
A Latency-Tolerant Partitioner for Distributed Computing

on the Information Power Grid

Sajal K. Das and Daniel J. Harvey

Dept. of Computer Science & Engineering

The University of Texas at Arlington

Arlington, TX 76019-0015

E-maih {das.harvey} _cse.uta.edu

Rupak Biswas
NASA Ames Research Center

Mail Stop T27A-1

Xloffett Field, CA 94035-1000

E-maih rbiswas _nas.nasa.gov

Abstract

NASA's Information Power Grid (IPG) is an infrastructure designed to harness the power of
geographically distributed computers, databases, and human expertise, in order to solve large-
scale realistic computational problems. This type of a metacomputing environment is necessary
to present a unified virtual machine to application developers that hides tile intricacies of a highly
heterogeneous environment and yet maintains adequate security. In this paper, we present a
novel partitioning scheme, called MinEX that dynamically balances processor workloads while
minimizing data movement and runtime communication, for applications that are executed in a
parallel distributed fashion on the IPG. We also analyze the conditions that are required for the
IPG to be an effective tool for such distributed computations. Our results show that MinEX is a
viable load balaneer provided the nodes of the IPG are connected by a high-speed asynchronous
interconnection network.

1 Introduction

The Information Power Grid (IPG) has been developed by NASA and other collaborative partners

to harness the power of geographically distributed resources. The I-WAY experiment [8] identified

several classes of applications that would benefit from such an infrastructure:

• Desktop coupling to remote supercomputers to provide access to large databases and high-end

graphics facilities.

• User access to sophisticated instruments through remote supercomputer connections utilizing

virtual reality techniques 17].

• Remote interactions with supercomputer simulations [9, 10].

There have been numerous attempts by the research community to develop computational grid

capabilities. A comprehensive survey of current technology can be found in [13]. The Condor

system [17], developed to manage research studies at workstations around the world, is an exam-

ple of an early success. However, Condor did not adequately deal with security issues that are

important for a general computational grid implementation. Other grid-based systems that have

been developed include Nimrod [1], NetSolve [4], NEOS [5], Legion [14], and CAVERN [16]. The

Globus Metacomputing Infrastructure Toolkit [12] (http://www. globus, org) has been extremely

successful in providing a portable virtual machine environment. Mechanisms exist within Globus

to shareremote resources, provide adequate security, and allow MPI-based message passing. Due

to its general, portable, and modular nature, Globus has been chosen by NASA as the middleware

to implement the IPG.

Limited studies have been performed to determine the viability of parallel distributed comput-

ing on the IPG. In one such study [2], latency tolerance and load balancing modifications were

implemented in connection with a computational fluid dynamics problem to compensate for slower

communication speed. Results showed that the application actually ran faster under Globus on

two IPG nodes of four processors each than on a single tightly-coupled machine of eight processors.

However, this result is clouded in that asynchronous message passing was supported over the high-

speed link but not within the single platform. In this paper, we simulate an unsteady adaptive

mesh application on a wide area network. The number of IPG nodes, the number of processors per

node, and the interconnect speeds are parameterized so that general conclusions can be drawn as

to when the IPG would be sm-itable to solve applications of this nature.

In the past, we have investigated two different load balancing strategies with this application

as the test case. The first strategy, called PLUM [19], is an architecture-independent framework

geared towards adaptive numerical solutions. PLUM globally partitions the computational mesh

after each adaptation and determines whether re-balancing the load would lead to reduced total

execution time. If an improvement in tile load balance can be achieved, it utilizes an effective re-

mapping algorithm to minimize the required data movement. Application processing is temporarily

suspended during tile partitioning and data re-mapping operations. Although PLUM is designed

to utilize any parallel graph partitioner, ParMeTiS [15] has proven to be the most effective.

