Towards a Parallel Data Mining Toolbox

Peter Christen® Markus Hegland

Ole M. Nielsen

Stephen Roberts Peter Strazdins

Tatiana Semenova
Australian National University, Canberra, ACT 0200, Australia

Irfan Altas
Charles Sturt University, Wagga Wagga, NSW 2678, Australia

Timothy Hancock
James Cook University, Townsville, QLD 4811, Australia

Abstract

This paper presents research projects tackling two as-
pects in data mining. First, a toolbox is discussed that al-
lows flexible and interactive data exploration, analysis and
presentation using the scripting language Python. The ad-
vantages of this toolbox are that it provides the functional-
ity to process multiple SQL queries in parallel, and enables
fast data retrieval using a supervised caching mechanism
for commonly used queries. These two facets of the toolbox
allow for fast, efficient data access reducing the time spent
on data exploration, preparation and analysis.

Secondly, an approach to predictive modelling is pre-
sented that leads to scalable parallel algorithms for high
dimensional data collections. This is an essential require-
ment for data mining algorithms as those that do not scale
linearly with the data size are infeasible. These algorithms
are implemented in parallel and achieve an almost ideal
speedup for their respective implementations.

One aim of the presented research is to integrate and
combine these two different aspects of data mining into an
efficient but flexible data mining toolbox that allows the ex-
perienced data miner to attack large scale problems inter-
actively or with batch processing.

1 Introduction

There is much ongoing research in sophisticated algo-
rithms for data mining purposes. Examples include predic-
tive modelling, genetic algorithms, neural networks, deci-
sion trees, association rules, and many more. However, it
is generally accepted that it is not possible to apply such

*Corresponding author, E-Mail: Peter.Christen @anu.edu.au

Understand Understand Prepare
Customer Data Data

Take Evaluate Build
Action Model Model(s)

ﬁ

Figure 1. The data mining process

algorithms without a careful data preparation and data un-
derstanding process, which may often dominate the actual
data mining activities [8, 20]. It is also rarely feasible to use
off-the-shelf data mining software and expect useful results
without a substantial amount of data insight. In addition,
data miners working as consultants are often presented with
datasets from an unfamiliar domain and need to get a good
feel for the data and the domain prior to any “real” data
mining. The ease of initial data exploration and preprocess-
ing may well hold the key to successful data mining results
later in a project. These processes are highly interactive:
The data miner investigates the data and extracts subsets of
attributes or transactions to be mined and conducts experi-
ments that lead to new ideas and questions requiring further
exploration. Fast and flexible data querying and aggregation
are therefore mandatory.

Data mining is an iterative process (Figure 1), as vari-
ous steps may have to be repeated several times until useful
and valuable knowledge is found, e.g. the same mining al-
gorithm is used on different subsets of a data collection to
compare different outcomes. A lot of effort in a data mining
project is often spent with time consuming routine tasks. A
caching of intermediate results can thus shorten response
times tremendously and help the data miner to concentrate
on knowledge extraction.

Today data collections have the size of Gigabytes and

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

Terabytes, and the first Petabyte databases are appearing in
science [10]. Data mining tools thus have to be able to han-
dle large amounts of data efficiently and they also need to be
scalable with the increasing size of data collections. There-
fore, algorithms which do not scale linearly with the data
size are not feasible. Additionally, the dimensionality of
datasets is increasing, which is a major challenge for many
algorithms as their complexity grows exponentially with the
dimension of a dataset. This has been called the curse of
dimensionality [13]. Parallel processing can help both to
tackle larger problems and to get reasonable response times.
It is not only that more computing power becomes available,
but equally important is the increased I/O bandwidth and
larger main memory provided by most parallel machines.

A further challenge in real world data mining projects
is the various data formats that have to be dealt with, like
relational databases, flat text files, non-portable binary files
or data downloaded from the Web. A flexible middleware
layer can unify the view of different data collections and
facilitate the application of various tools and algorithms.

