
Optimizations Enabled by a Relational Data Model View to
Querying Data Streams

Beth Plale and Karsten Schwan

College of Computing
Georgia Institute of Technology

Atlanta, Georgia 30332
fbeth,schwang@cc.gatech.edu

Abstract

We postulate that the popularity and efficiency of SQL
for querying relational databases makes the language
a viable solution to retrieving data from data streams.
In response, we have developed a system, dQUOB, that
uses SQL queries to extract data from streaming data in
real time. The high performance needs of applications
such as scientific visualization motivates our search for
optimizations to improve query evaluation efficiency.
The purpose of this paper is to discuss the unique op-
timizations we have realized by a database point of view
to streaming data and to show that the enhanced con-
ceptual model of viewing data streams as relations has
reasonable overhead.

1 Introduction

Passage of time and widespread adoption have made
the benefits of queries as a means of retrieving data from
databases widely known to computer science specialists
and non-specialists alike. The wide popularity of SQL
as the standard query language for relational database
management systems attests to that particular language’s
ability to satisfy a user’s need for data of interest. That
is, its widespread use for a wide range of applications is
informal testament to its expressiveness.

From the recent explosion of the Internet and the
ubiquity of computers has emerged a new data source,
however, the computational data stream. Data streams
are generally regarded as event data in transit from some
source to some consumer. And the streams are preva-
lent: the Aware Home Project at Georgia Tech has data

continuously flowing from the myriad of sensors in the
house to large compute engines on campus. Scientific
investigation using high end graphics machines to visu-
alize results requires large volumes of complex scien-
tific data be transported. Delta airlines pushes in ex-
cess of 12 million events per day between the ticket
counter, check-in counter, passenger check-in, airport
update monitors in concourses, reservations desks, and
the mainframes [10].

We hold a commonly held view of data streams
as streams of events, where an event is timestamped
data about a component. Our group has developed the
notion and established the viability ofcomputational
data streams, streams with computation inserted at the
source, destination, or at intermediate points between.
The computations serve to transform, aggregate, or fil-
ter the data. For example, aggregation might be em-
ployed to sum values over neighbor points in a 3D space
to reduce downstream bandwidth needs. Transforma-
tion might perform units conversion or partially prepare
the data for visualization. Computational data streams
are one of the underlying mechanisms of the Infosphere
project [13]. Their viability has been established in [6].
Data streams have been treated by otherse in [4], [2], and
[7].

Our work with dQUOB is in adapting database
queries to operate over streaming data instead of
database tables. Viewing data streams as data sources
over which relational queries can be specified has been
explored in the past in the context of performance mon-
itoring [15], but it suffered limitations in the ability to
keep up. Our contribution is to replace all traces of
a database with temporary buffers to improve perfor-
mance. The work further contributes adaptivity to query
processing, under the hypothesis that more efficient, op-
timal queries can be achieved if run-time data can be fed
back into the optimization cycle.



Earlier results [12] have shown that optimized queries
can significantly reduce query computation time. Fur-
ther, our work with a global atmospheric transport model
and earlier with a autonomous robotics application has
shown that relevant and meaningful queries can be stated
with the SQL query language. Whereas earlier work by
our group has justified the benefits of stream compu-
tation [6], our work introduces a conceptual model for
thinking about computational data streams and demon-
strates the utility of coupling computation with queries
to achieve greater gains in total stream processing.

The contributions of this paper are two-fold. Con-
ceptualizing streaming data with a relational data model
creates an opportunity for new optimizations on data
streams. We present the optimizations we have real-
ized from this new way of thinking. Our choice of de-
ployment strategy and internal representation for queries
maximizes query portability and adaptability. The sec-
ond contribution is to quantify the overhead incurred by
our general query representation.

In the following section we give a brief overview of
dQUOB. The optimizations made possible by our imple-
mentation and the relational data model are the topic of
Section 3; measurements appear in Section 4. We con-
clude with related work in Section 5 and future direction
in Section 6.

2 dQUOB Overview

The dQUOB (dynamic QUery OBjects) system en-
ables users to create queries for precisely the data they
wish to use. With the queries are associated user-defined
computations, which can further filter data and/or trans-
form it, thereby generating data in the form in which it is
most useful to end users. Query execution is performed
by dQUOB runtime components termedquoblets, which
may be dynamically embedded ‘into’ data streams at
arbitrary points, including data providers, intermediate
machines, and data consumers. The intent is to distribute
filtering and processing actions as per resource availabil-
ities and application needs.

