
User-Level Communication in a System with Gang Scheduling

Yoav Etsion and Dror G. Feitelson
School of Computer Science and Engineering

The Hebrew University, 91904 Jerusalem, Israelfetsman,feitg@cs.huji.ac.il

Abstract

One of the scarce resources that limits communication
performance is buffer space on the network interface card.
This becomes even worse when it is partitioned among sev-
eral time-sliced processes. However, if gang scheduling is
used, it is possible to swap buffer contents as part of the
context switch, giving each job the full buffer space for the
duration of its quantum. This does not suffer undue over-
head, as the buffer space is mainly used to allow a larger
flow-control window, and typically does not contain many
packets that need to be stored.

1. Introduction

It is widely known that buffer sizes affect communica-
tion performance. The buffer size limits the size of both the
receive queue and the send queue. These sizes dictate with
the flow control window size — the number of messages
that can be sent before an acknowledge reply is required.

However, there are limits on the usable buffer size. The
total amount of physical memory is finite, and most of it
has to be allocated to the application itself, not to com-
munication buffers. Large communication buffers are espe-
cially troublesome, because they typically have to be pinned
in order to support DMA, thus limiting the operating sys-
tem’s flexibility in memory management. Finally, some of
the buffers are located on the network interface card itself,
which has very limited space.

When designing a multiprogrammed parallel system the
communication buffers pose a major dilemma. Each node
in the system will run several processes that are parts of
different parallel applications, each of which must have it’s
own communication context. The simplest solution is to di-
vide the buffers by the number of processes, so each process
will get exclusive use of its fair share of the buffers. Let us
assume that the sizes of the send and receive buffers areBs
andBr, respectively. If the number of processors isp and
the number of processes running per processor isn, the ef-
fective send buffer size for each process isBsn (the general

send buffer is simply divided equally among the running
processes), and the effective receive buffer size will beBrnp ,
because each of then processes running on a host can re-
ceive messages from any of the otherp processes in its ap-
plication’s process group. This reduction in effective buffer
size limits the maximum bandwidth that can be achieved.

In this paper we study an alternative approach, that al-
locates the full send and receive buffers to the currently
running process, so as to achieve maximal bandwidth. The
communication state of other processes is stored temporar-
ily in pageable buffers residing in each process’s virtual
memory. This is enabled by the use of gang scheduling,
which guarantees that all the processes of a parallel applica-
tion run in the same time quantum, and are dormant during
all other quantums. Thus no packets are sent to a process
outside its time quantum (we do not allow inter-application
communication). A context switch stores the contents of
the communication buffers together with the process’s reg-
ular context. Since clusters using gang scheduling use a
relatively large time quantum (measured in seconds or even
minutes), and the communication buffers size is measured
in megabytes, the overhead incurred by the buffer copying
does not affect performance.

2. System Background

2.1. The ParPar Cluster

The configuration of our cluster system, the ParPar [4],
is based on 17 Pentium-Pro computers, running BSDI 3.1.
These are connected by a 10MB switched Ethernet that
serves for control functions, and a 1.28GB Myrinet [1] for
data communications. The Myrinet network interface cards
have a LANai 4.3 processor and 512 KB RAM. Data com-
munications use a modified version of the FM 2.0 library
from the University of Illinois [10] (more in Section 3).

The software is a set of daemons: a master daemon, mas-
terd, is run on one machine which is considered the host (or
manager) of the cluster, and is not used by the user applica-
tions. Every other node runs a node daemon, noded, which
manages the processes on this node. These daemons com-

1

municate using the control network, while the data network
is reserved for parallel applications.

When a user wishes to run a parallel application he con-
tacts the masterd using a third program called the job repre-
sentative, jobrep, which negotiates the loading of the appli-
cations with the masterd. The masterd then allocates nodes
on which to run the application, and notifies the nodeds run-
ning on the allocated nodes to run the application. Alloca-
tion is based on a gang scheduling matrix with 16 columns
(representing the 16 nodes) andn rows, wheren is the num-
ber of time slots required. Each cell in the matrix represents
a process of a specific parallel application associated with
a physical node. This way several parallel applications can
run in the same slot, as long as the sum of nodes they require
does not exceed the total number of nodes. The mapping of
applications into the matrix is based on the DHC scheme
[5].