This paper presents ideas and methods that tackle many
of the described challenges. A toolbox approach using the
scripting language Python [5] allows flexible data explo-
ration, while parallel predictive modelling algorithms that
are scalable both with the number of attributes of a data
collection as well as the number of used processing nodes,
allow mining of high-dimensional data sets. The toolbox
DMtools [18] is currently under development and a pre-
decessor has successfully been applied in real-world data
mining projects under the ACSys CRC grant!. The tool-
box assists our research group in all stages of data mining
projects, starting from data preprocessing, analysis and sim-
ple summaries up to visualisation and report generation. In
Section 2 related work in the relevant areas is presented,
and Section 3 presents our toolbox approach in more detail.
Section 4 discusses our scalable parallel algorithms for pre-
dictive modelling, and Section 5 gives an outlook to future
work.

2 Related work

There are several projects describing toolbox like ap-
proaches to data exploration. The authors of the IDEA
(Interactive Data Exploration and Analysis) system [21]
identify five general user requirements for data exploration:
Querying (the selection of a subset of data according to the
values of one or more attributes), segmenting (splitting the
data into non-overlapping sub-sets), summary information
(like counts or averages), integration of external tools and

' ACSys CRC stands for ’ Advanced Computational Systems Collabora-
tive Research Centre’ and the data mining consultancies were conducted at
the Australian National University (ANU) in collaboration with the Com-
monwealth Scientific and Industrial Research Organisation (CSIRO)

applications, and history mechanisms. The IDEA frame-
work allows quick data analysis on a sampled sub-set of the
data with the possibility to re-run the same analysis later
on the complete dataset. IDEA runs on a PC, with the user
interacting on a graphical interface.

Another approach used in the Control [14] project is to
trade quality and accuracy for interactive response times, in
a way that the system quickly returns a rough approxima-
tion of a result that is refined continuously. The user can
therefore get a glimpse at the final result very quickly and
use this information to change the ongoing process. The
Control system, among others, includes tools for interactive
data aggregation, visualisation and data mining.

Database research and data mining are two related fields
and there are many publications dealing with both areas. An
overview of database mining is given in [7]. According to
the authors the efficient handling of data stored in relational
databases is crucial because most available data is in a rela-
tional form. Scalable and efficient algorithms are one of the
challenges, as is the development of high-level query lan-
guages and user interfaces so data mining tasks can be spec-
ified by non-experts. One of the identified key requirements
is interactivity. The possibilities to interactively analyse
data collections, to refine data mining requests, to deepen
the analysis and to change the focus should be encouraged,
because it is often difficult to predict what exactly could be
discovered from a dataset. Interactive data mining is also
needed if transformation and manipulation of data are nec-
essary, or if different subsets of a data collection are to be
examined. To be able to deal with the huge amounts of data
available, parallel and distributed data mining algorithms
are important, as is the possibility to mine information from
different sources of data.

Parallel data mining is a hot research topic (see [24] for
recent research papers), as the need for parallel processing
is clearly given by the huge and increasing data collections
available. The requirements for parallel KDD systems [17]
include not only parallel scalable hardware platforms, paral-
lel I/O and databases, and parallel data mining algorithms,
but also frameworks for rapid algorithm development and
evaluation. Issues like security, fault tolerance, heteroge-
neous data access and representation, quality of service,
pricing and portability have to be addressed as well. Large-
scale parallel KDD systems should support the entire KDD
process, including pre- and post-processing.

3 A toolbox for data mining

Using a portable, flexible, and easy to use toolbox can
not only facilitate the data exploration phase of a data min-
ing project, it can also help unifying the data access with a
middleware library to integrate the access of different data
sources to the data mining applications. Thus it forms the

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

framework for the application of a suite of more sophisti-
cated data mining algorithms. The command line driven
approach of a toolbox — which is also used in packages like
Matlab or Mathematica — is maybe not suited for a novice
user, but for the experienced data miner it provides a more
powerful and flexible tool than a graphical user interface.

The DMrtools [18] are based on the scripting language
Python [5], chosen since it has proven to be an excellent
tool for rapid code development. It allows for efficient han-
dling of large datasets, it is flexible and easily extensible.
Functions and routines can be used as templates which can
be changed and extended as needed by the user to do more
customised analysis tasks. Having a new data exploration
idea in mind, the data miner can implement a rapid pro-
totype very easily by writing a script using the functions
provided by our toolbox.