The dQUOB system is a tool for creating queries
with associated computation, and dynamically embed-
ding these query/action rules into a data stream. The
software architecture, shown in Figure 1 consists of a
dQUOB query compiler and run-time environment. The
compiler accepts an SQL query (Step 1), compiles the
query into an intermediate form as a parse tree, performs
query optimizations over the parse tree, then generates a
script. The query is deployed at the quoblet by passing
it a script (Step 2). A quoblet consists of an interpreter
to execute the script, and the dQUOB library to dynami-

cally create compiled code representations of the queries
at runtime. The script also contains information used
by the quoblet to retrieve and dynamically link the user
defined action code (Step 3). During run-time, the re-
optimizer gathers statistical information about the data
stream, periodically triggering reoptimization (Step 4).
The quoblet has three instantiated queries, Q1-Q3, and
Q1 is dependent upon the output of Q3.

compiler optimizer
script
generation

dQUOB library

queries

Interpreter Reoptimizer

quoblet

dQUOB
compiler

dQUOB runtime

Q2Q1

Q3

2

1

2

3

4

3 code
repository

1

4

User-defined action codecompiled

SQL query and action defined by scientist

action code dynamically linked into quoblet

reoptimization of compiled queries at runtime

query code moved into quoblet

Figure 1. Life of a Query/Action Rule.

3 Optimizations

Our query-based approach to making decisions over
streaming data enables optimizations that may not be
possible with other approaches, or may not be done as
naturally.

The SQL query language provides optimization po-
tential largely because SQL queries are declarative, that
is, the query specifieswhatdata is wanted, nothow the
data is to be retrieved. The optimization potential is ob-
vious: we can create a more efficient version of a query
than the one given to us by the user. Procedural queries,
on the other hand, embed an explicit order of execution.
The latter type query is more common than one might
think. A request for data written as a condition statement
in a procedural programming language such as C, C++,
or Java is obviously procedural, but so are the query lan-
guages associated with today’s directory servers such as
LDAP and DNS. The choice of SQL as a query language
allows us to optimize the queries before enacting them
and also reoptimize them on-the-fly as the environment
changes.

The relational data model provides efficient query
processing in large part because its simplicity has al-
lowed for its well-defined mathematical foundation in
relational algebra. And efficiency is a leading reason for
the popularity of relational databases. Contrast this to

2



most object-based query languages that, while provid-
ing a SQL-like syntax, have difficulty achieving efficient
query evaluation, in part by the very features that give
the object model its enhanced conceptualization; specif-
ically complex objects and class hierarchy.Complex ob-
jects are objects having nested references to other ob-
jects. The resulting path expressions are a key feature in
object queries, and a key difficulty in creating efficient
queries. Aclass hierarchyis a set of objects related by
a parent-child relationship. A query must access and re-
turn objects in some or all classes in a class hierarchy.

From our experience, events are independent in the
sense that they frequently do not contain nested relation-
ships to other events, nor are they inextricably tied to a
class hierarchy. Thus the additional conceptual expres-
siveness of complex objects and class hierarchies is not
worth the additional complexity and loss of efficiency
that accompany it.

Algebraic optimizations are heuristics which directly
manipulate the query tree, the latter being the internal
representation of the query in the query compiler. In our
work, we have considered four algebraic heuristics, all
of which have been applied in traditional database query
evaluation:
� push select operations down the query tree,
� push project operations down the query tree,
� factor out a subexpression common to two or more

queries resident in the same quoblet into a separate
query resident at the quoblet, and

� reorder select operators based on statistical metrics
about the data.

Through experimental evaluation, we determined that
while pushing selects down the parse tree yielded signif-
icant improvements in query evaluation time (by reduc-
ing the number of events participating in Cartesian prod-
uct), pushing projects had a detrimental effect on per-
formance. Projects traditionally serve to minimize the
amount of data retrieved from disk. But events in data
streams have already arrived and reside at the quoblet
so there is little value to projecting away a subset of
the fields. Further, since projection as implemented in
dQUOB requires the creation of a new event, projects
impose the burden of a copy cost.