Tile second approach uses a general-purpose topology-independent dynamic load balancer uti-

lizing Symmetric Broadcast Networks (SBN) !6]. A salient featuro of this SBN-based approach is

tilat it balances processor workloads while the application is executing. Thus it is able to hide

the high data migration overhead, albeit at the cost of increased interprocessor communication.

Results reported in [3] indicate that both PLUM and the SBN approach have their relative merits,

and that they achieve excellent load balance with minimal extra overhead.

In this paper, we propose a novel partitioning approach that optimizes the two important

steps of PLUM (balancing and re-mapping) as part of tile partitioning process. The goal of this

partitioner, called MinEX, is different from that of most partitioners. Instead of attempting to

balance the load. the objective is to minimize the total runtime of the application. This approach

counters the possibility that perfectly balanced loads can still incur excessive communication and

redistribution costs while the application is processed. MinEX is also used to experiment with

latency tolerant techniques on the IPG. Results show that MinEX reduces the number of elements

migrated by PLUM, and lowers the percentage of edges cut by SBN. For example, for 32 partitions

with our test case. PLUM showed an edge cut of 10.9% and redistributed 63,270 mesh elements.

The corresponding values for the SBN approach were 36.5% and 19.446. Instead, the MinEX

partitioner values were 20.9% and 30,548.

This paper is organized as follows. Section 2 introduces the computational application to be

tested and determines its scalability. Section 3 describes the new MinEX partitioner. Section 4

describes the experimental study, analyzes tile obtained results and draws conclusions as to the use

of the IPG for this and similar applications. Section 5 concludes the paper.

2 Computational Test Case

Many computational problems _e modeled discretely as an unstructured mesh of vertices and

edges. To capture evolving features, the mesh topology is frequently adapted. For an efficient

parallel implementation,this requiresdynamicload balancing.In otherwords,meshobjectswill
haveto be reassignedafter eachadaptationphaseto re-balancethe workloadamongtheprocessors.
It is critical to minimizethe overheadassociatedwith re-mappingdata sets,and to reducethe
communicationbetweenprocessorsat tile nextsolutionstep. Thesegoalsareespeciallyimportant
in an IPG contextwherecommunicationbandwidthsbetweennodesare likely to bemuchsmaller
than ona singlemultiprocessormachine.

The computationalmeshusedfor the experimentsin this papersimulatesan unsteadyenvi-
ronmentwherethe adaptedregionis stronglytime-dependent.As shownin Fig. 1, a shockwave
is propagatedthroughan initial grid to producethe desiredeffect. The computationalmeshis
processedthroughnine adaptationsby movinga cylindrical volumeacrossthe domainwith con-
stant velocity. Grid elementswithin the cylindrical volumeare refinedwhilepreviously-refined
elementsarecoarsenedin its wake. During tile processing,the sizeof the meshincreasesfrom
50.000elementsto 1,833.73Or-elements.

Figure1: Initial andadaptedmeshes(afterlevels1and5) for the simulatedunsteadyexperiment.

To realistically simulatethe overheadassociatedwith an adaptivemeshcomputation, two
weightsareassociatedwith eachvertexandoneweightwith eachedge.Theseweightsrespectively
reflect the numberof time units requiredfor computation,data remapping,and communication.
The total timerequiredto processthe verticesassignedto a processorp must take into account all

three metrics which are defined as follows.

Processing Weight (l_}_t '') is the computational cost to process a vertex v.

Communication Cost (Commp) is the cost to interact with all vertices adjacent to v but
whose data sets are not local to processor p.

Redistribution Cost (Remap'_) is the. overhead to copy the data set associated with v
to another processor from p. Note that the redistribution cost incurred at p includes the

operations of packing data and initiating transmission. The redistribution cost incurred

by the processor receiving u is the sum of the communication time and the operations of

unpacking and merging the data into existing data structures.

Additional metricsthat will beneededin this paperaredefinedbelow:

• Weighted Queue Length (QWgt(p)) is the total cost to process the vertices assigned to p.
It is defined as:

_, assigned to p

• Total System Load (OWgtTOT) is the sum of QWgt(p) over all processors.