Because many data collections are stored in relational
databases, it is important that such data can be accessed
efficiently by data mining applications [6]. Furthermore,
databases using SQL are a standard tool for storing and ac-
cessing transactional data in a safe and well-defined man-
ner. However, both complex queries and transmissions of
large data quantities tend to be prohibitively slow. For our
toolbox we follow another route: Only simple queries (e.g.
no joins) are sent to the database server, and the results
are cached and processed within the toolbox. The Python
database API [15] allows us to access a relational database
by SQL queries. Currently, we are using MySQL [23] for
the underlying database engine, but Python modules for
other database servers are available as well. Both MySQL
and Python are licensed as free software and enjoy very
good support from a large user community. In addition,
both products are very efficient and robust.

3.1 Toolbox architecture

In our toolbox the ease of SQL queries and the safety
of relational databases are combined with the efficiency of
binary file access and the flexibility of object-oriented pro-
gramming languages in an architecture as shown in Fig-
ure 2. Based on relational databases, flat files, the Web,
or any other data source a Data Manager deals with re-
trieval, caching and storage of data. It provides routines
to execute an arbitrary SQL query and to read and write bi-
nary and text files. The two important core components of
this layer are its transparent caching mechanism and its par-
allel database interface which intercepts SQL queries and
parallelises them on-the-fly. The Aggregation module im-
plements a library of Python routines taking care of simple
data exploration, statistical computations, and aggregation
of raw data. The Modelling module contains functions for
parallel predictive modelling, clustering, and generation of
association rules. The Report module provides visualisation

‘ Data Mining Toolbox ‘

Data
Manager

Aggregation Modelling Report

Caching

‘ Database H File System H Web Data ‘

Figure 2. Architecture of DMtools

and allows facilities for simple automatic report generation.
Complex domain-specific functions and end-user applica-
tions can then be written in terms of the scripting language
making use of the available modules.

3.2 Caching and database parallelism

Caching of function results is a core technology used
throughout our data mining toolbox. We have developed
a methodology for supervised caching of function results as
opposed to the more common (and also very useful) auto-
matic disk caching provided by most operating systems and
Web browsers.

Like automatic disk caching, supervised caching trades
space for time, but the approach we use is one where time
consuming operations such as database queries or complex
functions are intercepted, evaluated and the resulting ob-
jects are made persistent for rapid retrieval at a later stage.
We have observed that most of these time consuming func-
tions tend to be called repetitively with the same arguments.
Thus, instead of computing them every time, the cached re-
sults are returned when available, leading to substantial time
savings. The repetitiveness is even more pronounced when
the toolbox cache is shared among many users, a feature we
use extensively.

This type of caching is particularly useful for computa-
tionally intensive functions with few frequently used combi-
nations of input arguments. Note that if the inputs or outputs
are very large, caching might not save time because disk ac-
cess may dominate the execution time. Supervised caching
is invoked in the toolbox by explicitly applying it to cho-
sen functions. For a given Python function of the form T =
func (argl, ...,argn) caching in its simplest form is
invoked by replacing the function call with the following
call: T = cache (func, (argl, ...,argn)). This
structure has been applied in the Data Manager module
of the toolbox so using the top level toolbox routines will
utilise caching transparently. For example, most of the SQL
queries that are automatically generated by the toolbox are
cached in this fashion. Generating queries automatically in-

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

creases the chance of cache hits as opposed to queries writ-
ten by the end user because of their inherent uniformity. In
addition to this, caching can be used in code development
for quick retrieval of precomputed results. For example, if
a result is obtained by automatically crawling the Web and
parsing HTML or XML pages, caching will help in retriev-
ing the same information later — even if a Web server is
unserviceable.

An example query used in a health data mining project
that extracts all patients belonging to a particular group to-
gether with a count of their transactions required on the
average 489 seconds worth of CPU time on a Sun Enter-
prise server and the result took up about 200 Kilobytes of
memory. After having cached this query, subsequent load-
ing takes 0.22 seconds — more than 2,000 times faster than
the computing time. This particular function was hit 168
times in a fortnight saving four users a total of 23 hours of
waiting.