On the basis of additional experimental evaluation,
we rejected the third heuristic. Factoring out a common
subexpression requires creating a new query that has a
project operator. The cost of executing the additional
project operator overshadowed the benefit of a reduced
number of select operations.

The fourth heuristic takes advantage of the associa-
tivity property exhibited by relational operators. That
is, the property ensures operators can be reordered with-
out a compromise to correctness. Whereas the first three

heuristics are derived from the relational model and
declarative query language and adapted to the unique
circumstances of streaming data, the fourth depends
upon the query deployment strategy and run-time rep-
resentation. Hence we introduce these before returning
to the heuristic.

3.1 Code Deployment and Internal Represen-
tation

Code generation and deployment is accomplished
through scripts, a class library, and a runtime environ-
ment. A query compiler located at a client outputs
scripts consisting of calls to the dQUOB library. The
dQUOB library is a set of classes capable of instantiat-
ing a query as a set of operators (for select, project, join)
linked as a directed graph. Code deployment occurs by
passing a script to a quoblet. The quoblet, upon receipt
of the script, invokes the interpreter to execute the script,
resulting in instantiation of the query as compiled code.

Alternative deployment processes exist. The query
compiler could instead generate procedural language
source code that is shipped to the target host machine.
A host resident compiler could generate object code that
could be dynamically linked at the quoblet. Or the object
code could be cross-compiled at the client and stored
to a code repository. The advantage of either alterna-
tive is it removes the need for the dQUOB library at
the quoblet. However, both lack support for modifying
a query on-the-fly and require additional system calls
for dynamic linking. Alternatively, the compiler could
generate a script of the query that is then interpreted at
the quoblet. This approach is employed by earlier ver-
sions of Java JDK. A next generation on-the-fly com-
piler, such as Java’s Hot Spot compiler, mitigates the
performance disadvantages of the interpreted approach.

Our script approach to code deployment has two ma-
jor strengths: first, we can conveniently deploy scripts
because scripts are small and portable. A script is
roughly one-tenth the size of compiled code it represents
and is more portable because script languages in general
are host architecture independent. Second, the combina-
tion of a script to deploy code and a directed graph for a
query’s internal representation simplifies the problem of
efficient on-the-fly query reoptimization.

As previously mentioned, certain query optimization
heuristics depend upon statistical metrics about the data.
Except in the case where historical trace data is avail-
able, statistical information cannot be computed by the
compiler because the data itself has not yet been gener-
ated. Thus these types of query optimizations must be
deferred to runtime. The particular statistical metric we
are interested in is called a selectivity. Aselectivityis a

3



probability assigned to a particular select operation. In-
tuitively, if a select tests for atmospheric level equal to
5 and there are 37 levels, then assuming the data fol-
lows a normal distribution, the probability that the se-
lect will evaluate to true is 1/37. Select operators hav-
ing smaller values are pushed lower in the query tree.
dQUOB computes selectivities at runtime by sampling
the data streams to build depth-first histograms [9]. De-
tails of the query reoptimization process are outside the
scope of this paper.

Reoptimization requires on-the-fly reordering of the
operators making up a query. A key strength of the work
is dQUOB’s ability to accomplish the reordering effi-
ciently. The efficiency rests on two facts: first, each node
in the graph is an independent, side-effect free function
with an input queue and list of output queues to which
to direct events. Second, because relational calculus op-
erators are associative, correctness cannot be compro-
mised by an incorrect operator ordering. Thus operator
reordering can be accomplished without the overhead
of guaranteeing correctness. At worst case, an order-
ing less optimal than its predecessor will be selected.
The ease with which reoptimization can be done must
be contrasted to work in code movement where blocks
of code are reordered to improve efficiency [5]. The
dQUOB runtime guarantees atomicity in query update.

Deploying scripts as queries and representing them
internally as directed graphs permits on-the-fly query re-
optimization. Though current runtime optimizations are
limited to detecting and responding to changes in selec-
tivities of the data, we are pursuing other potential opti-
mizations.

4 Measurements

We have shown the opportunity for optimization that
exists when one views data streams as tables over which
SQL queries can be stated. We have also shown the
gains in portability and in on-line optimization made
possible by deploying queries as scripts and represent-
ing queries as directed graphs. The purpose of this sec-
tion is to quantify the cost of so general an approach.
Using a moderately complex query taken from the at-
mospheric transport application we compare a dQUOB
query against the same query implemented as a hard-
coded function.

