to every task.

In practice, all of the required contexts can be allocated

at the same time as the context for the user-level com-

municators. Further, the keys required to create the

cluster communicators are the cluster ids applicable to

each task. We must gather these because we assume

a task cannot deduce the cluster ids of a remote node.

However, these can be gathered once, during MPI_Init.

Finally, each task can independently deduce the keys

used to create the master communicators from the full

mapping of the communication topology that results

from gathering all of the cluster ids.

Our implementation performs each collective com-

munication over the master communicators succes-

sively. This approach makes optimizing the collective

communication at each level an orthogonal issue. As a

result, we can easily plug in an algorithm that exploits

speci�c capabilities of a given level, such as writing

MPI_Bcast(buffer, count, datatype, 0, comm)

For (i = 1; i < MPID_Depth; i++)

MPI_Comm_rank (cluster[i], &cluster_rank);

if (cluster_rank == 0)

MPIR_LevelBcast (buffer, count, datatype,

0, master[i], i);

Figure 4. The multilevel broadcast algorithm
for rank 0 root.

MPI_Bcast (buffer, count, datatype, root, comm)

MPI_Comm_rank (comm, &rank);

For (i = 1; i < MPID_Depth; i++)

MPI_Comm_rank (cluster[i], &cluster_rank);

if ((cluster_rank == 0

&& !(root is_member cluster[i]))

|| (rank == root))

if (root is_member cluster[i-1])

master_root = Rank_of_master (root, i);

if (root is_member master[i])

curr_master = master[i];

else

Substitute_root_for_master (root,

master_root,

master[i],

&curr_master);

else

master_root = 0;

curr_master = master[i];

MPIR_LevelBcast (buffer, count, datatype,

master_root, curr_master, i);

Figure 5. The multilevel broadcast algorithm
for arbitrary root.

the message just once into a shared memory bu�er or

sending the message over a broadcast medium such as

ethernet [4].

We now present details of our broadcast implemen-

tation; implementations of other collective communi-

cations are similar. Figure 4 shows the algorithm that

we use if task zero is the root of the broadcast. In

this case, we can simply use the broadcast algorithm

appropriate for the communication method of each of

the master communicators. We use the same algorithm

with a small modi�cation if task zero is not the root.

In this case, no change is necessary at any level for

which the cluster_rank of the root is zero. Similarly,

no change is necessary for a task at level i if the root

is not in its level i � 1 cluster. If the root is in the

same level i�1 cluster and is a level i master, we use it

as the root of the broadcast over master[i]; if the root

For (each message size M)

MPI_Barrier(MPI_COMM_WORLD)

if (MPI_COMM_WORLD rank == 0)

t0 = get_time()

For (r = 0; r < Nprocs; r ++)

MPI_Bcast(root=r to MPI_COMM_WORLD

message size M)

ack_barrier()

if (MPI_COMM_WORLD rank == 0)

t1 = get_time()

report message size M, time t1-t0

Figure 6. The broadcast timing application.

is not its level i master, we �rst substitute the root

for its master. Figure 5 shows our complete broadcast

algorithm.

4. Experimental Results

To demonstrate the advantages of our multilevel ap-

proach, we examine its e�ects on MPI_Bcast. The

MPICH implementation of MPI_Bcast is based on bi-

nomial trees, hence in a distributed heterogeneous en-

vironment like a computational grid its performance

is acutely sensitive to the distribution of the processes

and the root of the broadcast. For example, in an ap-

plication using P = 2k processes distributed evenly

across C = 2i; 0 � i � k clusters, a broadcast imple-

mented using a binomial tree propagates the message

down its longest path using at least log2C interclus-

ter messages and log2
P
C
intracluster messages. In con-

trast, under certain intercluster network performance

conditions described by Bar-Noy and Kipnis in their

postal model, our multilevel method could be used to

send 1 intercluster message and log2
P
C
intracluster mes-

sages. Assuming an intercluster latency ls sec and

bandwidth bs Kb/sec; and an intracluster latency lf
sec and bandwidth bf Kb/sec, broadcasting a message

of N Kb using the binomial tree conservatively takes

O((logC)(ls +
N
bs
) + (log P

C
)(lf +

N
bf
)) while broadcast-

ing the same message using our multilevel method takes

only O((ls +
N
bs
) + (log P

C
)(lf +

N
bf
)).

