
Messaging on Gigabit Ethernet:
Some experiments with GAMMA and other systems

Giuseppe Ciaccio
DISI, Università di Genova

via Dodecaneso 35, 16146 Genova, Italy
ciaccio@disi.unige.it

Abstract

The Genoa Active Message MAchine (GAMMA) is a
lightweight communication system based on the Active
Ports paradigm, originally designed for efficient implemen-
tation over low-cost Fast Ethernet interconnects.

In this paper we report about the recently completed
porting of GAMMA to the Packet Engines GNIC-II and the
Netgear GA620 Gigabit Ethernet adapters, and provide a
comparison among GAMMA, MPI/GAMMA, TCP/IP, and
MPICH, on such high-performance commodity adapters,
using different performance metrics. With a combination
of low end-to-end latency (9.5�s with GNIC-II, 32�s with
GA620) and high transmission throughput (more than 96
MByte/s with GNIC-II, more than 103 MByte/s with GA620,
the latter obtained without changing the firmware of the
adapter), GAMMA demonstrates the potential for Gigabit
Ethernet lightweight protocols to yield messaging perfor-
mance comparable to the best Myrinet protocols. This re-
sult is of interest, given the envisaged drop in cost of Gigabit
Ethernet due to the forthcoming transition from fiber optic
to UTP cabling and ever increasing mass market produc-
tion of such standard interconnect.

We also reposts about a technique for message fragmen-
tation that is commonly exploited to increase the throughput
with short message. When a different, though more widely
used, performance metrics is considered, such a technique
results into a performance loss rather than improvement.

1. Introduction

The low-cost processing power of clusters of Personal
Computers (PCs) can be easily exploited by means of high-
level, industry-standard Application Programming Inter-
faces (APIs), MPI being the most important of them.

Several open-source implementations of MPI (e.g.,
MPICH) can run on Linux-based Beowulf-type clusters on

top of standard TCP/IP sockets. However it is well known
that parallel jobs characterized by medium/fine grain par-
allelism exchange messages of small size (few KBytes)
among processors, and that general-purpose protocols such
as TCP/IP make very inefficient use of the interconnect for
short messages.

On Fast Ethernet, a lightweight messaging system like
the Genoa Active Message MAchine (GAMMA) [5] pro-
vides far better performance at no additional hardware cost
compared to the Linux TCP/IP stack. The GAMMA project
started in 1996 and was targeted right from the beginning
to low-cost Fast Ethernet interconnects. GAMMA imple-
ments a non-standard communication abstraction calledAc-
tive Ports[8], derived from Active Messages, and provides
best-effort as well as flow-controlled communication rou-
tines. With an end-to-end latency ranging between 12 and
20 �s, depending on the hardware configuration and the
Network Interface Card (NIC) used, GAMMA provides ad-
equate communication and synchronization primitives for
tightly coupled, fine-grain parallel applications on inexpen-
sive clusters. A complete yet efficient implementation of
MPI atop GAMMA, based on a port of MPICH, is avail-
able [7, 9].

The link speed offered by Fast Ethernet is insufficient
for many communication intensive parallel jobs to scale
up. This justifies the interest towards the two most famous
Gigabit-per-second interconnects, namely, Myrinet and the
more recent Gigabit Ethernet.

The inefficiency of TCP/IP is exacerbated with Gigabit-
class networks, since the physical transmission time be-
comes negligible compared to the time spent in the traversal
of the protocol stack. General-purpose implementations of
TCP/IP cannot run efficiently on Gigabit-per-second links,
no matter how long data streams and how fast host CPUs
are (people exhibiting brilliant performance numbers with
TCP/IP sockets on Gigabit Ethernet actually must set a very
large socket buffer size, in the order of a megabyte, which
is not really a scalable solution). Thus, lightweight messag-
ing systems become a key ingredient for an effective use of

Gigabit-class networks.
The higher per-port cost of Gigabit Ethernet compared

to Myrinet was due to the fiber-optic cabling of the former.
However, a substantial drop in cost of Gigabit Ethernet can
be envisaged in the near future. This will eventually push
Gigabit Ethernet into a much larger segment of the market-
place, characterized by competition among different ven-
dors and a potentially very large base of installation; eventu-
ally, the per-port cost of Gigabit Ethernet will become neg-
ligible compared to the cost of a single PC, in much the
same way as it occurred with Fast Ethernet. In our opinion,
Myrinet will never enjoy such a large diffusion: its market-
place segment (system-area networks) will remain narrow
compared to LANs, and therefore its price will never drop
so much.