If a function definition changes after a result has been
cached, or if the result depends on other files, wrong results
may occur when using caching in its simplest form. The
caching utility therefore supports specification of explicit
dependencies in the form of a file list, which, if modified,
triggers a recomputation of the cached function result.

If a database server allows parallel execution of indepen-
dent queries, we use this parallelism within our toolbox by
sending a list of queries to the database server and process
the returned results sequentially. This is very efficient if the
queries take a long time to proceed, but only return a small
result list.

Example 3.1 Caching of XML documents

Supervised caching is used extensively for database
querying but is by no means restricted to this. Caching
has proven to be useful in other aspects of the data min-
ing toolbox. An example is a Web application built on
top of the toolbox which allows managers to explore and
rank branches according to one or more user-defined fea-
tures such as Annual revenue, Number of customers ser-
viced relative to total population, or Average sales per
customer. The underlying data is historical sales transac-
tion data which is updated monthly, so features need only
be computed once for new data when it is added to the
database. Because the data is static, cached features are
never recomputed and the application can therefore make
heavy use of the cached database queries. Moreover, no
matter how complicated a feature is, it can be retrieved
as quickly as any other feature once it has been cached.
In addition, the Web application is configured through an
XML document defining the data model and describing
how to compute the features. The XML document must
be read by the toolbox, parsed and converted into appropri-
ate Python structures prior to any computations. Because
response time is paramount in an interactive application,

parsing and interpretation of XML is prohibitive, but by
using the caching module, the resulting Python structures
are cached and retrieved quickly enough for the interactive
application. The caching function was made dependent on
the XML file itself, so that all structures are recomputed
whenever the XML file has been edited — for example to
modify an existing feature-definition, add a new month, or
change the data description. Below is a code snippet from
the Web application. The XML configuration file is as-
sumed to reside in sales.xml. The parser which builds
Python structures from XML is called parse_configand
it takes the XML filename as input. To cache this function,
instead of the call (feature_list, branch._list)
= parse_config(filename) we write:

filename = "sales.xml"
(feature_ list, branch list) = \
cache (parse_config, filename, \

dependencies = filename)
3.3 Integration of parallel applications

One aim of our research is to integrate parallel applica-
tions into the toolbox to enable fast and efficient execution
of large and complex data mining tasks, so the data miner
is able to attack large problems interactively or with batch
processing. The toolbox also gives a common interface to
various data mining algorithms, whereby the details of the
parallel application and architecture (like starting and work-
ing with a parallel environment) are hidden from the user.

Using a scripting language like Python to control paral-
lel applications has already been used for steering [4, 19]
of scientific applications, where a user can change param-
eters at run-time to control the behaviour of long-running
simulations like molecular dynamics applications.

In our toolbox, we use the standard Python interpreter to
start parallel applications with a dynamically generated sys-
tem call. The Unix command system is executed through
Python to invoke an MPI [12] program like in the following
example:

mpi str = "mpirun -np " + str(num proc) + \
predmodel " + arg_str + result_str
os.system(mpi_str)

The string arg_str contains the input arguments and re -
sult_str contains the name of the result file. A Python
wrapper code converts toolbox objects (like lists or dictio-
naries) into a format which is processable by the parallel
application, and creates configuration and data files as nec-
essary. The parallel application gets its input parameters
from the Python script at the command line, and then loads
and processes the requested data files. Results are saved to
files by the parallel program and read by the toolbox for fur-
ther processing. Time consuming data mining algorithms

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

can therefore be run in parallel, while the Python toolbox
handles the more high level aspects of data mining like pre-
processing and visualisation.

4 Scalable parallel predictive modelling

Algorithms applied in data mining have to deal with two
major challenges: Large datasets and high dimensionality.
It has also been suggested that the size of databases in an
average company doubles every 18 months [3] which is
similar to the growth of hardware performance according
to Moore’s law. Consequently, data mining algorithms have
to be able to scale from smaller to larger data sizes when
more data becomes available. The complexity of data is
also growing as more attributes tend to be logged in each
record. Data mining algorithms must, therefore, be able to
handle high dimensions in order to process such datasets,
and algorithms which do not scale linearly with data size
and dimension are not feasible.