We wrote a small MPI application (depicted in Fig-

ure 6) that times the broadcasts of messages of increas-

ing size. In an attempt to represent a broadcast with

an arbitrary root, we timed how long it would take to

broadcast each message of size M as each process in

MPI_COMM_WORLD took its turn as the root. Also, in or-

der to eliminate any potential pipelining that might oc-

cur between consecutive broadcasts, we inserted a bar-

rier (ack_barrier()) after each broadcast in which all

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
)

Msg Length (KByte)

default MPICH-G
topology-aware MPICH-G

Figure 7. Original MPICH broadcast vs.
topology-aware MPICH broadcast across a
wide-area network running 16 processes on the
IBM SP at SDSC, 16 processes on the IBM SP
at ANL, and 16 processes on the SGI Ori-
gin2000 at ANL.

processes other than rank 0 MPI_Send an ACK message

to process 0 and then wait to MPI_Recv a GO message.

Process 0, after MPI_Recv'ing the ACK message from

all the other processes, MPI_Send's a GO message to

each of the other processes, one at a time. We chose to

write our own barrier rather than calling MPI_Barrier

because we have reimplemented MPI_Barrier to re
ect

multilevel topology and we wanted these tests to re
ect

the di�erences only in the broadcast implementations.

We conducted three experiments, each time running

the MPICH-G application depicted in Figure 6 on var-

ious combinations of three computers; the IBM SP at

the San Diego Supercomputer Center (SDSC-SP) and

the IBM SP (ANL-SP) and SGI Origin200 (ANL-O2K)

at Argonne National Laboratory.

In our �rst experiment we measured the bene�ts of

minimizing wide-area communication. We ran the ap-

plication twice, �rst using MPICH-G 1.1.2 and then

using our topology-aware version of MPICH-G 1.1.2,

each time using 16 processes on each of the three com-

puters. The performance of each implementation is

depicted in Figure 7.

In our second experiment we measured the bene�ts

of minimizing local-area communication. Again, we

ran the application twice, this time using 16 processes

on each of two machines located at ANL (ANL-SP and

ANL-O2K). The performance of each implementation

is depicted in Figure 8.

In our third and �nal experiment we measured the

combined bene�ts of minimizing local- and wide-area

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
)

Msg Length (KByte)

default MPICH-G
topology-aware MPICH-G

Figure 8. Original MPICH broadcast vs.
topology-aware MPICH broadcast across a
local-area network running 16 processes on the
IBM SP and 16 processes on the SGI Ori-
gin2000 at ANL.

communication. We again compare our multilevel

topology approach to the binomial tree provided by

MPICH and include comparisons to the 2-level ap-

proach provided by MagPIe. In this experiment we

ran the application four times, each time using 16 pro-

cesses on each of the three computers. These results

are depicted in Figure 9. The curves labeled \MagPIe-

machine" and \MagPIe-site" represent two runs using

MagPIe version 2.0.1 (as of July 1999), each time with

a di�erent cluster de�nition. Described brie
y, Mag-

PIe implements its 2-level approach by asking the ap-

plication programmer to supply functions that de�ne

the 2-level cluster topology. In our �rst MagPIe run

(\MagPIe-machine") we de�ned three clusters, one for

each computer, of 16 processes each. In our second

MagPIe run (\MagPIe-site") we de�ned two clusters;

an ANL cluster comprised of the two ANL machines

having 32 processes and an SDSC cluster comprised of

the SDSC-SP having only 16 processes.

These results demonstrate the advantages of a mul-

tilevel view of the network. Figure 7 shows enhanced

performance when wide-area communication is mini-

mized, and Figure 8 shows that once the message has

reached a particular site, there are even more bene-

�ts in minimizing local-area communication. Figure 9

reinforces these two independent notions by showing

there are signi�cant bene�ts to the multilevel approach

when compared to a simple binomial tree and even

when compared to a 2-level approach as implemented

by MagPIe. A multilevel view of the network allows an

application to avoid slower channels at each level. In

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
)

Msg Length (KByte)

default MPICH-G
MagPIe-site

MagPIe-machine
top-aware MPICH-G

Figure 9. Original MPICH broadcast vs.
topology-aware MPICH broadcast vs. MagPIe
broadcast across local- and wide-area networks

running 16 processes on the IBM SP at SDSC
and 16 processes on each the IBM SP and
SGI Origin2000 at ANL.

our experiments, the broadcast is optimized by send-

ing one message across the wide-area (level 0), then one

message across the local-area (level 2), and then many

messages within each computer (level 3).

