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Abstract

We present an initial performance evaluation of the Quadrics intercon-
nection network (QNET). We describe the main hardware and software fea-
tures of QNET of relevance to the system designer and to the end user.
A benchmark methodology is proposed in which important performance and
scalabilityy parameters are included. Actual benchmarks are performed on an
experimental cluster. Based on these benchmarks, a thorough performance
analysis of the QNET is presented in the paper. The preliminary analysis
indicates a remarkably good performance of the interconnect, such as user-
level latency of 2.1 ps, a communication bandwidth of 200 MB/s with lV1j2
of 512 bytes, efficient support to collective communication patterns and good
contention resolution under heavy traffic.

Keywords: Interconnection Networks, Performance Evaluation, User-
level Communication, Operating System Bypass.

1 Introduction

System interconnection networks
computing technology, and they

have become a critical component of the
are likely to have a great impact on the
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design, architecture, and use of future high-performance computers. Indeed,
not only the sheer computational speed distinguishes high-performance com-
puters from desktop systems, but the efficient integration of the computing
nodes into tightly coupled multiprocessor systems. Network adapters, switch-
es, and device driver software are increasingly becoming performance-critical
components in modern supercomputers.

Given the tremendous increase in the size of parallel computers, network-
based design of these architectures is now common place. With the increasing
size of these machines the computations performed on them scaled up dra-
matically, leading to vast communication requirements. These applications
now use and generate data sizes that stress the performance limits of the net-
work. The network requirements of these applications are high in terms of
latency, bandwidth, collective communication performance, 1/0 contention
resolution, among others [6]. It is now common that many parallel applica-
tions of interest spend more time in communication rather than in computa-
tion [10]. This is not only due to the larger data movement requirements but
also a direct result of the explosive increase in the processing speed, which
is not matched by a similar increase in the network performance. The end
result is that the network is becoming the bottleneck in many applications.

A cursory, and admittedly non-comprehensive, look at the state of the art
in networking technology in high performance computers indicates a number
of notable players. The list includes Gigabit Ethernet [23], Giganet [27], SCI
[8], Myrinet [1], GSN (Hippi 6400)1, just to name a few.

These network solutions are different in terms of programmability, scal-
ability, topology and performance. At the low end of the performance spec-
trum we have Gigabit Ethernet which provides a cost-effective solution for
system area networks. Giganet, Myrinet and SCI add programmability and
performance by using communication processors in the network interface and
implement ing several types of user-level, operating-syst em bypass communi-
cation protocols.

Infiniband [3] is an evolving standard that provides and integrated ap-
proach to high performance communication that deals with many aspects of
the network architecture, including the elimination of bottlenecks in the 1/0
bus, programming interface, communication protocols, fault-tolerance etc.

Some of these salient aspects of Infiniband already exist in the QNET.

lhttp://www.lanl. gov/lanp
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In fact, the overall design of the QNET provides many innovative aspects.
These include a novel approach to integrate the Iocal virtual memory into
a distributed virtual shared memory, the presence of a programmable pro-
cessor in the network interface that allows the implementation of intelligent
communication protocols, an integrated approach to network fault-detection
and fault-tolerance.

QNET is the interconnect adopted by Compaq for its high performance
servers. This interconnection strategy is of great importance to the Los
Alamos National Laboratory because the 30 TeraOps ASCI architecture will
be centered around it.

This paper presents a performance analysis of the QNET. Section 2 gives
a comprehensive presentation of the two hardware building blocks, the Elan
and the Elite. Section 3 discusses the hierarchy of communication libraries.
In Section 4 we give a description of our benchmarking methodology and
experimental apparatus, while Section 5 presents the experimental results
and performance analysis. Some concluding remarks are given in section 6.

2 The QNET

The QNET is based on two building blocks, a programmable network in-
terface called Elan [16] and a low-latency high-bandwidth communication
switch called Elite [17]. Elites can be interconnected in a fat-tree topology
[13]. The network has several layers of communication libraries which provide
trade-offs between performance and ease of use. Other important features are
hardware support for collective communication patterns and fault-tolerance.

2.1 Elan

The E1an2communications processor Iinks the high-performance, multi-stage
Quadrics network to a processing node containing one or more CPUS. In
addition to generating and accepting packets to and from the network, the
Elan also provides substantial local processing power to implement high-level
message-passing protocols such as MPI. The internal functional structure of

2This paper refers to the Elan3 version of the Elan. We will use Elan and Elan3
interchangeably throughout the paper.
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Elan, shown in Figure 1, centers around two primary processing engines:
microcode processor and the thread processor.