The masterd switches between time slots in a round-
robin manner. Whenever a time quantum is finished, the
masterd notifies the nodeds to switch to the application in
the next time slot. This is done by a broadcast message [8].
The nodeds then start the three stage context switch proce-
dure: they first flush the network, by signaling the Myrinet
card to enter a context switch state. They then switch the
context data and the communication buffers. Finally the
nodeds signal the Myrinet card to return to normal commu-
nication status. This is explained in detail in Section 3.2.

2.2. The Fast Messages (FM) Library

The FM system was developed at the University of
Illinois as part of the High Performance Virtual Machine
(HPVM) project [10]. The system offers high speed com-
munication over Myricom’s Myrinet SAN (System Area
Network). It is composed of the following components:� A library that is linked to user applications and con-

tains an initialization routine and the basic routines for
sending and receiving messages.� A control program that is executed on the LANai pro-
cessor that resides on the Myrinet card.� A global resource manager (GRM) daemon, that is re-
sponsible for assigning job and process IDs.� A local context manager (CM) daemon on each node,
responsible for the management of communication
contexts for the processes on that node.

When a process that wishes to use FM starts running,
it must first initialize the library using a function called
FM initialize. This includes contacting the GRM in order
to perform the mapping from a job name (which is hard-
coded) into a job ID (which is dynamically allocated and

proc A

proc B

NIC memory

physical memory

contexts

pinned buf

send Q

send Q

recv Q

recv Q

Figure 1. FM supports multiprogramming by
dividing the buffer space.

guaranteed to be unique). The process registers itself with
the GRM, and receives the job ID and its rank in the job.

Each process that uses FM must have an FM context al-
located for it on the Myrinet card, so the LANai can accept
packets intended for that process, and send the process’s
packets. Part of the initialization is therefore to contactthe
CM on a well known port, and register using the job ID and
rank (received from the GRM). The CM allocates a context
dedicated for this process, for as long as it runs. The con-
text data includes the job ID the process belongs to, its rank
in the job, some sending counters, a dedicated send queue
which resides on the Myrinet card itself, and a pointer to
a dedicated receive queue which resides in the host RAM
as a pinned DMA buffer. When using multiple contexts
(that is, when supporting multiprogramming on each node)
FM divides the available space of both the Myrinet card
and the DMA buffer (which is pre-allocated by the driver
during computer bootup) equally between the different con-
texts (Figure 1). This division is based on the fixed maximal
number of contexts to be supported, and is not adapted ac-
cording to the number that are currently active.

The sending and receiving is done by the LANai, which
is a programmable general purpose CPU that resides on the
Myrinet card. This is a dual context processor. Most of
the time is spent in the send context, which keeps scan-
ning the different processes’ send queues for new packets
to send, and sends them whenever one is available. When
a packet arrives, the processor receives an interrupt, trans-
ferring control to the receiving context. The program in this

2

context consumes the packet from the network, identifies its
type and destination, and DMAs it to the target process’s re-
ceive queue on the host. When the receive context finishes
consuming all packets available on the network, it returns
control to the send context.

FM’s flow control algorithm is quite straightforward.
Each process is given a number of credits, each of which
represents one packet the process can send to another node.
This means that space is available for this packet in the other
node’s receive queue. Each process manages two credit
counters for each other node in the system — one counts
the number of packets the process can send to that node,
and the other the number of packets that can be received
from that node. The credit is refilled when a refill message
is sent between any two nodes. Such a message sent from
nodea to nodeb contains the number of packet fromb that
were consumed bya since the last refill message. Refill
messages are sent either whena noticesb’s credits fell be-
low the low water mark level, or piggybacked whenevera
sends a data packet tob.

The initial number of credits, which is also the maximal,
is set according to the worst case scenario: assuming all
nodes start sending packets to one node, what is the num-
ber of packets that can be received from each node so no
packets will be lost. This numberC0 is determined by the

formulaC0 = B0rnp , whereB0r is the size of the receive queue
allocated for the process in packets,n is the maximum num-
ber of FM processes that can run on a single host, andp is
the number of processors. Given that the buffer size allo-
cated for a process is the global buffer divided by the num-
ber of processes in the host,B0r = Brn , the actual formula isC0 = Brn2p . Thus there is an inverse square ratio between
the number of contexts and the number of credits. This
sharp reduction in the number of credits when the number
of contexts is increased leads to a sharp degradation in the
achievable bandwidth, as we shall see in Figure 5. Also note
that because of this credit scheme and the credit refill tech-
nique, a single packet loss can mess up the credit counters
and the entire flow control algorithm. FM does not have a
retransmission mechanism, based on the assumption of an
insignificant error rate on a SAN.