• Heaviest Load (MaxQWgt) is the maximum value of OWgt (p) over all processors, and indicates

the total time required to process the application.

• Lightest Load (MinOWgt) is the minimum value of OWgt(p) over all processors, and indicates

the workload of the most lightly-loaded processor.

• Average Load (hvgQWgt) is OWgtTOT/P, where P is the total number of processors.

• Load Imbalance Factor ILoadImb) represents the quality of the partitioning and is defined

_ MaxOWgt / AvgQWgt.

Clearly, if the data set for __'is already assigned to p, no redistribution cost is incurred, i.e.

Remap_p = 0. Similarly. if the data sets of all the vertices adjacent to v are also assigned to p. the

communication cost. Corer@, is 0.

[Latency

Max. Tolerance

No Tolerance

Table 1: Scalability analysis of the test application

2] 4] 8 Number of ProcessorsI 16 I 32 [64 1128 _2561512 1024 2048

[3777 I 1824 1148 614 324 168 89 72 58[511 57]1033 558 302[173[193] 115 109 1034547 3193 1699__ -

Table 1 indicates the scalability of this application where the number of processors, P, is varied

from 2 to 2048. The data was obtained by simulating the application (details presented in Section 4).

Each column reflects non-dimensionalized MaxOWgt values in thousands. The first row of the table

assumes that maximum latency tolerance is achieved; the second row assumes that no latency

tolerance is achieved. Maximum latency tolerance is defined as the ability to utilize all available

processors to overlap communication and redistribution costs. Further explanations are provided

in Section 3. Table 1 shows that this application can scale to over 1000 processors, indicating good

potential for an IPG implementation.

3 Proposed MinEX Partitioner

Previous studies with this mesh application under the PLUM framework utilized a variety of general

partitioners such as ParMeTiS [15], UAMeTiS [20], DAMeTiS [20], Jostle-MS [21], and Jostle-

MD [21]. Note that UAMeTiS, DAMeTiS, and Jostle-MD are diffusive schemes designed to modify

existing partitions to produce a processor allocation; whereas PMeTiS and Jostle-MS are global

partitioners which makes no assumptions about the original mesh distribution. Although all these

pa:rtitioners achieve good load balance while minimizing communication overhead, they fail to

considerthe cost of moving data between processors. A unique feature of PLUM is to address

this drawback through the use of an efficient heuristic procedure for redistributing data to assigned

processors.
In this study, we optimize both communication and remapping costs by implementing a novel

partitioner, called MinEX, that considers computational, communication, and data remapping

costs. We also redefine the partitioning goal from producing balanced loads to minimizing MaxQWgt.

3.1 General Design

MinEX can be classified as a diffusive multilevel partitioner. Partitioning occurs in three steps:

contraction, partitioning, and refinement. Each of these steps are discussed below:

Similar to other multilevel partitioners, the first step in MinEX is to contract the mesh

to a reasonable size. What is different, however, is the contraction procedure. Instead of

repeatedly contracting the mesh in halves as is common with other multilevel partitioners,

MinEX sequentially contracts one vertex at a time. The advantage to this approach is that a
decision can be made each time a vertex is later refined as to whether it should be assigned

to another processor. This would make the algorithm more flexible since the graph would not
have to be doubled in size before this decision could be made. If IV1 is the number of vertices in

the mesh. contraction requires O(IV]) steps. Total complexity would not be greater than the

complexity of contracting the mesh sequentially in halves, since that would involve O(iV/2])

steps. Performing all the steps would still require O([V/2I) + O(IV/41) + O(IV]).

Once the mesh is sufficiendy contracted, the remaining vertices are reassigned according to

the criteria to be followed by the partitioning algorithm (described in detail in Section 3.2).