An important technique applied in data mining is predic-
tive modelling. A predictive model in some way describes
the average behaviour of a data set, and can be used to
find data records that lie outside of the expected behaviour.
These outliers often have simple natural explanations but,
in some cases, may be linked to fraudulent behaviour.

A predictive model is described by a function y =
f(z1,...,2q) from the set, T, of attribute vectors of di-
mension d in the response set, S. If S is a finite set (of-
ten S = {0, 1}), the determination of f is a classification
problem and if S is the set of real numbers, one speaks of
regression. In the following it will mainly be assumed that
all the attributes x; as well as y are real values and we set
x = (r1,...,24)T.

In many applications, the response variable y is known
to depend in a smooth way on the values of the attributes, so
it is natural to compute f as a least squares approximation
to the data with an additional smoothness component im-
posed. In this paper, we state the problem formally as fol-
lows. Given n data records (x?,y(),i =1,...,n where
x() € Q with Q = [0, 1]¢ (the d-dimensional unit cube), we
wish to minimise the following functional subject to some
constraints:

n
Jo(f) = (D) — 502 —|—a/Q LFx)[2 dx (1)
i=1
where « is the smoothing parameter and £ is a differential
operator whose different choices may lead to different ap-
proximation techniques. The smoothing parameter « con-
trols the trade-off between smoothness and fit. One can
choose different function spaces to approximate the min-
imiser f of equation (1).

We have developed three different methods [9] to ap-

proximate the minimiser of Equation (1). TPSFEM uses

piecewise multilinear finite elements and gives the most ac-
curate approximation at the highest computational costs;
HISUREF is based on interpolatory wavelets which provides
good approximations at reasonable costs; and ADDFIT im-
plements additive models which have the lowest costs but
give the coarsest approximation. The three methods differ
in how well they approximate f and more importantly in
their algorithmic complexities, but all three consist of the
following two steps:

1. Assembly: An m x m symmetric matrix A and a cor-
responding m x 1 vector b are assembled whose struc-
tures depend on the chosen method, but whose dimen-
sion m is independent on the number of data records
n. For the TPSFEM method, the matrix structure is
sparse with 3¢ filled diagonals (d the dimensionality
of the dataset), and for both HISURF and ADDFIT we
store dense matrices. The size m of the assembled lin-
ear system depends on the total number of categories
for categorical variables and on the resolution of the
finite element grid for continuous variables. The as-
sembly step requires access to all n data records once
only, and it can be organised such that the amount of
computational work is linear in n. As usually m << n
this step can be interpreted as a reduction operation on
the original data. Note that the assembly of the ma-
trices coming from the smoothing part of Equation (1)
and constraints do not require accessing the data at all.
These matrices have similar sizes to A.

2. Solving: This step assembles the m x m matrices com-
ing from the smoothing part of Equation (1) and solves
the entire linear system. It does not involve the n data
records and the computational work depends only on
m, typically as O(m?) for the dense and O(m) for the
sparse equations.

Note that for large n step 1 will dominate whereas for large
m step 2 will dominate. As the number of data records n is
usually very large for data mining applications, the overall
complexity is mainly determined by n.

The process of assembling the linear systems has the
same structure for all three methods. For each data record,
some nonzero elements are added into the matrix and vec-
tor. The number of nonzero elements per data record is
O(d), forming the normal equations matrix A is thus of
order O(d?) for each data record. The total complexity of
assembling n data records sequentially is therefore:

Tassem(l) = O(dQn) (2)

The assembly of data records into the linear system is ad-
ditive and thus each data record can be assembled indepen-
dently from all others. By reading a fraction n/p of the

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

3D TPSFEM matrix

o

100
200
300
400
500
600
700

0 200 400 600
nz = 15625

3D HISURF matrix

20
40
60
80

100

120

0 50 100
nz = 13401

Assembly Time

Time in Seconds
oW B
S & &
T T T

S
T
)

a

dim=111
== dim=2111

Speedup

Assembly Speedup

dim=111 .
| [== dim=2111 g

,V
=N
|

L
12
Number of Nodes

T S Y
10 12 14 16 18 20 22 24

L TR I
2 4 6 8 10 12 14 16 18 20 22 24
Number of Nodes

3D ADDFIT matrix Storage requirements

I
— TPSFEM I

5 — ~ HISURF .