5. Future Work

Our initial work in augmenting the MPICH ADI

API and the Globus device has allowed us to mod-

ify three of the MPI collective operations (MPI_Bcast,

MPI_Reduce, and MPI_Barrier) in MPICH. Encour-

aged by our initial results, we plan to ugrade the re-

mainder of the MPICH collective operations in a simi-

lar manner.

Our general strategy implements a collective opera-

tion by �rst stratifying the network into multiple lev-

els and then minimizing the communication across the

slowest channels. However, in doing so we may en-

counter a tree that has multiple siblings at a particu-

lar level, for example many sites connected across the

wide-area network or many machines at a particular

site. When this happens, we implement the collective

operation at that level using the default MPICH algo-

rithm. For example, when performing an MPI_Bcast

in a computation involving many sites, the �rst phase

of our strategy would require a broadcast from the

root node to a representative node at each site. In

this situation, the default MPICH binomial tree would

be used to perform that broadcast. Unfortunately,

a binomial tree is not always the best choice. In

the postal model Bar-Noy and Kipnis show that the

shape of a collective operation tree depends heavily on

the point-to-point communication characteristics of the

send/receive primitives upon which it is implemented.

Their model incorporates a latency parameter � � 1.

They show that for low latencies, for example, commu-

nication within a single machine, the optimal broadcast

tree is a binomial tree, but for higher latencies, for ex-

ample, communication across a wide-area network, the

optimal broadcast tree becomes
atter. We intend to

investigate ways to select better, if not optimal, collec-

tive operation trees by choosing those that respect the

di�erent communication characteristics at each level of

our multilevel view.

We believe the topology information detected by

MPICH devices can be valuable to some MPI applica-

tions. Two examples of MPI computational grid com-

putations are Cactus [3], an astrophysics code for solv-

ing general relativity problems, and OVERFLOW [2],

a computational
uid dynamics code. We plan to in-

vestigate solutions, perhaps through attributes associ-

ated with MPI communicators, that make the topology

information available at the MPI application layer.

6. Summary

As grid computations become increasingly preva-

lent, the need for topology-aware collective operations

also increases. Through the creation and use of hidden

communicators we have a version of MPICH-G that

implements three collective operations in a topology-

aware manner and have shown, at least for MPI_Bcast,

that when compared to the binomial tree provided by

MPICH and the 2-level approach provided by MagPIe

there are signi�cant advantages to executing collective

operations using a multilevel view of the network. By

modifying MPICH such that topology information is

provided by the abstract device layer and the collec-

tive operations are implemented at the MPICH layer

based on that information, we have provided a means

by which any MPICH device may take advantage of

the new topology-aware MPICH algorithms by simply

providing two new functions.

Using information about topology discovered by

Globus, MPICH-G users will �nd that the topology

information is automatically detected, thus enabling

their MPI applications to enjoy the bene�ts of these

optimized collective operations without requiring code

modi�cations, special functions, or special �les.

Finally, this work has provided a foundation that

will eventually allow MPICH-G applications to dis-

cover and use the topology information detected at the

MPICH device layer.

Acknowledgments

We thank Joseph Link at Northern Illinois Univer-

sity for his help in running our experiments. We thank

also Stuart Martin at Argonne National Laboratory for

developing the Multi-site Advanced Reservation Sys-

tem (MARS) and the sta�s at Argonne and the San

Diego Supercomputer Center for their cooperation in

using MARS. We found MARS to be a valuable, if not

essential, tool in co-scheduling our experiments.

This work was supported in part by the Defense

Advanced Research Projects Agency under contract

N66001-96-C-8523; by the Mathematical, Informa-

tion, and Computational Sciences Division subprogram

of the OÆce of Advanced Scienti�c Computing Re-

search, U.S. Department of Energy, under Contract

W-31-109-Eng-38; by the U.S. Department of Energy,

under contract DE-FC02-99ER25398; by NASA's In-

formation Power Grid program; and under the aus-

pices of the U.S. Department of Energy by Lawrence

Livermore National Laboratory under contract no.