The mesh is expanded back to its original size through a refinement process. As each vertex

is refined, a decision is made as to whether it should be reassigned. This decision employs the

same criteria that is followed by the partitioning algorithm in the second step above. Each

coarse vertex reassignment in effect reassigns all of the vertices the coarse vertex represents.

3.2 Partitioning Criteria

To describe the criteria for deciding whether a vertex should be reassigned from one processor to

another, two metrics, Gain and Mingarv, need to be defined:

• Gain represents the change in QWgtTOT that would result from a proposed vertex move. A

negative Gain value would indicate that less total processing is required after such a vertex

move. The partitioning algorithm favors vertex moves with negative or small Gain values

that reduce or minimize overall system load.

• MinVar is computed using the workload (i.e. QWgt(p)) for each processor p and the smallest

load of anv processor (MinQWgt) in accordance with the following fornmla:

MinVar =_-_(QWgt(p)- MinOWgt) 2.

In other words, MinVar computes the variance of processor workloads from that of the most

lightly-loaded processor. The objective is to initiate vertex moves that lower this value. Since

processorswith large{_Wgt(p) valueswill havelargeMinVarcomponents,thiscriteriawill tend
to moveverticesawayfrom processorsthat havehighruntime requirements.

_MinVar is the changein the MinVar valueafter movinga vertex from one processorto
another. A negativevalueindicatesthat theMinYarvahmhasbeenreduced.

Let usnowdescribehowthepartitioning decisionsaremade.Foreachvertex,considerall edges
to adjacentverticesthat areassignedto otherprocessors.Compute the Gain and MinVax values that

would result from moving the given vertex to the adjacent processor. Designate the newly computed

MinVar valueas MinYarNew and the originalMinVar valueasMinVarOld. lfMinVarNew < MinVarOld

and Gain/(MinVarOld - MinVarNew) < ThroTTle, the proposed reassignmentisconsidered.Note

that ThroTTle is a user-supplied parameter. The move chosen will be the one with the smallest

Gain value. To increase efficiency, the program utilizes a minimum heap with vertex pointers to

heap locations to quickly fin-'d the best move and directly remove heap entries without having to
search.

Table 2: Expected runtimes experienced based on varying ThroTTle values

Metric Clusters I 0 I 1 i 1

MaxOWg= i
2

3

4

5

6

7

8

LoadImb i

2

3

4

5

6

7

8

ThroTTle values

[3 I 4 t 16 I 32 64 128 1200k
1993 1427 348 312 291 300 306 312 324

1847 1142 748 467 320 304 305 318 345

2035 1801 674 556 375 331 324 326 382

1868 1516 761 639 412 352 328 371 425

1834 1626 835 767 438 373 359 343 400

2081 1579 898 825 481 391 357 361 427

1884 1279 1032 758 505 383 371 369 414

1944 1451 1102 834 531 434 376 380 435

7.05 5.09 1.23 1.11 1.01 1.00 1.00 1.00 1.00

8.54 4.16 2.74 1.81 1.26 1.14 1.04 1.00 1.00

7.15 6.40 2.50 2.11 1.41 1.19 1.05 1.02 1.01

6.63 5.41 2.82 2.40 1.58 1.26 1.07 1.03 1.01

6.53 5.78 3.06 2.83 1.66 1.30 1.11 1.02 1.01

7.31 5.58 3.25 2.99 1.81 1.40 1.08 1.02 1.01

6.68 4.61 3.74 2.80 1.84 1.33 1.10 1.03 1.00

6.90 5.15 3.92 3.05 1.94 1.43 1.13 1.06 1.00

Conceptually. ThroTTle acts as a gate that limits increases in Gain based upon how much

of an improvement in MinVar can be achieved. Table 2 indicates how varying ThroTTle affects

the expected application runtimes (MaxQWgt) and load balance quality (LoadImb). The MaxQWgt
entries are non-dimensionalized values in thousands. These results were obtained by running the

experiments described in Section 4. Table 2 assumes a network of 32 homogeneous processors

distributed over one to eight IPG nodes (clusters). The inter-cluster interconnect speed is assumed

to be a third of the intra-cluster speed. Results show that a ThroTTle value of 64 produces the

lowest overall NaxQWgt, and that larger ThroTTle values improve LoadImb. Experiments with other

network sizes using this same mesh have shown that ThroTTle generally converges at values between

P and 2P. Note also that for large values of ThroTTle, better LoadImb does not necessarily imply

lower MaxQWgt.