Moreover, some Gigabit Ethernet NICs are pro-
grammable in much the same way as Myrinet is. For in-
stance, the NetGear GA620 NIC, a cheap (less than 300 US
dollars at the time of writing) clone of the Alteon AceNIC
adapter, comes with two on-board microprocessors and 512
KBytes of on-board RAM, and can run a possibly self-
made custom firmware (we should call it “software” and
not “firmware”, due to its volatility) to support efficient, low
overhead messaging.

An important difference between Myrinet and Gigabit
Ethernet concerns message fragmentation. Myrinet does
not pose any limitations on the size of data transfers at the
physical level, and fragmentation of messages into packets
is only aimed at pipelining long data transfers across the
communication path [13]. However, Gigabit Ethernet is a
packet-oriented network fabric. The IEEE 802.3 standard
poses the limit of 1526 bytes for the frame size, regardless
of the link speed, which implies a non-negligible overhead
at Gigabit-per-second speed. But the GA620 NIC also sup-
ports so called “jumbo frames”, that is, packets whose size
exceeds the limit imposed by the standard. By allowing a
packet size of up to 9000 bytes, this NIC provides a bet-
ter exploitation of the physical link and helps decrease the
message fragmentation overhead, with a positive impact on
communication efficiency with long data transfers.

Another difference between Myrinet and Gigabit Ether-
net is concerned with the reliability of the physical medium,
especially in case of network congestion which may cause
packet losses. Myrinet prevents congestion by using hard-
ware mechanisms for back-pressure, whose practical ef-
fectiveness has been demonstrated. Gigabit Ethernet uses
hardware-exchanged control packets to block senders in
case of congestion hazard, according to the IEEE 802.3x
specification; this should in principle avoid congestion, and
packet losses thereof, although nobody could assess the ef-
fectiveness of this mechanism so far.

A difference of secondary concern is the higher commu-
nication latency of current Gigabit Ethernet switches (in the

order of 3 to 4�s), compared to the very low latency of a
Myrinet switch (less than 1�s).

To sum up, in our opinion Gigabit Ethernet is a promis-
ingly successful and cheaper alternative to Myrinet under
any respect, and an efficient lightweight protocol is defi-
nitely a must to make best use of this technology, although
it is likely that Myrinet will continue to improve in order
to keep higher performance levels compared to state-of-art
commodity interconnect fabrics.

In order to prepare for the transition to inexpensive Giga-
bit Ethernet, we started developing a prototype of GAMMA
for the Packet Engines GNIC-II Gigabit Ethernet adapter.
This device was one of the first Gigabit Ethernet NICs to be
shipped. It closely resembled most Fast Ethernet NICs as
for internal architecture. It was not programmable, nor didit
support “jumbo frames”. GAMMA for GNIC-II was ready
in September 1999; although Packet Engines discontinued
the NIC a few months later, that first prototype of GAMMA
was indeed useful to experimentally demonstrate the feasi-
bility and success of lightweight communication protocols
on next-generation inexpensive LANs.

As a further step, we engaged ourselves in implement-
ing GAMMA atop the Netgear GA620 Gigabit Ethernet
NIC. Although this NIC could even be reprogrammed from
scratch in order to run whatever support to fast communica-
tion, this implementation of GAMMA does not require any
changes to the original NIC firmware.

2. Outline and rationale of the architecture of
GAMMA

A NIC is an interface between a host CPU and a network;
as such, each NIC must implement suitable mechanisms to
cooperate with the host computer, on one hand, and the net-
work, on the other hand. A modern NIC cooperates with the
host computer using a data transfer mode calledDescriptor-
based DMA(DBDMA). With the DBDMA mode, the NIC
is able to autonomously set up and start DMA data trans-
fers. To do so, the NIC scans two pre-computed and static
circular lists calledrings, one for transmit and one for re-
ceive, both stored in host memory. Each entry of a ring is
called aDMA descriptor.