The sample SQL query, shown below, requests data
for specific atmospheric levels, 30 and above, where
the data meets one of two user specified latitudinal
criteria and when an end-to-end performance value
(i.e. p.latency), does not exceed a constant value
(MAX ERT). The directed graph consists of ten opera-

tors: seven selection, two join, and one projection.

CREATE RULE C:2 ON Data_Ev, Request_Ev

IF

SELECT Data_Ev

FROM Data_Ev as d, Request_Ev as r

WHERE

(d.lat_min >= r.lat_min or

d.lat_min <= r.lat_max) and

d.level_min >= 30 and

r.aid == 1001 and

p.latency == 1001 and

p.latency <= MAX_ERT and

d.aid = r.aid

The experiment compares a dQUOB SQL query to
the same query implemented as a procedural language
function compiled into the quoblet, the latter referred
to as a ‘static query’. dQUOB query cost is the cost
of traversing the query graph plus overhead of stor-
age reclamation. Since quoblets can support multi-
ple queries simultaneously, there is overhead associated
with event handling as well. Query processing costs are
averaged over the total stream of events to obtain a per
arriving event processing cost. Since our measure is fo-
cussed on query processing, no action (e.g. units con-
version) is performed. The performance evaluation en-
vironment consists of a cluster of single processor Sun
Ultra 30 247MHz workstations running Solaris 7 and
connected via 100 Mbps switched FastEthernet. Data
streams are implemented with the ECho [3], a publish-
subscribe, event-based middleware library. The quoblet,
provider, and consumer reside on separate workstations.

atmospheric
model

quoblet client

monitor
performance

active UI request

end−to−end
latency update

atmos
data

Figure 2. Data stream model for Case 1.

As shown in Figure 2, Case 1 consists of a quoblet
receiving events on three event event channels and writ-
ing events to one. Events generated by the atmospheric

4



model are 304K bytes in size and are generated at every
logical timestep. The client and performance monitor
generate smaller events sporadically and randomly.

Join buffer Overhead Query Total Total

size (�s) (�s) (�s) bytes

1 34.07 87.00 121.07 36.48M

10 32.35 87.31 119.66 36.48M

120 32.43 84.56 116.99 36.48M

Table 1. Case 1: dQUOB query cost per

data model event.

Join buffer Overhead Query Total Total

size (�s) (�s) (�s) bytes

1 16.65 2.78 19.43 41.95M

Table 2. Case 1: Static query cost per data

model event.

The dQUOB query processing cost is given in Table 1
for different sized join buffers. The results are broken
out into quoblet overhead and time spent evaluating the
query, that is, traversing the query graph. ‘Total cost’ is
the sum of the overhead and query columns. ‘Total bytes
sent’ is the total number of bytes received at the client.
In comparing query cost for the various buffer sizes, we
see that contrary to intuition, smaller join buffers result
in increased processing time. This is counter-intuitive
because, as we discussed earlier, the join operator is a
Cartesian product (with a condition) over two buffers so
larger buffers should always yield increased per-event
processing time.

The explanation lies in the types of events that are
participating. In dealing with time-dependent data, the
database community has introduced the distinction be-
tween a snapshot event and the interval event.1 The
snapshotevent is a snapshot the of behavior of an ap-
plication, tagged with a single timestep. Theinterval
event, on the other hand, describes behavior existing

1The temporal database community refers to ’event’ tuples and

’interval’ tuples, but because of the awkwardness of the term ’event

event’, we use ’snapshot event’ and ’interval event’.

over a duration, and is bounded by a start time and a
stop time. Interval events are useful for describing per-
sistent state of an application component. For instance,
a performance monitor can issue an end-to-end latency
event that dQUOB interprets as being valid until the next
latency event is received.

dQUOB interprets an arriving interval event that has
no stop time as being valid either until a stop event is
received or the next interval event arrives. In the latter
case, the end time of an interval event with no stop time
is assumed to be the start time of the next received event.
dQUOB uses its knowledge of interval events for more
efficient query processing: by limiting the join buffer
size for interval events. Independent of the size of the
join buffer for a snapshot event, the Cartesian product
between an interval event and a snapshot event results in
at most one tuple being generated. Our example query
has two join operations, both of which involve an inter-
val event, so join cost is constant irrespective of buffer
size. Thus, what we see at buffer sizes 1 and 10 is stor-
age reclamation time. As long as an event exists in a
join table, it must be kept around. Once it is no longer
needed, its storage is reclaimed. At buffer size 120, the
buffer is large enough to hold every data event gener-
ated, so no storage reclamation is performed.