3.3 Latency Tolerance

The following processing steps illustrate how communication and data redistribution can be reduced
or eliminated.

1 Initiate send of all data sets to be redistributed.

2 Initiate

3 Process

4 Receive

send of communication data needed by adjacent processors.

vertices that are not waiting for incoming transmissions.

and unpack any re-mapped data sets destined for this processor.

5 Receive and unpack communication data destined for this processor.

6 Repeat steps 2 through 5 until all vertices are processed.

The above logic implements a strategy where processors distribute data sets and communication

data as early as possible. Servicing of internal mesh vertices can then take place while waiting

for expected incoming messages. As data sets and communication data are received, additional

communications can be initiated and vertices processed. The most optimistic expectation of this

strategy is that the processing activity can entirely hide the data set and communication latency. At

the other extreme, the most pessimistic view is that no latency tolerance is achieved. Experiments

simulating both views to analyze the effect of latency tolerance on our test application are described
in Section 4.

3.4 Partitioning Data Structures

The following data structures are used by the MinEX partitioner to perform its multilevel algorithm:

Mesh: The adaptive mesh whose format is {IVI, [El, vTot, *VMaP, *VList, *EList} where

IV I is the number of active vertices in the mesh

IEI is the number of edges in the mesh

vTot is the total number of vertices (includes merged vertices)

*gMaP is a pointer to list of active vertices

*YList is a pointer to list of vertices

*EList is a pointer to list of edges.

gmaP: A list of active vertex numbers. None of these vertices have been compressed through

multilevel partitioning.

VList: A complete list of vertices. Each vertex, v, is defined by a VList record as

{W9 t, Remapp, le]. , e, merge, lookup, • vmap, , heap, border} where

Wgt is the computational cost to process v.

Remapp is the redistribution cost to copy the data set associated with v to another processor

from p.

lel is the number of adjacent edges associated with v.

7

•e is a pointer to the first edge associated with v. Subsequent edges are stored in contiguous

memory locations.

merge is the vertex that was merged with v during a contraction operation or - I if no merge

took place.

lookup is the active vertex that contains v after a series of contraction operations or -1 if no

merges took place.

,vmap is a pointer to the position of v in the active vertex table.

• heap is the pointer to an entry in the heap that relates to vertex, v. This entry represents

a potential reassignment of v. This pointer is used to be able to remove heap entries

without searching.

border is a boolean flag indicating whether v is adjacent to vertices _signed to other proces-
sors.

EList: The list of edges in the mesh. Each edge record is defned as {v, Comm} where v is the

adjacent vertex and Comm is the communication weight associated with this edge.

Heap: The heap of potential vertex reassignments. Each heap record is defined as {Gain, AMinVar,

v. p} which specifies the Gain and AMinVar that would result from reassigning vertex v to

processor p. The rain-heap is keyed by the Gain value.

Stack: The stack of compressed vertex pairs, ({vertexl, vertex2}). These vertices are refined in

reverse order from the order that they were compressed.

3.5 Graph Contraction

The partitioner selects sets of randomly chosen pairs of vertices that are assigned to the same

processor. From this set. the vertex pair, (v, w), to be merged has the largest Comm_/(Remap _ +

Remap _') value. This formula attempts to find edges with large edge communication costs while

minimizing the potential cost of data set redistribution. The motivation behind this strategy is to

arrive at a contracted mesh with a small edge cut and with small costs of data distribution.