A DMA descriptor in the transmit ring contains a pointer
(a physical address) to a host memory region containing a
fragmentof an outgoing packet; therefore, an entire packet
can be specified by chaining one or more send DMA de-
scriptors, a feature called “gather”.

Similar to a descriptor in the transmit ring, a DMA de-
scriptor in the receive ring contains a pointer (a physical
address, again) to a host memory region where an incom-
ing packet could be stored. The analogous of the “gather”
feature of the transmit ring is here called “scatter”: more
descriptors can be chained to specify a sequence of distinct

2

memory areas, and an incoming packet could be scattered
among them.

A NIC operating in DBDMA mode allows a greater de-
gree of parallelism in the communication path, according to
a producer/consumer behaviour. At the transmit side, while
the NIC “consumes” DMA descriptors from the transmit
ring and operates the host-to-NIC data transfers specified in
the descriptors themselves, the CPU runs the protocol stack
and “produces” the necessary DMA descriptors for subse-
quent data transfers. The reverse occurs at the receive side.
Since both sides are decoupled from each other, the com-
munication path works like a pipeline whenever traveled by
a sequence of data packets, with a potentially high through-
put.

At the sender side, a proper organization of the send rou-
tine could avoid a memory copy by exploiting the “gather”
feature: the header could be pre-computed and stored some-
where in kernel space, the payload could be pointed to di-
rectly in user space, and the NIC would autonomously ar-
range them contiguous into its on-board transmit FIFO and
send the whole packet. This would imply a non-blocking
semantics of the send routine. Blocking semantics could
then be easily enforced, by putting a busy-waiting on trans-
mission completion at the end of the non-blockingsend; this
way we would have a zero-copy blocking send whose over-
head would however be much higher compared to a more
classical “one-copy” blocking send, since the latter would
terminate as soon as user data had travelled the memory bus
back and forth to be copied to a temporary buffer, and usu-
ally the memory bus has much higher a transfer rate com-
pared to the I/O bus. Thus, a convenient messaging sys-
tem should provide zero-copy non-blocking send routines
(using the “gather” feature of the NIC) together with “one-
copy” blocking send routines.

At the receiver side, however, there is no way to avoid
a memory copy if non-programmable NICs are leveraged.
Indeed, the final destination in user space for the payload of
an incoming packet can be determined onlyafter inspect-
ing the header, which implies the packet be already stored
somewhere, namely, into a temporary buffer. The only way
to avoid a memory copy at the receiver side is to run the
(header-processing part of the) communication protocol by
the NIC itself, so as to let it inspect the headers when pack-
ets are still in its on-board receive FIFO. Another solution
uses the “page remapping” trick, but is limited to page-
aligned user buffers [10].

The GAMMA communication protocol is implemented
according to the above analysis, and thus minimizes the
CPU involvement on send in the blocking as well as the
non-blocking case, with no data copies on send in the latter;
whereas the CPU involvement on receive is always propor-
tional to the size of the arriving messages, due to the un-
avoidable data copy on receive. Both best-effort and flow-

controlled communications are provided, the latter based on
a simple (and static, for the moment) end-to-end credit al-
gorithm.

In the current version of GAMMA, no packet retrans-
mission is carried out on (very rare) communication errors:
the long-term reliability at application level is demandedto
suitable checkpointing policies of the user job. Network
congestion (which is the main source of packet losses) is
avoided by properly tuning the end-to-end flow control, in
case the LAN devices do not support the IEEE 802.3x con-
gestion control mechanisms.

The GAMMA protocol is independent of the spe-
cific network adapter, but is based on a small set of
NIC-dependent low-level basic operations (for produc-
ing/consuming data packets, enabling/disabling IRQs, read-
ing the device status), that we call theBasic Interface for
Network Device Drivers(BIND2). Porting GAMMA to a
new NIC requires writing the BIND2 layer for that NIC,
and modifying the Linux device driver of that NIC in order
to “graft” the GAMMA protocol in the driver itself. The
resulting messaging system is thus implemented atkernel
level in the OS architecture, and allows IP-based network
services to coexist with GAMMA on the same LAN.