3. Integrating FM with ParPar

Our main goal in the integration was to eliminate FM’s
GRM and CM daemons, since ParPar already has its own
daemons — both a global one (masterd) and another one
per node (noded). All the functions fulfilled by the GRM
are already fulfilled by the masterd. Moreover, the required
job ID and rank are known by the noded prior to execution,
so there is actually no need to perform additional costly
communication operations when a process is started. Since

Initialization and maintenance:
COMM init node - initialize LANai, contexts,

routing table
COMM addnode - update topology
COMM removenode - update topology

Process control:
COMM init job - allocate context, prepare

environment variables for FMinitialize
COMM end job - cleanup

Context switch control:
COMM halt network - stop sending and perform

global network flush protocol
COMM contextswitch - swap buffers
COMM releasenetwork - synchronize and restart

sending

Table 1. API of network management library.

the functions accomplished by the CM are unique to FM,
they are, of course, not accomplished already by the ParPar.
However, they can easily be incorporated into the existing
noded, without the overhead of an independent process.

3.1. General Network Management Library

Regrettably, there is no agreed interface by which the
required information can be passed to a communication
subsystem. One approach is to put the application and its
communication system in the center, and have it contact
an available cluster management system in order to allo-
cate nodes and spawn processes [11]. However, this com-
plicates the application (or at least the communication sub-
system) by forcing it to deal with management issues —
for example, what should it do if the requested number of
nodes are not available? We prefer the opposite approach,
in which allocation is first done by the cluster management
system, which then calls a communication management li-
brary and provides it with the required information. Our
goal when designing the interface for the network manage-
ment library was therefore to design an abstract interface,
that is independent of the specific cluster management sys-
tem and communications library. The implementation of
the network management library, however, must obviously
be adapted to each specific environment.

The interface can be divided into three parts: initializa-
tion, process control, and context switching. The functions
are listed in Table 1 (the complete prototypes for the func-
tions can be found in an extended version of this paper at
http://www.cs.huji.ac.il/˜feit/gang comm.ps.gz).

3

3.2. Implementing the Abstract Interface for FM

The integration of FM into the ParPar system consists of
the following components:� A library that is linked to user applications and con-

tains an initialization routine and the basic routines for
sending and receiving messages. This is essentially the
same library as in the original FM — only the initial-
ization function was modified, as described below.� A control program that is executed on the LANai pro-
cessor that resides on the Myrinet card. This is again
essentially the same as in the original FM, with some
additions to implement network flushing.� A new library which we call “glueFM” that is linked
with the noded. This library, composed of the func-
tions defined above in Table 1, provides the function-
ality that was originally contained in the CM, and the
new functions that we have defined (e.g. for context
switching).

Initialization functions Since we already had per host
daemons running, the initialization part was implemented
by simply copying the code from the CM into the
COMM init node function of the library. This function is
called when the noded is initialized, to load the control pro-
gram into the LANai and initialize the topology and routing
tables. It gets this data from the masterd and/or from an FM
configuration file that is NFS-mounted on all nodes.

Process control functions The process control section
was a little more complex. When an FM process starts run-
ning it contacts both the GRM and the CM to obtain its
IDs and context. This is done using a three stage proto-
col, that also maintains synchronization between the run-
ning processes. This way no process can start sending to
a process that has not yet started running, and no packets
are lost. However, in ParPar the nodeds have all the IDs
prior to executing the FM process, and this data is sim-
ply transferred to the process using environment variables.
This leaves us with a synchronization problem, since the
first node to come up may start sending messages to other
processes before they are ready. The LANai on the desti-
nation nodes will not know what to do with these messages
and will drop them, leading to a loss of credits.