To contract a vertex, a merged vertex record is created such that the merged vertex, M, is

adjacent to all vertices, other than v and w, that were originally adjacent to either of the two

original vertices. The edge records corresponding to M are created accordingly. VMap is adjusted

to contain the newly created vertex and to remove v and w; tVI is decremented and vTot is

incremented; [El is increased by the number of edges created for M; and the pair (v, w) is pushed

Onto Stack.

3.6 Union/Find Algorithm

A union/find algorithm is utilized so that edges of existing vertices can remain unchanged. For

example, if an existing vertex is adjacent to v, accesses to its EList record will check whether v

has been merged. If it has, lookup will be accessed to quickly find the appropriate merged vertex.

If lookup is not current, the union/find algorithm will search the chain of vertices beginning with

merge to update the lookup value so subsequent lookups can be done efficiently. Pseudo code

describing the union/find procedure is shown in Fig. 2.

Procedure Find(v)

If (merge == -1) Return v

If (lookup!= -i) And (lookup <= vTot)

Then Return lookup = Find(lookup)

Else Return lookup = Find(merge)

Figure 2: Pseudo code for the union/find algorithm

3.7 Partitioning of the Contracted Graph

Once the graph contraction process is complete, the partitioning can be executed. Because the

number of vertices is great_ reduced, the MinEX partitioning algorithm can execute efficiently.

The algorithm considers every remaining vertex of the mesh to find potential reassignments that
will reduce Gain and M±nVar as described in Subsection 3.2. All potential vertex reassignments are

added to the min-heap. Actual reassignments are executed in heap order. As a reassignment is

executed, the heap is adjusted to reflect the new partition status.

3.8 Refinement

The graph is restored to its original size by expanding pairs of vertices in reverse order from how

they were merged. The Stack data structure controls tile order. As pairs of vertices. (v, w), are

refined, merged edges and vertices are deallocated, merge and look,tp vertex numbers are also

adjusted in the vertex table. The VMap table is adjusted to delete the merged vertex, M, and to

add v and w. IV I is incremented and vTot is decremented; IEI is decreased by the number of edges

created for M. After each refinement, an immediate decision is made as to whether a partition

improvement can be made by reassigning v or w. When reassignments are made, reassignments of

the adjacent border vertices are also considered.

4 Experimental Study

The partitioner MinEX was executed with actual application data to simulate mesh processing for

a variety of system configurations. Individual runs simulates networks with a particular number

of processors (P), number of clusters (C), ThroTTle values, and interconnect speeds (I). In our

experiments, P was varied from 2 to 2048; C was varied from 1 to 8; ThroTTle was varied to

find the optimal value for minimizing runtime: and [was varied to simulate high-speed cluster

interconnections and low-speed wide area network connections.

Based on performance studies :l 1, 18], typical communication latency and bandwidth slowdowns

from integrated clusters to confi_trations with clusters connected through a high-speed interconnect

are in the range of 3 to 100. Wide area network connections are 1,000 to 10,000 times slower than

the internal intra-connects of a single cluster. For these experiments, we have assumed that the

intra-cluster communication speed to be normalized to a value of 1. Sinnflations of inter-cluster

communication assumed slowdown factors of 3, 10, 100, and 1,000. To simplify the analysis, we

have assumed that individual processors are homogeneous and divided as evenly as possible among

the clusters.

4.1 Summary of Results

Table 3(a) and 3(b) showresultsof experimentalruns analyzingthe effectof varying numbers
of clustersand interconnectspeeds,assumingP = 32 homogeneous processors. The interconnect

speeds indicate the slowdown factor relative to the intra-cluster communication speed. To be

consistent with results presented in Tables 1 and 2, runtimes are shown in thousands. Table 3(a)

charts the experimental results when no latency tolerance is achieved; Table 3(b) assumes maximum

latency tolerance.