2.1.1 Microcode Processor

The 32-bit microcode processor supports four separate threads of execution,
where each thread can independently issue pipelined memory requests to the
memory system. Up to eight requests can be outstanding at any given time.
The scheduling for the microcode processor is extraordinarily lightweight,
enabling a thread to wake up, schedule a new memory access on the result
of a previous memory access, and then go back to sleep in as few as two
system-clock cycles.

The four microcode threads are described below:

1. inputter thread: Handles input transactions from the network.

2. DMA thread: Generates DMA packets to be written to the network,
prioritizes outstanding DMAs, and time-slices large DMAs so that s-
mall DMAs are not adversely blocked.

3. processor-scheduling thread: Prioritizes and controls the scheduling and
rescheduling of the thread processor.

4. conwnand-processor thread: Handles operations requested by the host
(i.e., “command”) processor at user level.

2.1.2 Thread Processor

The thread processor is a 32-bit SPARC-based RISC processor used to aid
the implementation of higher-level messaging libraries without explicit inter-
vention from the main CPU. This processor has a 32-deep register file, ALU,
and shifter. Its four-stage execution pipeline consists of (1) instruction fetch,
(2) instruction decode and register operand fetch, (3) instruction execute,
and (4) register write-back or memory operation. In order to better support
the implementation of high-level message-passing libraries without explicit
intervention by the main CPU, the thread processor’s instruction set was
augmented
late events,
state when

with extra instructions that construct network packets, manipu-
efficiently schedule threads, and block save and restore a thread’s
scheduling.
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2.1.3 Memory Management Unit (MMU)

The MMU translates 32-bit virtual addresses into either 28-bit local SDRAM
physical addresses or 48-bit PCI physical addresses. To translate these ad-
dresses, the MMU contains a 16-entry, fully-associative, translation lookaside
buffer (TLB) and a small data-path and state machine used to perform table
walks to fill the TLB and save trap information when the MMU faults.

2.1.4 Route Fetch Engine

The Elan contains routing tables that translate every virtual processor num-
ber into a sequence of tags that determine the network route. Several routing
tables can be loaded in order to have different routing strategies.

2.1.5 Elan and Cache Memory

The Elan has 8KB of cache memory, organized as 4 sets of 2KB and 64MB
of SDRAM memory. The cache line size is 32 bytes. The cache performs
pipelined fills from the SDRAM and is able to issue a number of cache fills
and write backs for different units while still being able to service accesses
for units that hit on the cache. The interface to the SDRAM has 64 bits and
there are 8 check bits added to provide Error Code Correction. The memory
interface also contains a 32 byte write buffer and a 32 byte read buffer.

2.1.6 Link

The link logic transmits and receives data from the network and outputs 9
bits and a clock signal on each half of the clock cycle, Each link provides
buffer space for two virtual channels with a 128 entry, 16 bit FIFO RAM for
flow control.

2.2 Elite

The other building block of the QNET is the Elite switch. The Elite provides
the following features:

● 8 bidirectional links supporting two virtual channels in each direction,
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●

●

●

an internal 16 x 8 full crossbar switch3,

a nominal transmission bandwidth of 400
and a flow through latency of 35 ns,

MB/s on each link direction

packet error detection and recovery, with routing and data transaction
CRC protected,

two priority levels combined with an aging mechanism to ensure a fair
delivery of packets in the same priority level,

hardware support for broadcasts,

and adaptive routing.

2.2.1 Fat-Tree topology

The Elite switches are interconnected in a quaternary fat-tree topology, which
belongs to the more general class of the k-ary n-trees []. A quaternary fat-
tree of dimension n is composed of 4“ processing nodes and n * 4“–1 switches
interconnected as a delta network, and can be recursively build by connecting
4 quaternary fat trees of dimension n – 1.

Quaternary fat trees of
A formal description of

in Appendix A.

2.2.2 Packet Routing

dimension 1, 2 and 3 are shown in Figure 2.
the k-ary n-trees and their properties is provided

Elite networks are source routed. The route information is attached to the
packet header before injecting the packet into the network and is composed
by a sequence of Elite link tags. As the the packet moves inside the network,
each Elites removes the first route tag from the header, and forwards the
packet to the next Elite in the route or to the final destination. The routing
tag can identify either a single output link or a group of links.