Our solution to this problem is divided into two parts
(Figure 2). First, we separate the process’s readiness for
sending messages from its readiness for receiving mes-
sages. Even before the process is forked, the noded calls
the COMM init job function. This allocates a context on
the Myrinet card initializing it with the job ID and rank. If
any messages now arrive, the LANai will receive them and

tim
e

masterd noded sproc LANai

job load

call init_job
- load

ready to
receive

 context
- prepare
 environ.

fork sproc

notify OK

collect all
notifications

all up

call FM_init

sync
can start
sending

- map Qs
- wait for
 sync

env

Figure 2. Procedure for initializing communi-
cation for a new job.

store them in the receive queue (which is in physical mem-
ory). This can be done even if the process has not mapped
this buffer into its virtual address space yet.

After forking, the noded notifies the masterd that the pro-
cess has been created successfully. The masterd collects
these notifications, and when all of them arrive, it notifies
the nodeds. This provides a global synchronization point.
The noded forwards this information to the process by writ-
ing a single byte on a pipe that was created before the pro-
cess was forked.

The process, for its part, calls the FMinitialize func-
tion that is part of the FM library with which it is linked
(if the process uses a higher level communication system,
such as MPI, it calls MPIinitialize, and MPIinitialize calls
FM initialize). We modified FMinitialize to obtain the data
it needs (such as its rank in the job and its context on the
LANai) from special environment variables that are set up
in advance by the noded, instead of trying to get them from
the GRM and CM. The actual format of these environment
variables is set by the COMMinit job function; the noded
just transfers them to the environment of the newly forked
process. The function then opens the LANai and maps the
send queue and receive queue into the process’s address
space. Finally, it waits for the global synchronization sig-
nal by trying to read a single byte from the pipe with the
noded (the pipe’s file descriptor is also passed in an envi-
ronment variable). FMinitialize terminates after this syn-
chronization is done, and the process can now start sending
messages to other processes.

Context switch control functions Upon receipt of a con-
text switch message from the masterd, the noded blocks the

4

network halted

S,0 S,1 S,2 S,p-1

H,1 H,2 H,3 H,p

...

...

ah ah

ah ah

lh lh lh lh

normal sending

Figure 3. State transitions during the network
flushing algorithm. States are marked with S
(still sending) or H (halted), and a number in-
dicating the total number of halted nodes we
know of. An arriving halt message causes an
“ah” transition. A local halt transition (“lh”)
is caused by the noded.

current process by sending it a SIGSTOP. At this point it is
assured that the process will not produce any more packets,
but some packets may be stored already in the send queue,
and one may even be in the process of being injected into
the network. To stop transmission on a packet boundary,
the noded calls COMMhalt network. This function sets a
bit in the LANai’s memory. The LANai control program
checks this bit before sending each packet, so once it is set
additional packets will not be sent.

Stopping transmissions is not enough — we must also
ensure that no additional messages are expected to arrive.
After stopping transmissions the LANai therefore broad-
casts a halt message to all other nodes, informing them that
it will not send any more packets. Due to the FIFO quality
of the Myrinet and the fact that FM uses a single precom-
puted route between each pair of nodes, this will indeed
arrive after all previous packets (as the Myrinet hardware
does not support broadcast, the broadcast is implemented
by a serial loop). Note that these messages are sent be-
tween the Myrinet cards only, with no interaction with the
host processor. They use specially tagged control packets,
to distinguish them from the data packets. As they are just
counted they do not need to be stored in buffers and do not
require credits.

As the nodes are not fully synchronized, the different
LANais will stop sending user packets and broadcast the
halt message at different times. Thus a certain LANai may
receive a halt message before it was notified by its noded
that it should stop transmitting packets and enter the net-
work flush phase. Flushing is therefore composed of two
independent things: one is the stopping of sending and the
broadcast of the halt message, and the other is the collec-
tion of halt messages from all other nodes. The local halt
can be interleaved with the collection of incoming halts in
an arbitrary way. This is shown by the state transition graph
in figure 3.

2

proc A

proc B

mapped

region

1

NIC memory

physical memory

pinned buf

context

send Q

recv Q

store
backing

send Q

recv Q

Figure 4. Copying buffers to switch from pro-
cess A to process B.