3. Gigabit Ethernet: performance results and
comparisons

Two different measurement platforms were used for the
tests. The first cluster was a pair of PCs with Pentium II
450 MHz CPU, ASUS motherboard (Intel 440 BX chipset),
100 MHz SDRAM, and Packet Engines GNIC-II NIC. The
second cluster was a pair of PCs with AMD Athlon 500
MHz CPU, Microstar K7 Pro motherboard (AMD 751/756
chipset), 100 MHz SDRAM, and Netgear GA620 NIC. In
both cases the interconnection was back-to-back by a fiber-
optic cable.

Self-made microbenchmarks have been run to mea-
sure the average communication performance of GAMMA,
MPI/GAMMA, Linux 2.2.13 TCP/IP sockets, and MPICH
atop TCP/IP sockets (P4 channel device).

With the first platform, it was also temporarily possible
to connect the two machines by an Intel Express Gigabit
switch; the latency increased by 3.6�s on average and the
impact on communication throughput was negligible.

3.1. End-to-end latency and throughput

The end-to-end communication performance has been
measured by usual “ping-pong” microbenchmarks, which
measure the average round-trip time for a message of fixed
sizeS and divide it by two. Theend-to-end latencyis ob-
tained by settingS equal to the minimum message size al-
lowed by the messaging system (zero with GAMMA and

3

NIC GAMMA MPI/ TCP/ MPICH
(host CPU) GAMMA IP
Packet Engines 9.5 12.1 132 321
GNIC-II
(Pentium II 450)
NetGear GA620 32 35 65 112
(Athlon 500)

Table 1. End-to-end latency (�s) of GAMMA,
MPI/GAMMA, Linux 2.2.13 TCP/IP, and MPICH
atop TCP/IP, with the GNIC-II and GA620
adapters.

GAMMA/ BIP FM PM GM
GNIC-II

13.1 4.3 9 7.5 9 – 21

Table 2. End-to-end latency (�s) of GAMMA on
GNIC-II (Gigabit Ethernet, switch included),
compared to BIP, FM, PM, and GM (Myrinet).

MPI, one with TCP sockets). Large values ofS allow to
estimate theend-to-end throughput, not to be confused with
thetransmission throughputas measured by another class of
well known microbenchmarks, namely, the “unidirectional
stream” tests (Section 3.2).

Latency numbers from GAMMA, MPI/GAMMA, Linux
2.2.13 TCP/IP and MPICH are reported in Table 1.

The impressively low latency achieved by GAMMA
with the GNIC-II adapter accounts for the efficiency of the
protocol in itself, which indeed is able to deliver much of
the raw performance of the interconnect to the upper layers.
Even taking into account the hardware latency of a Gigabit
Ethernet switch (in the order of 3 to 4�s on average), the
end-to-end latency remains at very low levels indeed. On
the other hand, the not brilliant result achieved by the same
protocol on a faster PC with the GA620 adapter shows that
the GA620 NIC is “slower” indeed, compared to the GNIC-
II.

A latency comparison between GAMMA/GNIC-II (in-
clusive of switch latency) and the main Myrinet-based mes-
saging systems (BIP [13], FM [11], PM [16], and GM [12])
is reported in Table 2. The table shows that Gigabit Ether-
net is able, at least in principle, to compete with Myrinet as
for end-to-end latency.

End-to-end throughput curves for the GNIC-II and
GA620 Gigabit Ethernet adapters are depicted in Figures 1
and 2, respectively.

In Figure 1, the slight decrease in throughput of

0

20

40

60

80

100

32 512 1388 4K 8K 32K 128K 1M

T
hr

ou
gh

pu
t (

M
by

te
/s

)

Message Size (byte)

1

2

3 4

Figure 1. End-to-end throughput of GAMMA
(curve 1), MPI/GAMMA (curve 2), Linux 2.2.13
TCP/IP (curve 3), and MPICH atop TCP/IP
(curve 4), using the GNIC-II adapter.

GAMMA (curve 1) and MPI/GAMMA (curve 2) at around
512 KBytes with the GNIC-II adapter is due to the overflow
of L2 cache, which exposes the quite poor bandwidth of the
CPU-to-RAM bus in the old-fashioned PCs used for that ex-
periment (Pentium II 450 MHz). This could happen because
GAMMA performs a memory-to-memory copy on receive.
However, more recent PCs have better CPU-to-RAM buses;
the impact of the memory-to-memory copy has thus disap-
peared from the throughput curve (Figure 2).