W-7405-Eng-48; Release No. UCRL-JC-134070.

References

[1] A. Bar-Noy and S. Kipnis. Designing broadcasting al-
gorithms in the postal model for message-passing sys-
tems. In Proceedings of the 4th Annual ACM Sympo-

sium on Parallel Algorithms and Architectures, pages
13{22, June 1992.

[2] S. Barnard, R. Biswas, S. Saini, R. V. der Wijngaart,
M. Yarrow, L. Zechter, I. Foster, and O. Larsson.
Large-scale distributed computational
uid dynamics
on the information power grid using globus. In Fron-

tiers '99: The 7th Symposium on the Frontiers of Mas-

sively Parallel Computation, pages 60{67, Feb. 1999.
[3] W. Benger, I. Foster, J. Novotny, E. Seidel, J. Shalf,

W. Smith, and P. Walker. Numerical relativity in a
distributed environment. In Proceedings of the Ninth

SIAM Conference on Parallel Processing for Scienti�c

Computing, Apr. 1999.
[4] J. Bruck, D. Dolev, C. T. Ho, M. C. Rozu, and

R. Strong. EÆcient message passing interface (MPI)
for parallel computing on clusters of workstations. In
Proceedings of the 7th Annual ACM Symposium on

Parallel Algorithms and Architectures, pages 64{73,
June 1995.

[5] D. E. Culler, R. Karp, D. A. Patterson, A. S. K. E.
Schauser, E. Santos, R. Subramonian, and T. von
Eicken. LogP: Towards a realistic model of parallel
compuation. In Proceedings of the 4th SIGPLAN Sym-

posium on Principles and Practices of Parallel Pro-

gramming, pages 1{12, May 1993.

[6] I. Foster and C. Kesselman, eds. The GRID: Blueprint
for a New Computing Infrastructure. Morgan Kauf-
mann, 1998.

[7] I. Foster, J. Geisler, W. Gropp, N. Karonis, E. Lusk,
G. Thiruvathukal, and S. Tuecke. A wide-area imple-
mentation of the Message Passing Interface. Parallel

Computing, 24(12):1735{1749, 1998.
[8] I. Foster, J. Geisler, W. Nickless, W. Smith, and

S. Tuecke. Software infrastructure for the I-WAY
metacomputing experiment. Concurrency: Practice

& Experience, 10(7):567{581, 1998.
[9] I. Foster and N. Karonis. A grid-enabled MPI: Mes-

sage passing in heterogeneous distributed computing
systems. In Proceedings of Supercomputing '98, Nov.
1998.

[10] I. Foster and C. Kesselman. Globus: A metacom-
puting infrastructure toolkit. International Journal of
Supercomputer Applications, 11(2):115{128, 1997.

[11] I. Foster, C. Kesselman, and S. Tuecke. The Nexus
approach to integrating multithreading and communi-
cation. Journal of Parallel and Distributed Computing,
37:70{82, 1996.

[12] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-
performance, portable implementation of the MPI
message passing interface standard. Parallel Comput-

ing, 22:789{828, 1996.
[13] P. Husbands and J. C. Hoe. MPI-StarT: Delivering

network performance to numerical applications. In
Proceedings of Supercomputing '98, Nov. 1998.

[14] W. E. Johnston, D. Gannon, and B. Nitzberg. Grids as
production computing environments: The engineering
aspects of NASA's Information Power Grid. IEEE
Computer Society Press, 1999.

[15] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat,
and R. A. F. Bhoedjang. MAGPIE: MPI's collective
communcation operations for clustered wide area sys-
tems. In Proceedings of the Seventh ACM SIGPLAN

Symposium on Principles and Practice of Parallel Pro-

gramming, May 1999.
[16] Message Passing Interface Forum. MPI: A Message-

Passing Interface standard. International Journal of

Supercomputer Applications, 8(3/4):165{414, 1994.
[17] R. Stevens, P. Woodward, T. DeFanti, and C. Catlett.

From the I-WAY to the National Technology Grid.
Communications of the ACM, 40(11):50{61, 1997.