3The crossbar has two input ports for each input link, to accommodate the two virtual
channels.
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2.2.3 Flow Control

The transmission of each packet is pipelined into the network using wormhole
flow control. At link level, each packet is partitioned in flits (flow control
digits) of 16 bits. Every packet is closed by and End Of Packet (EOP) token,
but this is normally only sent after receipt of a packet acknowledge token.
This implies that every
source and destination.

2.2.4 Broadcasting

Packets can be sent to

packet transmission create a virtual circuit between

multiple destinations using the broadcast capability
of the Elan network. For a broadcast packet to be successfully delivered
a positive acknowledgement must be received from all the recipients of the
broadcast group. All Elans connected to the network are capable of receiving
the broadcast packet but, if desired, the broadcast set can be limited to a
physically contiguous subset of Elans.

2.2.5 The JTAG Control Network

The Elite implements a standard JTAG test access port through which var-
ious internal registers and logic signals can read and written. Through the
JTAG port it is possible to inspect the status of each single link, reset the
link in case of errors, and configure various feature of the Elite.

3 Programming libraries

The Elan network interface can be programmed using several programming
libraries, as outlined in Figure 3. These libraries trade speed with machine
independence and programmability. Starting from the bottom, Elan31ib is
the lowest programming level available in user space which allows the access
to the low level features of the Elan3. At this level, processes in a parallel
job can communicate with each other through an abstraction of distributed
virtual shared memory. Each process in a parallel job is allocated a virtual
process id (VPID) and can map a portion of its address space into the Elan.
These address spaces, taken in combination, constitute a distributed virtual
shared memory. Remote memory (i.e., memory on another processing node)

9



. .

can be addressed by a combination of a VPID and a virtual address. Since the
Elan has its own MMU, a process can select which part of its address space
should be visible across the network, determine specific access rights (e.g.
write- or read-only) and select the set of potential communication partners.

Elanlib is a higher level layer that frees the programmer from the revision-
dependent details of the Elan, and extends Elan31ib with point-to-point,
tagged message passing primitives (called Tagged Message Ports or Tports).
Standard communication libraries as such MPI or Cray Shmem are imple-
mented on top of Elanlib.

User Applications

user space
--------------

kernel space

--------

Figure 3: Elan3 programming library hierarchy

3.1 Elan31ib

The Elan31ib library supports a programming environment where groups of
cooperating processes can transfer data directly, while protecting process
groups from each other in hardware. The communication takes place at user
level, with no copy, bypassing the operating system.

The main features of Elan31ib are:

●

●

●

event notification,

memory mapping and allocation scheme and

remote DMA transfers.

10
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3.1.1 Event Notification

Events provide a general purpose mechanism for processes to
their actions. The mechanism can be used by threads running

synchronize
on the Elan

and processes running on the main processor. Events can be accessed both
locally and remotely. In this way, processes can be synchronized across the
network, and can be used to indicate the end of a communication operation,
such as a completion of a remote DMA. Events are stored in Elan memory, in
order to guarantee the atomic execution of the synchronization primitives.
Processes can wait for an event to be triggered by blocking, busy waiting or
polling. In addition, an event can be tagged as being a block copy event. The
block copy mechanism works as follows. A block of data in Elan memory is
initialized to hold a pre-defined value. An equivalent sized block is located
in main memory, and both are in the user’s virtual address space. When the
specified event is set, for example when a DMA transfer has completed, a
block copy takes place. That is, the block in Elan memory is copied to the
block in main memory. The user process polls the block in main memory to
check its value, (for example, bringing a copy of the corresponding memory
block into the -L2 cache) without having to poll for this information across
the PCI bus; When the value is the same as that initialized in the source
block, the process knows that the specified event has happened.

3.1.2 Memory Mapping and Allocation

The MMU in the Elan can translate between virtual addresses written in
the format of the main processor (for example, a 64-bit word, big Endian
architecture as the AlphaServer) and virtual addresses written in the Elan
format (a 32-bit word, little Endian architecture). For a processor with a 32
bit architecture (for example an Intel Pentium), a one-to-one mapping is all
that is required.