The next stage is the call to COMMcontextswitch to
perform the actual buffer switch. Since FM uses a fixed
send queue on the Myrinet card and a receive queue as a
DMA buffer pinned on the host, the buffer switch cannot be
accomplished using simple pointer swapping. Instead, it is
necessary to copy the running queues into a backing store,
and copy the new context’s queues from its backing store.
Also, the send queues resides on the Myrinet card itself, so
its access time is much longer than a normal RAM access
time. However, we discovered that usually the queues are
quite empty. This phenomenon can be explained by the fact
that the send queue is filled by the host processor, which
is also responsible for other processing, while it is emp-
tied by the dedicated LANai processor. Therefore, the host
processor cannot generate messages fast enough to fill the
queue. The receive queue emptiness can be explained by
FM’s window-based flow control mechanism: the large re-
ceive queue provides the sender with enough credits so that
it can send continuously, without waiting for acknowledge-
ments. Normally, packets are removed from the queue at a
rate similar to the rate at which they arrive, and the queue
stays relatively empty. The queue fills up only under spe-
cial circumstances when the processor does not manage to
remove packets fast enough. When this occurs, the receive
queue serves to buffer the incoming packets until the sender
runs out of credits and stops transmitting additional pack-
ets, but in practice, this did not happen during the measure-
ments.

5

The third and final stage of the context switch is the call
to COMM releasenetwork. this is implemented using an
identical protocol to the one used in the first stage. Each
node broadcasts to all other nodes that it is ready to receive
messages for the new context. When a node receives mes-
sages from all other nodes that they are ready to receive,
it can resume sending safely. Again, the refilling protocol
takes place between the Myrinet cards with no interference
from the host processor. The noded simply initiates it by
changing a variable located on the Myrinet card. When all
nodes are ready, the function returns and the new process is
awoken with a SIGCONT.

This context switch mechanism was found to be robust,
and withstood thorough testing without packet loss.

3.3. Flow Control Algorithm

The only change we had to make to the FM library it-
self (as oppose to the other changes that were made to the
accompanying daemons) was adjusting the flow control pa-
rameters. Recall that the maximal number of credits is cal-
culated by dividing the buffer allocated for the process be-

tween all the processes that can send it:C0 = B0rnp , whereB0r is the size of the receive queue allocated for the pro-
cess in packets,n is the maximum FM processes that can
run on a single host, andp is the number of processors. In
the original FM library, the total receive buffer is equally
divided among all the processes running on a single host,
soB0r = Brn . Using this scheme we had to set the number
of contexts (number of FM processes running on the same
host) to be the size of the time slot table — the maximum
number of parallel application that can be run alternately
using the gang scheduling mechanism.

With gang scheduling the maximal number of processes
that can send to a specific process is reduced top (instead

of np), soC0 = B0rp . Now, since only one process uses the
global receive buffer for each host at any given time, and
the buffer is saved each context switch, there is no need to
divide the global receive buffer by the number of processes
running on a host to form an exclusive receive buffer for
each process. Instead, this allows us to increase the receive
buffer used by each process to the entire global buffer, orB0r = Br. Overall, these adjustments increased the max-
imal credit number by a factor ofn2 to C0 = Brp . This
increase allows better utilization of the receive queue, with-
out increasing the buffer itself.

4. Performance Results

We measured two aspects of the algorithm: the improve-
ment in the overall bandwidth delivered by the system to the
parallel jobs running in the gang scheduling scheme, and the

1 2 3 4 5 6 7 8
number of contexts 64

256
1024

4K
16K

64K

message size

0
10
20
30
40
50
60
70
80

bandwidth [MB/s]

Figure 5. Bandwidth measurement for FM as
a function of message size and the number
of contexts, using the original FM buffer divi-
sion.

overhead incurred by the context switch itself — the time it
took to perform each stage of the network flush and buffer
switch procedure.

4.1. Effects on Bandwidth

We first measured the overall bandwidth available in the
system. Our basic bandwidth benchmark was based on the
bandwidth benchmark that comes as part of the FM distribu-
tion. The benchmark itself is a simple point-to-point mea-
surement: a parallel application which consists of two pro-
cesses, a sender and a receiver. When run, the sender starts
sending a given number of messages of a specific size. Af-
ter all the messages are received by the receiver, it sends a
finish messages to the sender and exits. When the sender re-
ceives the finish message it times it and calculated the band-
width. Although the finish message incurs some overhead
which hinders the test’s accuracy, this can be offset by using
a large enough number of messages. We used 500,000 for
small messages and 100,000 for large ones.