Again from Figure 1, it is evident that stacking MPICH
atop GAMMA had only a marginal impact on communi-
cation performance. The same does not hold with plain
MPICH atop TCP/IP sockets. The reason for this, is that
the porting of MPICH atop GAMMA has been made at the
ADI level, and thus the resulting MPI/GAMMA stack is
thin compared to the standard MPICH/P4/TCP stack. Need-
less to say, the efficiency of MPICH atop Linux TCP/IP
with short messages clearly remains too low for running a
tightly coupled, fine-grain parallel job on a commodity Gi-
gabit Ethernet cluster.

By comparing the TCP/IP curves in Figures 1 and 2, it
emerges that the efficiency of Linux TCP/IP with short mes-
sages changes significantly from NIC to NIC. This in our
opinion depends on the quality of the device driver. The
Linux driver supporting the Alteon TIGON-II Gigabit Eth-
ernet chipset (the one equipping a number of Gigabit Eth-
ernet NICs, including the GA620) is much more optimized
compared to the Linux driver for the GNIC-II adapter.

4

0

20

40

60

80

100

32 512 2K 8K 32K 128K 1M 10M

T
hr

ou
gh

pu
t (

M
by

te
/s

)

Message Size (byte)

1

2
3

4

Figure 2. End-to-end throughput of GAMMA
with “jumbo” frames (curve 1), Linux 2.2.13
TCP/IP with “jumbo” frames (curve 2),
GAMMA with normal frames (curve 3), and
Linux 2.2.13 TCP/IP with normal frames
(curve 4), using the GA620 adapter.

3.2. Transmission throughput

We call transmission throughputthe communication
throughput as measured by the well known “unidirectional
stream” test. This technique requires a transmitter process
to send a long data stream to a receiver process; the stream
sizesN bytes total, and consists of a sequence of messages,S bytes each (we supposeN be multiple ofS). The sender
measures the average timeT (S) needed to transmit a sin-
gle such stream at maximum speed allowed by the messag-
ing system, then computes the transmission throughput asN=T (S), which leads to a function of message sizeS. Flow
control must be used, or implemented by the microbench-
mark if not available, to ensure that the transmission speed
be sustained by the receiver. In our experiments,N was set
to 10 MBytes.

Transmission throughput curves of GAMMA and Linux
2.2.13 TCP/IP for the GNIC-II and GA620 Gigabit Ethernet
adapters are depicted in Figures 3 and 4, respectively.

The transmission throughput of GAMMA on the GNIC-
II adapter (Figure 3, curve 1) shows a severe decrease at
around 512 KBytes. Similar to what happens with the end-
to-end throughput, this is due to the overflow of L2 cache
in the memory-to-memory copy performed by GAMMA
on receive, which exposes the quite poor bandwidth of the
CPU-to-RAM bus in the old-fashioned PCs used for that
experiment (Pentium II 450 MHz). This no longer occurs
with more recent PCs (Figure 4).

In all cases it can be noted that the transmission through-
put curves are much steeper than the corresponding end-to-

0

20

40

60

80

100

32 512 1388 4K 8K 32K 128K 1M

T
hr

ou
gh

pu
t (

M
by

te
/s

)

Message Size (byte)

1

2

Figure 3. Transmission throughput of
GAMMA (curve 1) and Linux 2.2.13 TCP/IP
(curve 2) using the GNIC-II adapter.

GAMMA/ BIP FM PM GM
GA620 (32 bit PCI)

103.5 126 92 113.5 100

Table 3. Peak throughput (MByte/s) of
GAMMA on GA620 (Gigabit Ethernet, “jumbo
frames” enabled), compared to BIP, FM, PM,
and GM (Myrinet).

end throughput curves. Indeed, by no means can the two
kinds of metrics be compared with each other; nonethe-
less, some authors use to mix them when comparing per-
formance of different messaging systems (like in, e.g., [4],
where the transmission throughput of Berkeley VIA on
Myrinet is compared to the end-to-end throughput of BIP).