In Figure 4 the mapping for a 64-bit processor is shown. The 64 bit
addresses starting at 0x1FFOC808000 are mapped to Elan’s 32 bit address-
es starting at 0xC808000. This means that virtual addresses in the range
0x1FFOC808000 to OXIFFFFFFFFFF can be accessed directly by the main
processor while the Elan can access the same memory by using addresses

4The current PCI bus implementations cannot guarantee atomic execution, so it is not
possible to store events in main memory.
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in the range OXC808000 to OXFFFFFFFF. In our example, the user may al-
locate main memory using malloc and the process heap may grow outside
the region directly accessible by the Elan delimited by OXIFFFFFFFFFF. In
order to avoid this problem, both main and Elan memory can be allocated
using a consistent memory allocation mechanism. As shown in Figure 4 the
MMU tables can be set up to map a common region of virtual memory called
memory allocator heap. The allocator maps physical pages, of either main
memory or Elan into this virtual address range on demand. Thus, using al-
location functions provided by the Elan library, portions of virtual memory
(1) can be allocated either from main or Elan memory, and (2) the MMUS
of both main processor and Elan can be kept consistent.

For reasons of efficiency, some objects can be located on the Elan, for ex-
ample communication buffers or DMA descriptors which the Elan can process
independently of the main processor.

3.1.3 Remote DMA

The Elan supports remote DMA (Direct Memory Access) transfers across the
network, without any copying or buffering or operating system intervention.
The process that initiates the DMA fills out a DMA descriptor, which is
typically allocated on the Elan memory for efficiency reasons. The DMA
descriptor contains the VPIDS of both source and destination, the amount
of data, the source and destination addresses, two event locations (one for
the source and the other for the destination process) and other information
used to enhance fault tolerance.

The typical steps of remote DMA are outlined in Figure 5.
The process that initiates the DMA (1) fills out a DMA descriptor and

(2) writes the address of the DMA descriptor in a special memory location,
called command port. The command port is mapped into both user’s and
Elan address space, so no system calls are required to access it.

As soon as the descriptor has been written to the command port, the
initiating process can continue, relying on the event mechanism to notify it
when the transfer has completed. In the meantime, the Elan (3) performs all
the checking required to implement interprocess protection and, if successful,
(4) reads in the DMA descriptor and adds it to the DMA queue. When the
descriptor reaches the head of the line, (5) the DMA processor checks that
the source and destination processes are allowed to communicate and then

12
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reads in the source data, splits it into packets, adds routing information, and
send it to the destination.

The routing info is stripped off as the packet traverses the network and
the packets are reassembled by the inputter at the destination. When the
transfer is complete, (6) the inputter notifies the DMA engine of the success-
ful completion of the transaction and (7) an acknowledgement is sent back
to to the source Elan which then (8) sets the source event. At this point,
(9) the Elan updates the copy block event in main memory and the main
processor (10) can be notified of the event (for example, by polling the event
location in main memory). If needed, an event (steps 11-13) can also be set at
the remote destination. It is worth noting that, given the virtual addressing
scheme in place in both source and destination Elans, both DMA engine and
inputter can perform true zero-copy communication directly, reading from
the source address/incoming virtual channel and writing into the outgoing
virtual channel/destination address.

3.2 Elanlib and Tports

Elanlib is a machine independent library that integrates the main features of
Elan31ib with the Tagged Message Ports or Tports. Tagged message ports
provide basic mechanisms for point-to-point message passing. Senders can
label each message with a tag, the sender identity and the size of the message.
This is know as the envelope. Receivers can receive their messages selectively,
filtering them according to the identity of the sender and/or a tag on the
envelope. It is worth noting that the Tports programming interface is very
similar to MPI.

Message sends (and receives) are implemented with two distinct func-
tion calls, a non-blocking start send, which posts and performs the message
communication and a blocking call that waits until the matching start send
has been completed, thus allowing the implementation of different flavors of
higher level communication primitives.

Messages can be delivered synchronously and asynchronously. Synchronous
messages are transferred from sender to receiver with no intermediate sys-
tem buffering. The message does not leave the sender until the receiver has
posted a request for it. Asynchronous messages are copied directly to the
receiver’s buffers if the receiver has posted a request for them. If the receiver
has not posted a request for them asynchronous messages are copied into a

. .
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system buffer at destination.
In our experiments we will evaluate an implementation of MPI-11 which

is based on a port of MPI-CH on Elanlib and Tports.

4 Experimental Framework

We tested the main features of the QNET on an experimental cluster with
8 dual-processor SMPS equipped with 733MHz Pentium III. Each SMP uses
a motherboard based on the 840 Intel chipset with 512MB of SDRAM. The
motherboard provides two 64 bits/66Mhz PCI slots and one of them is used
by the Elan3 PCI card QM-400. The interconnection network is a quaternary
fat tree of dimension two with 16 external ports, the QM-S16, composed of
8 8-port Elite switches integrated in the same board and connected to the
cluster host through the JTAG control port. The operating system used
during the evaluation is Linux 2.3.99.