We ran the benchmark as a single application on the
ParPar system, so no context switches occurred. This gave
the overall bandwidth available using the buffer division
in a system that can run several applications alternately.
The results for running the benchmark using the original
FM scheme can be seen in figure 5. As we can see the
bandwidth decreases sharply when increasing the number
of contexts (or dividing the buffer size). No communica-
tion is even possible for as few as 8 contexts, or 8 parallel
applications running alternately using our gang scheduling
scheme. For small message sizes, a full credit is used even
if only part of each packet is used, so the system becomes

6

1 2 3 4 5 6 7 8
number of contexts 96

384
1536

6K
24K

96K

message size

10
20
30
40
50
60
70
80

bandwidth [MB/s]

Figure 6. Total bandwidth as a function of
message size and number of jobs, using the
buffer switching scheme.

unusable with even less contexts. The standard FM dis-
tribution actually supports only 2 contexts per node, so it
does not reveal these problems. The results also indicate
that about 256KB of memory on the NIC suffices for ade-
quate performance; hence as the available memory grows,
more contexts can be supported.

We then measured the available point to point band-
width when using our scheme. Recall that we do not divide
the global buffer among the running processes, but rather
switch it whenever the gang scheduling controller initiates
a global context switch. To measure the overall bandwidth
available by the system in this method, we had to run sev-
eral benchmark applications simultaneously, and alternate
between them using the gang scheduling algorithm, running
with a time quantum of 3 seconds. To obtain the overall
bandwidth achievable in the system, we multiplied the av-
erage bandwidth achieved by the benchmark applications,
by the number of applications running simultaneously. This
compensated for the fact that each application was effec-
tively using only a fraction of it’s elapsed runtime. Even
though this measurement incurs the overhead of the buffer
switching, the overall available bandwidth is independent
of the number of applications running in the system, and
maintains a fairly constant level as seen in figure 6. This
shows conclusively that when using the gang scheduling +
buffer switch method, the presence of multiple applications
does not impair the overall bandwidth available in the sys-
tem, so a multiprogrammed computer cluster can be more
effectively utilized, using our approach.

4.2. Overheads

When assessing our algorithm, we had to measure the
overhead incurred by the buffer switch added to every gang
scheduling context switch.

The receive buffer is a 1MB pinned down DMA buffer,
located in the computer’s RAM, and allocated by the
Myrinet driver at boot time. The send buffer is ˜400KB
in size, and is located on the Myrinet card’s own RAM.
With FM’s packet size of 1560 bytes, it means the receive
buffer is of 668 packets in size, and the send buffer is of
252 packets in size. Since the send buffer is mainly writ-
ten to and not read from, FM’s designers used an optimiza-
tion available on the P6 processors family (Pentium-Pro and
up) called’write-combining’[3]. This optimization, which
was originally developed for graphic controllers, changes
a memory region accessing policy to be uncacheable, and
all writes to that region are then accumulated in an on-
chip cache-line-sized write buffer and written to memory in
one bus transaction. This optimization accelerates memory
write speed immensely, while decelerating memory reads
drastically. On our hardware, while regular memory ac-
cesses were measured at ˜45MB/s, write-combining mem-
ory read bandwidth was measured to be as low as ˜14MB/s,
whereas write-combining memory write bandwidth rock-
eted to ˜80MB/s. This caused that even though the receive
buffer is more than twice the send buffer’s size, the time
consuming part of the buffer switch was replacing the send
buffer.

To measure the context switch overhead we used an all-
to-all benchmark, that will stress the buffers during the test.
We measured each of the three stages of the buffer switch
algorithm. As we can see in figure 7, the vast majority of
the time consumed by the switch was spent on the second
stage — the buffer switch itself. We can also see that the
flush and refilling stages consume more time as more nodes
are involved. This effect is expected since these stages in-
volve a global protocol between unsynchronized computers.
The buffer switch time, on the other hand, does not depend
on the number of nodes in the system because it is a local
procedure, and does not involve any external nodes.