The second table, Table 2, gives the cost per event of
processing the static query. There are a couple points to
note. First, for our purposes of comparison, a join buffer
of size one is sufficient as we are interested in worst case.
Second, the split between overhead and condition is not
clean because nuances in coding make it difficult to cap-
ture task processing costs more precisely.

A comparison between Table 1 and Table 2 reveals
the cost of dQUOB query processing. Particularly re-
vealing is the 5x overhead in total cost of using dQUOB
queries. These costs, while admittedly not trivial, must
be balanced against three observations. First, the static
query is fast in part because we coded it with an under-
standing of interval events gleaned from our work. It is
less likely that a query hand-coded by a domain special-
ist would be as efficient. Second, the good results for
the static query cost must be tempered by comparing the
‘total bytes sent’ column of both tables. This number,
which reflects the total number of bytes streamed to the
client, is 15% higher in the static case. The additional
data is attributed to duplicate data events that are gener-
ated whenever a new interval event is received. Though
duplicate removal processing could have been added to
the static case, we chose instead to highlight an impor-
tant issue: that issues of this type must be dealt with, if
not by the query evaluator, then downstream, or worse
yet, at the client. Finally, the dynamic adaptability of
queries over time give long term performance gains.

5



Case 2 consists of two snapshot events (as opposed
to one). This model could exist when a scientist wishes
to compare model generated data and observational data
obtained from satellite feeds. The publishing rate of the
sources differ considerably, one is 1/6th the rate of the
other, requiring the query to buffer the faster stream. The
results, shown in Table 3, show the cost (in microsec-
onds per event arriving from the atmospheric model) to
execute the dQUOB query.

Comparing the two rows of Table 3, the additional
cost at buffer size 120 can be attributed to graph traver-
sal and additional Cartesian product processing. For the
static query, Table 4, the decreased overhead at buffer
size 120 can be explained by less frequent storage recla-
mation, as explained earlier. Increased query processing
time at the larger buffer size can be attributed to the cost
of processing Cartesian product pairs. Comparing Ta-
bles 3 and 4, we see that the dQUOB query cost ranges
from 2.4x to 5.7x. It is worthwhile to point out that
queries with high join costs still execute in the hundreds
of microsecond range.

Join buffer Overhead Query Total

size (�s) (�s) (�s)

3 19.33 65.89 85.22

120 37.28 147.79 185.07

Table 3. Case 2: dQUOB query cost per

event.

Join buffer Overhead Query Total

size (�s) (�s) (�s)

3 25.41 10.75 36.16

120 12.94 19.47 32.41

Table 4. Case 2: Static query cost per

event.

We have, in this section, quantified the cost of our
relational data model approach to extracting data from
data streams. The sample queries give us a good feel for
the upper-end cost at roughly 6x the cost of a static im-
plementation. Additionally, we have highlighted issues
such as buffer size, duplicate suppression, and events

versus intervals that are a necessary part of data stream
management. Results showing the benefit of specific
query optimizations appear elsewhere [11]. In general,
we are seeing roughly an order of magnitude reduction
in cost between an unoptimized query and its more op-
timal cousin. The examples used here are optimized.

5 Related Research

Run-time detection in data streams has been ad-
dressed with fuzzy logic [14] and rule-based control [1].
We argue that the more static nature of these approaches
make them less able to adapt to changing user needs and
changes in data behavior. ACDS [6] focuses on dynam-
ically splitting and merging stream components; these
are relatively heavyweight optimizations that might be
added to our work. The Active Data Repository [4] is
similar to our work in that it evaluates SQL-like queries
to satisfy client needs. However, queries are evaluated
over a database. dQUOB has the freedom to embed
queries anywhere in a data stream so is better able to
manage streams from input sources of diverse origins.
Finally, the Continual Queries system [8] is optimized to
return the difference between current query results and
prior results. It then returns to the client the delta (Æ) of
the two queries. This approach complements our work,
which is optimized to return full results of a query in a
highly efficient manner.