A throughput comparison between GAMMA and
the main Myrinet-based messaging systems (BIP [13],
FM [11], PM [16], and GM [12]) is not straightforward,
because in [13] only end-to-end throughput is reported,
while in [11] and [12] the microbenchmarks used for the
measurement are not clearly described, and in [16] only
transmission throughput is reported (apparently). Never-
theless, in Table 3 we show a comparison among the var-
ious “peak throughput” numbers claimed in the aforemen-
tioned papers, based on the fact thatpeakend-to-end and
transmission throughput numbers usually coincide. The ta-
ble shows that Gigabit Ethernet is indeed able to compete
with Myrinet in terms of peak throughput, provided a good
lightweight protocol (GAMMA in our case) be available.

5

0

20

40

60

80

100

32 512 2K 8K 32K 128K 1M 10M

T
hr

ou
gh

pu
t (

M
by

te
/s

)

Message Size (byte)

1

2

3

4

Figure 4. Transmission throughput of
GAMMA with “jumbo” frames (curve 1),
Linux 2.2.13 TCP/IP with “jumbo” frames
(curve 2), GAMMA with normal frames (curve
3), and Linux 2.2.13 TCP/IP with normal
frames (curve 4), using the GA620 adapter.

3.3. Pros and cons of different message fragmenta-
tion techniques

Fragmenting a message into packets is a need when the
total message size exceeds the maximum MTU size of the
network. Fragmentation increases the CPU overhead for
header processing, and leads to a lower utilization rate of
the physical link. However, since the end-to-end commu-
nication path is a pipeline, fragmentation might also leads
to a much better end-to-end throughput, thanks to the ex-
ploitation of the parallelism among pipe stages in the com-
munication path. For this reason, message fragmentation
has been exploited also with Myrinet, which is not packet
oriented [13, 11]. Even with Fast Ethernet, it can be conve-
nient to fragment a message even if smaller than the maxi-
mum allowed MTU size [6].

To improve the end-to-end throughput with short mes-
sages, GAMMA can fragment each short message into
packets whose size is not necessarily maximal. Of course,
this increases the number of packets exchanged. The op-
timal fragment size depends on the total message size and
also depends on the performance profile of the communica-
tion hardware.

We have implemented such a fragmentation technique
in the GAMMA driver for the GNIC-II adapters. Due to
the lack of a satisfactory performance model of the whole
communication system, we could only find an empirical for-
mula for optimal fragmentation valid only for the GNIC-II
adapter (see Table 4).

The positive impact of this “adaptive” fragmentation

Message size (bytes)Packet size (bytes)
0 to 512 128
513 to 1664 256
1665 to 5148 384
5149 to 11000 768
11001 to 12000 896> 12000 1408

Table 4. Optimal size of fragments as an em-
pirical function of the message size (GNIC-II
network adapters); the optimization is w.r.t.
end-to-end throughput.

technique on the GAMMAend-to-endthroughput curve is
clearly shown in Figure 5. For instance, a 64% improve-
ment in throughput is obtained with 1388 byte messages.

However, the very same fragmentation technique has a
negative impact on the GAMMAtransmissionthroughput,
as clearly apparent from Figure 6. This is due to the in-
creased number of exchanged packets, with a consequent
higher transmission overhead (at the NIC level).

As a general conclusion, we argue that changing the frag-
mentation policy not always yields a performance improve-
ment; indeed, it may depend on which performance metrics
the user is concerned with, as well as the per-packet over-
head incurred by the various components of the messaging
system.

4. Discussion of the results

We briefly sketch the main conclusions that can be drawn
from the various performance figures presented so far:� The communication performance of GAMMA on Gi-

gabit Ethernet is comparable to the one of many
lightweight protocols running on Myrinet, even tak-
ing into account the additional latency of a Giga-
bit Ethernet switch (less than 4�s). However, the
observed performance differs from NIC to NIC. On
the GA620 adapters, GAMMA could yield more than
103 MByte/s peak throughput but only using “jumbo
frames”, whereas it saturates at 71 MByte/s with stan-
dard frames, and in both cases the end-to-end latency
is quite high (32�s). On the other hand, GAMMA
on Packet Engines GNIC-II adapters raises a very
high throughput (97 MByte/s) with no need of “jumbo
frames”, and the end-to-end latency appears to be im-
pressively low (9.5�s).� The performance degradation caused by stacking MPI
atop GAMMA is very modest; the same does not hold
with MPI atop TCP/IP sockets. This is because the