These measurements led us to inspect if the copying the
entire buffers is really necessary. Figure 8 shows that in
fact the buffers a generally quite empty. The increase in
the number of valid packets in the receive buffer can be
blamed on the all-to-all communication pattern. The in-
crease in messages sent does not fill the send buffer because
the LANai processor’s only job is to empty it to the net-
work. However, the host processor cannot keep up with the
bursts of incoming packets, and the receive buffer fills up to
some degree.

This finding led us to improve our buffer switch algo-
rithm: go through the buffers and only copy the valid pack-

7

Nodes
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
yc

le
s

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

Release

Buffer switch

Halt

Figure 7. Time measurements for the buffer
switch algorithm, in cycles.

Nodes
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
ac

ke
ts

0

20

40

60

80

100

120

Valid packets in receive buffer

Valid packets in send buffer

Figure 8. Number of valid packets in the
buffers during buffer switching.

Nodes
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
yc

le
s

0

300000

600000

900000

1200000

1500000

1800000

2100000

2400000

Release

Buffer switch

Halt

Figure 9. Time measurements for the im-
proved buffer switch algorithm, in cycles.

ets. We measured the improved algorithm, whose results
can be seen in figure 9. It can be seen that the time needed
to switch the buffers is reduced dramatically, We also veri-
fied that the linear growth in the copying time is correlated
with the linear growth of the number of packets found in the
buffer.

These overhead measurements indicate that the overhead
incurred by the buffer switch is negligible compared to the
long time quantum used in multiprogrammed gang schedul-
ing machines (seconds or even minutes). This overhead was
even further reduced when we searched the buffers and only
copied the valid packets. When using a 200MHz Pentium-
Pro and the improved buffer switch algorithm, the buffer
switch takes less than 12.5msecs (2,500,000 cycles). We ran
our overhead measurements using a 1 second time quantum,
so this overhead is less than 1.25%! Even when using the
full buffer switch the time is less than 85msecs (17,000,000
cycles), an overhead which is tolerable even for such a short
quantum.

5. Related Work

Other clusters using user-level communication have also
dealt with the interaction between the user-level communi-
cation and the process scheduling.

FM specifically was used as the platform to investigate
dynamic coscheduling [12]. The idea here is that instead
of using gang scheduling, processes will be co-scheduled
on the different nodes only if this is warranted by the in-
teractions between them. This was implemented based on
a modification to FM so that incoming messages would
trigger the scheduling of the processes to which they are
destined. However, this was done with version 1 of FM,
which only supported a single full-size context (the com-
peting workload consisted of local sequential processes that
do not communicate). They therefore did not face the band-
width problems that occur when multiple contexts are used
and the size of each one is reduced.

The SHARE scheduler for the IBM SP2 switches com-
munication buffers as we do, citing the problem of having to
pin too much memory as the reason [6]. However, their im-
plementation is quite different. First, all coordination in that
system is derived from the use of synchronized clocks. The
nodes do not interact in order to synchronize, and do not
receive broadcasts from a central controller. In particular,
the network is not flushed as part of a context switch, and
nodes do not know exactly when other nodes complete their
switching. Therefore it may happen that a node receives a
packet destined for a process that is no longer running. This
is handled by comparing an ID carried in the packet with an
ID for the current process stored on the NIC, and discarding
the packet if it does not fit. It is assumed that higher-level
software (e.g. MPI or TCP) will handle the retransmission

8

needed to compensate for such lost packets.
Flushing the network as part of a context switch was pi-

oneered by the CM-5 Connection Machine [9]. This im-
plementation has the distinction of flushing messages that
are in transit, and storing them on any node in the par-
tition. When the job is re-scheduled, these messages are
re-injected into the network to complete their trip. Flush-
ing is also used in the SCore-D cluster, which uses the PM
user-level communication library [7]. This most closely re-
sembles our work, but again there are differences in the
details of the implementation. Specifically, PM uses nack
messages and resends when there is no space in the receive
buffer, rather than relying on credits. Thus there is no need
to send special control messages in order to flush the net-
work: each node simply stops transmitting, and then waits
until it receives acks or nacks for all outstanding packets.

Another similar idea lies at the basis of virtual networks
[2]. In this project, the solution for the lack of space on the
NIC is to cache active endpoints on the NIC, while moving
inactive ones to backing store on the node computer. This
approach is different from the others in that it does not cre-
ate any linkage between the communication subsystem and
the scheduling of communicating processes.