T —— ApbDFAIT o

Ve - -
10 1GB sl
s - -

15 e

1MB Sy

e

20 e

B |7
25

1B
0 10 20 0 5 10

nz = 561 dimension

Figure 3. Matrix structure (3D) and complexity

dataset in parallel each processing node can assemble a lo-
cal linear system without communication, so the parallel
complexity of the assembly process on p nodes becomes:

d2
Tassem(p) =0 <_n> (3)
p

The complete matrix data structure has to be stored on each
node, as every data record can contribute nonzero elements
anywhere in the matrix. The linear system is therefore dis-
tributed, but not replicated, on the nodes and the final linear
system is the sum of all local linear systems.

Figure 3 shows the structure of the assembled data ma-
trix for the three methods for a 3D-problem with a grid res-
olution of nine points in each dimension. The lower right
graph gives the amount of memory needed for a 1D to 10D
problem (again with a grid resolution of nine points in each
dimension). One can clearly see the limitation of the TPS-
FEM and HISURF methods due to their storage require-
ments.

The assembly process without communication is limited
by the available amount of main memory. For matrices that
are too large, a more complex assembly has to be applied
(not yet implemented), where the matrix data has to be dis-
tributed in a memory-scalable way. A blocking structure of
reading and redistributing data will be used.

4.1 Parallel implementation
At the time of writing, the assembly phase has been im-

plemented for ADDFIT in ANSI C and using MPI [12] for
communication. As the basic assembly structure is the same

Figure 4. Assembly on Beowulf Linux cluster

for all three methodes, it is simple to include analogous rou-
tines for TPSFEM and HISURF: The matrix data structures
and the assembly of data records are the only parts that have
to be changed.

First timing tests with synthetic datasets (consisting of
5 million records with 10 attributes each) show an almost
ideal speedup for different matrix dimensions. As an exam-
ple Figure 4 illustrates the times and speedup achieved on
the 196 processor Beowulf Linux cluster Bunyip at the Aus-
tralian National University [1]. This cluster is built with 98
dual 550 MHz Pentium III nodes, each equipped with 384
Megabytes of RAM (total about 36 Gigabytes), 13 Giga-
bytes of disk space (total 1.3 Terabytes) and 3 x 100 MBit/s
fast Ethernet cards. Logically 96 nodes are connected in
four groups of 24 nodes arranged as a tetrahedron with a
group of nodes at each vertex. Two nodes are designated
as servers. For our tests we only used one group (i.e. up to
24 nodes), whereas all data files have been distributed onto
local disks. The results in Figure 4 show the times used
for the assembly and redistribution of two linear systems of
different size (corresponding to a different number of used
attributes). The communication time is almost negligible
compared to the assembly time, but yields to a small time
increase for the larger linear system.

Solving the assembled linear system can be done with
either a sequential or parallel solver, depending on the size
of the system and the available parallel architecture. The
sparse linear system resulting from TPSFEM can be solved
with a Conjugate-Gradient iterative solver approach [9].

The systems currently generated by HISURF and
ADDFIT are dense and symmetric, positive definite in the
former case, and semi-definite in the latter case. However,
in future refinements of these models, the definiteness prop-
erty may be lost, for example because of the addition of
extra constraints or — in the case of additive models — ex-
tending it to a second-order model.

For HISURF and ADDFIT a solver is thus required that
will be accurate for any symmetric dense system, and also
has good parallel and sequential performance. The former
requirement argues for a direct solver with good stability
properties; the latter argues for one that exploits symme-

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

try to require only st + O(m?) floating point operations,
and that has been shown to have an efficient parallelisation.
A direct solver for general symmetric (indefinite) systems
based on the diagonal pivoting method [2, 11] meets these
requirements.