Expected runtime in thousands of units for varying clusters and interconnect speeds

Interconnect Speeds

Table 3:

(P --32)

Clusters 3 i -t'0 100 1000

473

926

1354

1602
11649
[

1717

2116

2178

: 473

i 926
1354

i

1602

1649

1717

2116

2178

470

4781

23769

25040

53912

86068

473

763

952

989

1021

1091

989

968

1

2

3

4

5

6

105570

93566

(a) No latency tolerance

Interconnect Speeds

Clusters 3 10 i 100 i 1000

1 306 306 306 I 306

2 305 499 860 I 5355
3 324 600 24311 14357

4 328 717 3373 33092

5 359 768 4369 51816

6 357 929 5120 62032

7 371 893 5873 62059

8 !376 1048 5721 61321

(b) Maximum latencyt_&ance

Tile following conclusions can be drawn from the experiments.

As the interconnect speed slows, the slowdown experienced by utilizing additional clusters

increases dramatically. For example, the runtime metric in Table 3(a) is 4,781 when two

clusters and an interconnect slowdown of 1000 is assumed. However, the runtime metric is

93.566 when eight clusters are assumed. The ratio, 93,566/4,781 _ 19.57. If we consider the

interconnect slowdown of 3. the ratio between two clusters and eight clusters is 968/763 _ 1.26

which is a much smaller value. The same pattern holds true in Table 3(b)

For mesh application considered, Globus over low-speed networks such as the Internet is not

a viable approach assuming current technology. In fact, the interconnection speed has to

improve by at least one or two orders of magnitude before this approach could be useful.

Under current technology, applications would have to have minimum communication and

data-set re-mapping for low-speed wide area networks to be practical interconnects.

Latency tolerant algorithms show larger runtime gains when more clusters are utilized. This

can be verified by comparing the same rows from Table 3(a) and Table 3(b). The rows that

correspond to more clusters show greater latency tolerance runtime gain. The same cannot be

said when analyzing cohmms of the tables where interconnect slowdowns are varied. Latency

tolerance runtime gains remain relatively constant in this case. We can also conclude that

regardless of whether one or eight clusters of processors are employed, latency tolerance

algorithms will always be beneficial to reducing expected application runtimes.

For our application. Globus could be a viable approach if a high-speed interconnect (slowdown

factor between 3 and 10) between clusters is utilized. The first column of Tables 3(a) and

3(b) comparing 1 and 8 clusters with an interconnect slowdown factor of 3, respectively,

10

showa slowdownfactor of 2.04and 1.22. Similarly, the secondcolumnof the tableswith
an interconnectslowdownfactor of 10showslowdownfactorsof 4.60and 3.35,respectively.
Thesefactorsbeingsmallerthan the numberof clustersindicatea speedupfrom whenone
cluster of _ the number of processors are used.

5 Conclusions

This paper presented a latency-tolerant partitioner, called MinEX, that not only balances proces-

sor workloads but also minimizes data movement and runtime communication, for adaptive mesh

applications that are executed in a parallel distributed fashion on the IPG. We also analyzed the

conditions that are required for the IPG to be an effective tool for such distributed computations.

Our results demonstrate that *IinEX is a viable load balancer provided the nodes of the IPG are

connected by a high-speed _synchronous interconnection network. An area of further research in-

cludes mathematicM analysis of latency tolerance or slowdowns based on the interconnect speed,

numbers of clusters employed, and the topology of the mesh.

Acknowledgements

This work was supported by NASA Ames Research Center under Cooperative Agreement Number
NCC 2-5393.

References

[1]

[2]

[3]

ix]

[6]

[7]

[8]

D. Abramson. R. Sosic, J. Giddy, and R. Hall, "Nimrod: A tool for performing parameter-

ized simulations using distributed workstations," 4th IEEE Symposium on High Performance

Distributed Computing, 1995.