The preliminary results shown in this paper try to expose basic perfor-
mance of the interconnection network. For this reason, most of the bench-
marks are written at Elan31ib level. We will also shortly analyze the overhead
introduced by Elanlib and MPI. A list of performed experiments follows.

4.1 Latency of the Elite Switch

The hardware latency of the Elite switch is only a few tens of nanoseconds. In
order to experimentally evaluate a communication latency with such small
granularity, we perform the following test. We first send a O-byte packet
from a source node to a destination directly connected to the same Elite
switch. We then send the same packet from the same source to a destination
which can only be reached passing through one the four nearest common
ancestors, traversing three distinct switches. The difference between the two
values gives us a rough estimate of the latency of two switches. In order to
eliminate the noise in the measurement and to avoid problems with the timer
resolution (which is in the hundreds of nanoseconds) we measure the latency
of a sample of one million packets and we analyze different pairs of source
destination processes.

.-
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4.2 Barrier Synchronization Overhead

One of the main advantages of the fat tree topology is the possibility of
implementing at hardware level fast and scalable collective communication
patterns. An example is the barrier synchronization that, when executed by
a group of processors that are physically adjacent in the Elite network, can
use a hardware broadcast facility. In the first phase of the barrier synchro-
nization, each participating processor enters the barrier by sending a message
to a designated host (the processor with lowest physical id). When the host
has received a message from all the processes involved, it can notify the end
of the barrier by using the hardware broadcast.

4.3 Unidirectional Ping

We analyze the latency and the bandwidth of the network by sending mes-
sages of increasing size from a source to a destination SMP in a dedicated
network. In order to identify different bottlenecks, the communication buffers
are placed either in the main or in the Elan memory. The alternatives in-
clude main memory to main memory, Elan memory to Elan memory, Elan
memory to main memory and main memory to Elan memory. These buffers
are placed in the desired type of memory using the allocation mechanisms
provided by Elan31ib, as described in Section 3.1.

For the unidirectional ping we report graphs showing latency and band-
width. The latency is measured as the elapsed time between the posting of
the remote DMA request and notification of the successful completion at the
source (steps 2 though 10 in Figure 5). As a consequence, the results shown
in the experimental evaluation are slightly conservative for small messages.
The unidirectional ping tests for the Tports and MPI are implemented using
matching pairs of blocking sends and receives.

4.4 Bidirectional Ping

The unidirectional ping experiments can be considered as the “peak perfor-
mance” of the network. By sending packets in both directions along the same
network path we can expose several types of bottlenecks.

For example, the Elan microcode interleaves four activities, DMA engine,
inputter, command processor and thread processor. This test can evaluate

17
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how the DMAengine andthe inputter can work with bi-directional traffic.
Also the link-level flow control requires the transmission of control informa-
tion, which can leadto a degradation of the unidirectional performancein
the presence of bi-directional traffic.

4.5 Hotspot

Afurther test of thenetwork andthenetwork interface isthe hotspot. Under
hotspot traffic, a set of communication partners try to read from or write into
the same memory location. This localized communication pattern can lead
to a severe form of congestion a know as tree saturation, which can seriously
degrade the performance of the overall network. In our experiments we will
consider both read and write hotspots.

4.6 Total Exchange

The all-to-all personalized communication, or simply total ezchange, is an
important communication pattern that is at the heart of many applications,
such as matrix transposition and the fast Fourier transform (FFT), and pro-
gramming models such as the BSP [24]. The total exchange is a collective
communication pattern where every node has to send a distinct message of
the same size to all other nodes. The efficient implementation of the total-
exchange has been extensively studied for a variety of networks [11] [2] [9]
[25] [26] [22]. The total exchange stresses the bisection bandwidth of the
network and exposes the network behavior under heavy load. A lower bound
for the execution time T of the total exchange is determined by the equation

~=s*(N–l)

B
(1)

where S is message size, N the number of processors involved in the total
exchange and B is the communication bandwidth of the network interface.
In fact, every processor must receive N – 1 messages of size S, and they must
flow through a communication link whose bandwidth is at most B.