6

0

20

40

60

80

100

32 512 1388 4K 8K 32K 128K 1M

T
hr

ou
gh

pu
t (

M
by

te
/s

)

Message Size (byte)

1 2 3

1

2

Figure 5. Positive impact of adaptive fragmen-
tation on end-to-end throughput of GAMMA
(GNIC-II adapter). Curve 1 is obtained with
the adaptive fragmentation, curve 2 is ob-
tained with standard fragmentation. End-to-
end throughput of Linux 2.2.13 TCP/IP is re-
ported as a reference (curve 3).

0

20

40

60

80

100

32 512 1388 4K 8K 32K 128K 1M

T
hr

ou
gh

pu
t (

M
by

te
/s

)

Message Size (byte)

1

2

3

Figure 6. Negative impact of adaptive frag-
mentation on transmission throughput of
GAMMA (GNIC-II adapter). Curve 1 is ob-
tained with the adaptive fragmentation, curve
2 is obtained with standard fragmentation.
Transmission throughput of Linux 2.2.13
TCP/IP is reported as a reference (curve 3).

porting of MPICH atop GAMMA was made at the ADI
level, and thus the resulting MPI/GAMMA stack is
thin compared to the standard MPICH/P4/TCP stack.� The efficiency of Linux TCP/IP with short messages
greatly depends on the device driver used. The Linux
driver supporting the Alteon TIGON-II Gigabit Eth-
ernet chipset (the one equipping a number of Gigabit
Ethernet NICs, including the GA620) is much more
optimized compared to the Linux driver for the GNIC-
II adapter.� The efficiency of MPICH atop Linux TCP/IP with
short messages remains too low for running a tightly
coupled, fine-grain parallel job on a commodity Giga-
bit Ethernet cluster.� Linux TCP/IP is not able to saturate Gigabit Ether-
net: its peak throughput is 87 MByte/s with the GA620
adapters using “jumbo frames”, and only 42 MByte/s
with the GNIC-II adapters using standard frames. The
scenario is completely different over Fast Ethernet,
where Linux TCP/IP is indeed able to almost com-
pletely saturate the physical link, thanks to recent im-
provements with device drivers and protocol.� Changing the message fragmentation technique not al-
ways yields a performance improvement. The use of
an adaptive fragmentation technique which takes the
total message size into account can significantly im-
prove theend-to-endthroughput with short messages,
because of a better exploitation of the pipeline struc-
ture of the communication path. On the other hand,
the same technique also leads to a degradation of the
transmissionthroughput, because of an increase of the
total send overhead due to the larger number of ex-
changed packets.

5. Related work on Gigabit Ethernet

Not much research work has been concerned with effi-
cient messaging over Gigabit Ethernet clusters so far; in-
deed, most recent and ongoing research efforts on Gigabit-
class cluster interconnects have focused on Myrinet, mainly
because it offered device programmability and very good
link performance since quite a long (six years) time ago.

M-VIA [1] is a user-level software emulation of the
Virtual Interface Architecture [2], a very low-level API
for inter-process communication. M-VIA has been im-
plemented on a number of network adapters, including
the Packet Engines GNIC-II Gigabit Ethernet NIC; in this
case, its communication performance (19�s latency and 60
MByte/s peak throughput) is not that brilliant, in spite of
user-level communication architecture, low API abstraction

7

level (messages larger than the MTU size of the network
are not allowed, given that no message fragmentation/re-
assembly is provided), and best-effort quality of service (no
flow control).

MESH [3] is another user-level messaging system, with
abstraction level comparable to VIA (that is, message size
cannot exceed the MTU size of the network) and best-effort
quality of service (no flow control). It has been imple-
mented for the Intel EtherExpress Pro 100 Fast Ethernet
NIC, and the Alteon AceNIC Gigabit Ethernet adapter; with
the latter device, MESH reported really great communica-
tion performance (24.5�s latency and 115 MByte/strans-
missionthroughput using “jumbo frames”). MESH claims a
very low overhead incurred by the CPU during communica-
tion; however, such low overhead was evaluated by means
of unrealistic “dummy” ping-pong tests, where user data
were assumed to be already present in the communication
buffers of the MESH driver so as to make it unnecessary to
copy any data to/from application data structures.