6 Conclusion

dQUOB is a way conceptualize data streams and a
system for extracting data from data streams at runtime.
By conceptualizing a data stream as a set of relations,
one can view the process of extracting data from these
streams as specifying an SQL query that continually
evaluates over the stream, returning data that matches
the query. The dQUOB system is a prototype imple-
mentation of this conceptualization.

This paper shows that SQL, the relational data model,
and our code deployment and internal representation
techniques enable optimizations that other approaches
to querying data streams do not have at their disposal.
The measurements show that this enhanced conceptual
model has reasonable overhead. In fact, much of the
overhead, such as duplicate elimination and joins, must
be addressed anyway, and better done automatically than
by forcing the user to deal with it in an ad-hoc and likely
inefficient way.
Future research. Our most pressing task is to deter-
mine reoptimization overhead both in terms of load on

6



the quoblet and in response time. We are also addressing
interoperability of dQUOB with XML by showing how
an XML schema can be transformed into a relational
data model schema. We argue that the wealth of opti-
mizations enabled by the relational model do not exist
at present for XML’s hierarchical model, thus a transfor-
mation from XML into the relational domain is a correct
approach to interoperability.

References

[1] A. Afjeh, P. Homer, H. Lewandowski, J. Reed, and

R. Schlichting. Development of an intelligent monitor-

ing and control system for a heterogeneous numerical

propulsion system simulation. InProc. 28th Annual Sim-

ulation Symposium, Phoenix, AZ, April 1995.

[2] R. Bramley, K. Chiu, S. Diwan, D. Gannon, M. Govin-

daraju, N. Mukhi, B. Temko, and M. Yechuri. A compo-

nent based services architecture for building distributed

applications. InIEEE International Symposium on High

Performance Distributed Computing (HPDC), August

2000.

[3] G. Eisenhauer, F. Bustamente, and K. Schwan. Event

services for high performance computing. InIEEE In-

ternational High Performance Distributed Computing

(HPDC), 2000.

[4] R. Ferreira, T. Kurc, M. Beynon, C. Chang, and

J. Saltz. Object-relational queries into multidimensional

databases with the Active Data Repository.Journal

of Supercomputer Applications and High Performance

Computing (IJSA), 1999.

[5] M. J. Harrold and G. Rothermel. Performing dataflow

testing on classes. InACM Symposium on Foundations

of Software Engineering, December 1994.

[6] C. Isert and K. Schwan. ACDS: Adapting computational

data streams for high performance. InInternational Par-

allel and Distributed Processing Symposium (IPDPS),

May 2000.

[7] F. Kon, R. Campbell, M. Mickunas, K. Nahrstedt, and

F. Ballesteros. 2k: A distributed operating system

for dynamic heterogeneous environments. InIEEE In-

ternational High Performance Distributed Computing

(HPDC), 2000.

[8] L. Liu, C. Pu, R. Barga, and T. Zhou. Differential eval-

uation of continual queries. Technical Report TR95-17,

Department of Computer Science, University of Alberta,

1996.

[9] M. Muralikrishna and D. J. DeWitt. Equi-depth his-

tograms for estimating selectivity factors for multi-

dimensional queries. InACM SIGMOD Conference,

pages 28–36, June 1988.

[10] V. Oleson, K. Schwan, G. Eisenhauer, B. Plale, C. Pu,

and D. Amin. Operational information systems - an ex-

ample from the airline industry. InFirst Workshop on

Industrial Experiences with Systems Software (WIESS),

2000.

[11] B. Plale and K. Schwan. Run-time detection in par-

allel and distributed systems: Application to safety-

critical systems. InInternational Conference on Dis-

tributed Computing Systems (ICDCS), pages 163–170,

June 1999.

[12] B. Plale and K. Schwan. dQUOB: Managing large data

flows using dynamic embedded queries. InIEEE In-

ternational High Performance Distributed Computing

(HPDC), August 2000.

[13] C. Pu, J. Walpole, K. Schwan,

L. Liu, and G. Abowd. Infosphere.

http://www.cc.gatech.edu/projects/infosphere/, 2000.

[14] R. Ribler, J. Vetter, H. Simitci, and D. Reed. Autopi-

lot: Adaptive control of distributed applications.High

Performance Distributed Computing, August 1999.

[15] R. Snodgrass. A relational approach to monitoring

complex systems. IEEE Transactions on Computers,

6(2):156–196, May 1988.

7