S. Barnard. R. Biswas, S. Saini, R. Van der Wijngaart, M. Yarrow, and L. Zechtzer, "Large-

scale distributed computational fluid dynamics on the Information Power Grid using Globus,"

7th Symposium on the Frontiers of Massively Parallel Computation, 1999, 60-67.

R. Biswas, S.K. Das. D.J. Harvey, and L. Oliker, "Parallel dynamic load balancing strategies

for adaptive irregular applications," Applied Mathematical Modelling, to appear.

H. Casanova and J. Dongarra, "NetSolve: A network server for solving computational science

problems," Technical Report CS-95-313, University of Tennessee, 1995.

•J. Cryzyk, M. Meznier, and J. More, "The Network-Enabled Optimization System (NEOS)

server," Preprint MCS-P615-0996, Argonne National Laboratory, 1996.

S. Das, D. Harvey, and R. Biswas, :'Parallel processing of adaptive meshes with load balancing,"

27th Conference on Parallel Processing, 1998, 502-509.

T. Defanti. M.D. Brown. and R. Stevens, "Virtual reality over high-speed networks," IEEE

Computer Graphics and Applications, 16 (1996) 42-43.

T. Defanti, I. Foster. M. Papka, R. Stevens, and T. Kuhlfuss, "Overview of the I-Way wide

area visual supercomputing.'" International Journal of Supercomputer Applications, l0 (1996)
123-130.

ll

!

[9]

[10]

[11]

[12]

D. Diachin, L. Freitag, D. Heath, J. Herzog, W. Michels, and P. Plassmann, "Remote engi-

neering tools for the design of pollution control systems for commercial boilers," International

Journal of Supercomputer Applications, 10 (1996) 208-218.

T. Disz, M. Papka..M. Pellegrino, and R. Stevens, "Sharing visualization experiences among

remote virtual environments," em International Workshop of High Performance Computing

for Computer Graphics and Visualization, Springer-Verlag, 1995, 217-237.

I. Foster and N. Karonis, "A grid-enabled MPI: Message passing in heterogeneous distributed

computing systems." ,4 CM/IEEE SC98 Conference, 1998.

I. Foster and C. Kesselman. "'GIobus: A metacomputing infrastructure toolkit," International

Journal of Supercomputer Applications. 11 (1997) 115-128.

[13] I. Foster and C. Kessetman. The Grid Blueprint for a New Computing Infrastructure, Morgan
Kaufmann. 1999.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

A. Grimshaw, W. Wulf, and the Legion team, "The Legion vision of a worldwide virtual

computer." Communications of the ACM. 40 (1997) 39-45.

G. Karypis and V. Kumar. "'Parallel multilevel k-way partitioning scheme for irregular graphs,"

Technical Report 96-036. University of Minnesota, 1996.

J. Leigh. A. Johnson. and T. DeFanti. "'CAVERN: A distributed architecture for supporting

scalable persistence and interoperability in collaborative virtual environments," Virtual Reality

Research, Development and Applications 2 (1997) 217-237.

M. Litzdow. M. Livny, and M.W. Mutka. "Condor -- a hunter of idle workstations," 8th

International Conference of Distributed Computing Systems, (1988) 104-111.

S. Nog and D. Kotz. "'A performance comparison of TCP/IP and MPI on FDDI, fast Ethernet,

and Ethernet," Technical Report PCS-TR95-273, Dartmouth College, 1996.

L. Oliker and R. Biswas, "'PLUM: Parallel load balancing for adaptive unstructured meshes,"

Journal o/Parallel and Distributed Computing, 52 (1998) 150-177.

K. Schloegel, G. Karypis, and V. Kumar, "Multilevel diffusion schemes for repartitioning of

adaptive meshes," Journal of Parallel and Distributed Computing, 47 (1997) 109-124.

C. Walshaw. M. Cross, and M. Everett, "Parallel dynamic graph partitioning for adaptive

unstructured meshes." Journal of Parallel and Distributed Computing, 47 (1997), 102-108.

12