Similar in spirit to GAMMA, PM [15] is akernel-level
messaging system providing a quite high abstraction level.
The PM device driver moves data between application data
structures and communication buffers allocated in kernel-
level. PM guarantees message delivery by using “stop-and-
go” flow control paired with a “go-back-N ” retransmission
scheme. An implementation of PM for the Essential EC
440SF Gigabit Ethernet adapter has been documented [14]
with quite a low latency for a four-byte message (24.2�s); a
not very brillianttransmissionthroughput of 56.7 MByte/s
has been reported though.

References

[1] M-VIA Home Page,http://www. nersc.gov
/research /FTG /via/, 1998.

[2] Virtual Interface Architecture Home Page,
http://www. viarch.org/, 1998.

[3] M. Boosten, R. W. Dobinson, and P. D. V. van der
Stok. MESH: MEssaging and ScHeduling for Fine-
Grain Parallel Processing on Commodity Platforms.
In Proc. 1999 International Conference on Parallel
and Distributed Processing, Techniques and Applica-
tions (PDPTA’99), Las Vegas, Nevada, June 1999.

[4] P. Buonadonna, A. Geweke, and D. Culler. An Imple-
mentation and Analysis of the Virtual Interface Archi-
tecture. InSC98, Orlando, Florida, November 1998.

[5] G. Chiola and G. Ciaccio. GAMMA home page,
http://www. disi.unige.it /project
/gamma/.

[6] G. Chiola and G. Ciaccio. GAMMA: a low cost Net-
work of Workstations based on Active Messages. In
Proc. Euromicro PDP’97, London, UK, January 1997.
IEEE Computer Society.

[7] G. Chiola and G. Ciaccio. Porting MPICH ADI
on GAMMA with Flow Control. In Proc. IEEE -
ACM 1999 Midwest Workshop on Parallel Processing
(MWPP 1999), Kent, OH, August 1999.

[8] G. Chiola and G. Ciaccio. Efficient Parallel Process-
ing on Low-cost Clusters with GAMMA Active Ports.
Parallel Computing, (26):333–354, 2000.

[9] G. Ciaccio. MPI/GAMMA home page,
http://www. disi.unige.it /project
/gamma/mpigamma/.

[10] A. Gallatin, J. Chase, and K. Yocum. Trapeze/IP:
TCP/IP at Near-Gigabit Speeds. In1999 USENIX
Technical Conference (Freenix Track), June 1999.

[11] M. Lauria, S. Pakin, and A. Chien. Efficient Lay-
ering for High Speed Communication: the MPI over
Fast Messages (FM) Experience.Cluster Computing,
(2):107–116, 1999.

[12] inc. Myricom. GM performance,http://www.
myri.com /myrinet/performance/, 2000.

[13] L. Prylli and B. Tourancheau. BIP: a new protocol de-
signed for high performance networking on Myrinet.
In Proc. Workshop PC-NOW, IPPS/SPDP’98, number
1388 in Lecture Notes in Computer Science, pages
472–485, Orlando, Florida, April 1998. Springer.

[14] S. Sumimoto, H. Tezuka, A. Hori, H. Harada, T. Taka-
hashi, and Y. Ishikawa. The Design and Evaluation
of High Performance Communication using a Gigabit
Ethernet. InICS-99, Rhodes, Greece, June 1999.

[15] H. Tezuka, A. Hori, Y. Ishikawa, and M. Sato. PM:
An Operating System Coordinated High Performance
Communication Library. InProc. of High Perfor-
mance Computing and Networking (HPCN’97), num-
ber 1225 in Lecture Notes in Computer Science, pages
708–717. Springer-Verlag, April 1997.

[16] H. Tezuka, F. O’Carrol, A. Hori, and Y. Ishikawa.
Pin-down Cache: a Virtual Memory Management
Technique for Zero-copy Communication. In
IPPS/SPDP’98, pages 308–314. IEEE, April 1998.

8