6. Conclusions

High-performance communication requires direct access
to important resources such as the scarce on-board memory
available on network interface cards. Therefore the imple-
mentation of such mechanisms should be coordinated with
other resource management policies, and specifically, with
process scheduling. We have shown that lack of coordina-
tion results in the need to split the scarce resources among
competing processes, which leads to significant degradation
in communication performance. Our solution is to use time
slicing and switch the buffers from one process to the next.
This is possible due to the use of gang scheduling, because
then we are assured that when a certain process is desched-
uled (and looses access to the communication buffers) all
its potential communication partners are also descheduled.
While such switching incurs the overhead of copying the
buffer contents, we showed that typically only a small por-
tion of the buffer is actually occupied, so the overhead is
actually rather small.

As part of this work we also defined an interface for
the integration of cluster management systems with high-
performance communication systems. An adoption of such
an interface by multiple systems would help in the de-
sign and implementation of high-performance clusters, as
it would allow each development group to concentrate on
part of the problem, while being able to use complementary
software developed by others. Without such an interface,
each cluster system needs to include both cluster manage-

ment and communication functions, with are incompatible
with those of other systems, and cannot be interchanged.

Acknowledgements

This research was supported in part by the Israel Science
Foundation founded by the Israel Academy of Sciences and
Humanities, and by the Ministry of Science Basic Infras-
tructure Fund Project 9762. We are grateful to Prof. An-
drew Chien for providing a source license of FM which en-
abled this research.

References

[1] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W-K. Su, “Myrinet: a gigabit-
per-second local area network”. IEEE Micro 15(1), pp. 29–
36, Feb 1995.

[2] B. N. Chun, A. M. Mainwaring, and D. E. Culler, “Virtual
network transport protocols for Myrinet”. IEEE Micro18(1),
pp. 53–63, Jan/Feb 1998.

[3] Intel Corp., Write Combining Memory Implementation
Guidelines. Order number 244422-001, Nov 1998.

[4] D. G. Feitelson, A. Batat, G. Benhanokh, D. Er-El, Y. Et-
sion, A. Kavas, T. Klainer, U. Lublin, and M. A. Volovic,
“The ParPar system: a software MPP”. In High Perfor-
mance Cluster Computing, Vol. 1: Architectures and Sys-
tems, R. Buyya (ed.), pp. 754–770, Prentice-Hall, 1999.

[5] D. G. Feitelson and L. Rudolph, “Distributed hierarchical
control for parallel processing”. Computer23(5), pp. 65–
77, May 1990.

[6] H. Franke, P. Pattnaik, and L. Rudolph, “Gang scheduling for
highly efficient distributed multiprocessor systems”. In 6th
Symp. Frontiers Massively Parallel Comput., pp. 1–9, Oct
1996.

[7] A. Hori, H. Tezuka, and Y. Ishikawa, “Overhead analysis of
preemptive gang scheduling”. In Job Scheduling Strategies
for Parallel Processing, pp. 217–230, Springer Verlag, 1998.
LNCS vol. 1459.

[8] A. Kavas, D. Er-El, and D. G. Feitelson, “Using multicast to
preload jobs on the ParPar cluster”. Parallel Comput., 2001.

[9] C. E. Leiserson et al., “The network architecture of the Con-
nection Machine CM-5”. J. Parallel & Distributed Comput.
33(2), pp. 145–158, Mar 1996.

[10] S. Pakin, V. Karamcheti, and A. A. Chien, “Fast messages:
efficient, portable communication for workstation clusters
and MPPs”. IEEE Concurrency5(2), pp. 60–73, Apr-Jun
1997.

[11] J. Pruyne and M. Livny, “Interfacing Condor and PVM to
harness the cycles of workstation clusters”. Future Genera-
tion Comput. Syst.12(1), pp. 67–85, May 1996.

[12] P. G. Sobalvarro, S. Pakin, W. E. Weihl, and A. A. Chien,
“Dynamic coscheduling on workstation clusters”. In Job
Scheduling Strategies for Parallel Processing, pp. 231–256,
Springer Verlag, 1998. LNCS vol. 1459.

9