In the diagonal pivoting method, the decomposition A =
LDLY is performed, where L is an m x m lower triangu-
lar matrix with a unit diagonal, and D is a block diagonal
matrix with either 1 x 1 or 2x 2 sub-blocks [11]. The factori-
sation of A proceeds column by column; in the elimination
of column j, three cases arise:

1. Eliminate using a 1 x 1 pivot from A; ;. This corre-
sponds to the definite case, and will be used when A; ;
is sufficiently large (compared with max(A; 1.1 ;)).

2. Eliminate using a 1 x 1 pivot from A; ;, where ¢ > j.
This corresponds to the semi-definite case; a symmet-
ric interchange with row/columns ¢ and 7 must be per-
formed.

3. Eliminate using a 2 X 2 pivot using columns 7’ and 4
(i',1 > 7,47 # 7). This case produces a 2 X 2 sub-block
at column j of D. This corresponds to the indefinite
case; a symmetric interchange with rows/columns 7',
and 7,7 + 1 must be performed. However, columns j
and j + 1 are eliminated in this case.

The tests used to decide between these cases, and the
searches used to select column 7 (and 7’), yield several algo-
rithms based on the method, the most well-known being the
variants of the Bunch-Kaufman algorithm (see [11] and the
references cited within).

It has been recently shown for the Bunch-Kaufman al-
gorithm that there is no guarantee that the growth of L is
bounded [2]. Variants such as the bounded Bunch-Kaufman
and fast Bunch-Parlett algorithms have been devised which
overcomes this problem. The extra accuracy of these meth-
ods results from more extensive searching for stable pivot
columns ¢ (and ¢") for cases 2 and 3, with a correspondingly
more frequent use of these cases.

For linear systems that are close to definite, such as are
likely to be generated by our models, the diagonal piv-
oting methods permit most columns to be eliminated by
case 1, requiring no symmetric interchanges. For a paral-
lel implementation, this is a highly useful property, as even
for large matrices the communication startup and volume
overheads of symmetric interchange, when the rows and
columns come from different nodes, is considerable [22].

Instead of suppressing interchanges, which even if done
judiciously may result in the loss of some accuracy [22],
high parallel performance can also be achieved with a block-
search algorithm that searches for suitable pivot columns ¢
and 4’ from the current storage block [16]. If this search
was successful, the symmetric interchanges would require

no communication, resulting in no parallel overhead. Such
a strategy could be based on the Duff-Reid algorithm used
for sparse matrices [2, 16], which also has strong guarantees
of accuracy.

However, if the search was not successful, an equally
stable means of eliminating column j must then be used.
We chose the bounded Bunch-Kaufman algorithm over the
fast Parlett-Reid algorithm, as the latter requires sorting of
the columns by the size of the diagonal, which would give
it higher parallel overheads.

The solving of the linear systems described in Figure 4
took less than one second for the small system and between
20 (sequential) and 11 (parallel) seconds for the large sys-
tem. On the used cluster architecture even a matrix dimen-
sion of 2111 is too small to be efficiently solved on more
than just a few computing nodes.

5 OQutlook

We are currently working both on the toolbox and on
the parallel algorithms. Planned extensions will be more
domain independent high-level analysis functions and the
inclusion of other parallel data mining algorithms besides
predictive modelling, like clustering and association rules.

On the parallel predictive modelling side we plan to add
support for data types other than continuous and categorical
variables. We hope to include in a first instance support for
sets, time series and hierarchical data types.

Acknowledgements

This research was partially supported by the Australian
Advanced Computational Systems CRC, and Peter Chris-
ten was funded by grants from the Swiss National Science
Foundation (SNF) and the Novartis Stiftung, vormals Ciba-
Geigy Jubildums-Stiftung, Switzerland.

References

[1] D. Aberdeen, J. Baxter and R. Edwards, 98 ¢/MFlop,
Ultra-Large-Scale Neural Network Training on a PIII
Cluster, Gordon Bell award price/performance entry.
Submitted to the High-Performance Networking and
Computing Conference, Dallas, November 2000.

[2] C. Ashcraft, R.G. Grimes, and J.G. Lewis, Accurate
Symmetric Indefinite Linear Equation Solvers, Simax,
20(2), 1998.

[3] G. Bell and J.N. Gray, The revolution yet to happen,
Beyond Calculation (P.J. Denning and R.M. Metcalfe,
eds.), Springer Verlag, 1997.

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

(4]

(5]

(6]

(7]

(8]

(9]

[11]

[12]

[13]

[14]

[15]

[16]

D.M. Beazley and P.S. Lomdahl, Extensible mes-
sage passing application development and debugging
with Python, Proceedings 11th International Paral-
lel Processing Symposium, April 1-5, 1997, Geneva,
Switzerland, IEEE Computer Society Press, 1997.

D.M. Beazly, Python Essential Reference, New Rid-
ers, October 1999.

S. Chaudhuri, Data Mining and Database Systems:
Where is the Intersection, Bulletin of the IEEE Techni-
cal Committee on Data Engineering, num. 21, March
1998.

M.-S. Chen, J. Han and P.S. Yu, Data Mining: An
Overview from a Database Perspective, IEEE Trans-
actions on Knowledge Discovery and Data Engineer-
ing, Vol. 8, No. 6, December 1996.

P. Chapman, R. Kerber, J. Clinton, T. Khabaza,
T. Reinartz and R. Wirth, The CRISP-DM Pro-
cess Model, Discussion paper, March 1999.
WWW.Crisp.org

P. Christen, M. Hegland, O.M. Nielsen, S. Roberts,
PE. Strazdins and 1. Altas, Scalable Parallel Algo-
rithms for Surface Fitting and Data Mining, accepted
for the Elsevier Journal of Parallel Computing, spe-
cial issue on Aspects of Parallel Computing for Linear
Systems and Associated Problems, September 2000.

D. Diillmann, Petabyte databases. Proceedings of the
ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD-99), ACM Press, July 1999.

G. Golub and C. Van Loan, Matrix Computations,
John Hopkins University Press, Baltimore, Second
edition, 1989.

W. Gropp, E. Lusk and A. Skjellum,Using MPI —
Portable Parallel Programming with the Message-
Passing Interface. The MIT Press, Cambridge, Mas-
sachusetts, 1994.

T.J. Hastie and R.J. Tibshirani, Generalized additive
models, Chapman and Hall, Monographs on statistics
and applied probability 43, 1990.

J.M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Ol-
ston, V. Raman,T. Roth and P. Haas, Interactive Data
Analysis: The Control Project, IEEE Computer, Vol.
32, August 1999.

A.M. Kuchling, The Python DB-API, Linux Journal,
May 1998.

J.G. Lewis. Private communications, 1999.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

W.A. Maniatty and M.J. Zaki, A Requirements Analy-
sis for Parallel KDD Systems, IPDPS’2000 Data Min-
ing Workshop, Cancun, Maxico, May 2000.

O.M. Nielsen, P. Christen, M. Hegland and T. Se-
menova, A Toolbox Approach to Flexible and Effi-
cient Data Mining, Accepted for the Pacific-Asia Con-
ference on Knowledge Discovery and Data Mining
(PAKDD’2001), Hong Kong, April 2001.

S.G. Parker, C.R. Johnson and D.M. Beazley, Com-
putational Steering Software Systems and Strategies,
IEEE Computational Science & Engineering, 1997.

D. Pyle, Data Preparation for Data Mining. Morgan
Kaufmann Publishers, Inc., 1999.

P.G. Selfridge, D. Srivastava and L.O. Wilson, IDEA:
Interactive Data Exploration and Analysis, Proceed-
ings of the ACM SIGMOD International Conference
on Management of Data, 1996.

P.E. Strazdins, Accelerated Methods for Performing
the LDLT Decomposition, Proceedings of CTAC-
99: The 9th Biennial Computational Techniques and
Applications Conference and Workshops, Canberra,
September 1999.

R.J. Yarger, G. Reese and T. King, MySQL & mSQL,
O’Reilly, July 1999.

M.J. Zaki and C-T. Ho, Large-Scale Parallel Data
Mining, Lecture Notes in Computer Science and
Lecture Notes in Artificial Intelligence, Vol. 1759,
Springer-Verlag, 2000.

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