4.7 Description of the measurement methodology

Measurements of uni-directional bandwidth and latencies were done by tim-
ing the round-trip time for the particular event. Round-trip measurements
are preferable because they exclude the need for clock synchronization. At
the elan31ib level, the round-trip consists of a put paired with an event no-
tification (wait). In this way, we ensure that the numerous put events that
are timed in order to gather significant statistics (due to the accuracy of the
timer) are serialized. The event ack consumes some bandwidth. However,
due to the fact that the ack (wait) is partly overlapped with the put, and
the fact that the payload of this memory access is very small, its effect on
the measured bandwidth is small. In experiments involving memory accesses
between different processing nodes we map the communication buffers either
in the main memory or in the Elan’s memory in order to bypass the PCI bus.

For Tport measurements, the round-trip for the messaging is “real”, in
that there is no need for an explicit instruction for ack. Similarly at the MPI
level. As mentioned before, at MPI level there is no possibility of targeting
memory levels other than the memory in the main processor.

Bi-directional bandwidth and latency measurements involve round-trip
measurements originating in each of the processor in a pair. All the other
details stay the same.

Hotspot experiments for reads and writes involve many processes at-
tempting to read or write the same memory

5 Experimental Results

location at once.

5.1 Latency of the Elite Switch

Figure 6 depicts the network latency when one and three hops (switches) in
distance are involved. This gives an indication of the pure hardware latency
of the switches and the wires. From the jump we infer that each hop adds
approximately 50 ns in latency in one direction. Based on the technical
specs [17], about 35 ns are spent in the switch and the difference is wire and
protocol latency. In a 5-dimensional 4-tree, connecting 1024 SMPS, a packets
crosses at most 9 switches, which implies a worst case network latency, in the
absence of contention, of about 0.5 MS. Considering that the latency in the
network interface is at least 1 ps and that the wormhole message transmission
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is pipelined, we can claim that message transmission is almost insensitive to
the physical location in the network of source and destination processors.
Overall, this is a remarkably small latency and a remarkable network design.

5.2 Barrier Synchronization Overhead

The experiment presented in Figure 7 involved synchronization overhead
measurements for an increasing number of SMPS checking in and out of
the barrier. We note that the synchronization time increases linearly with
the number of processes, from approximately 6.2 ps for 2 SMPS to 7.4 ps
for 8 SMPS. In the current implementation all the SMPS sequentially notify
an event in a single SMP, which acts as a host, upon entering the barri-
er. A more scalable algorithm, based on a tree structure, should be able to
guarantee a logarithmic behavior for a large-scale configuration.

5.3 Unidirectional Ping

The results for the ping benchmarks are presented in Figure 8. The exper-
iments, coded with Elan31ib, analyze the communication performance with
different buffer mappings. The peak bandwidth of 335 MB/s is reached when
both source and destination buffers are placed in the Elan memory, as shown
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in Figure 8 a). The maximum packet size that can be sent by the current
Elan implementation is at most 320 bytes of data payload. This is parti-
tioned in five low-level write-block transactions of 64 bytes. For this message
format, the overhead is 58 bytes, for the message header, CRCS, routing in-
fo, etc. This implies that the peak bandwidth delivered by the network is
approximately 396 MB/s, or 99% of the nominal bandwidth of 400 MB/s.

Another important characteristic is the asymmetry in performance be-
tween the main-to-Elan and Elan-to-main mappings. This is somewhat coun-
terintuitive, but it can be explained by an asymmetry in the PCI bus, allow-
ing larger bandwidth for operations incoming into the Elan. The burst write
performance of the PCI bus is 275 MB/s while the burst read is only 200 M-
B/s. This asymmetry is also present in other PCI chip-sets (e.g. Serverworks
HE and LE).

The overlap between the bandwidth in the main-to-Elan and main-to-
main experiments indicates that the bottleneck is in the PCI bus, for out-
going memory operations. We also note the low memory bandwidth for the
memory-to-memory communications when the processors belong to the same
SMP. This is due to the fact that these operations take place through the
Elan, rather than through the memory bus within the SMP box. For all
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buffer mapping strategies, N1/2 is approximately 512 bytes.
Figure 8b)shows the latency graph, and Figure8c) shows ablowupof

theregion in the range [0. . .1 K13]. The basic latency for O-byte messages
is only 2.1 MSand is constant for messages up to 64 bytes, because these
messages can be packed as a single write-block transaction. When both
source and destination buffers are in the Elan, the network can deliver up to
64 bytes in 2.4 ps. Main memory to main memory transfers require 3.7 ps in
the same message range. Again, memory reads issued over the PCI bus are
slower then memory writes. The slight increase for l-byte messages is due to
some extra overhead to extract the single byte from the incoming message
and deal with misalignment problems.

5.4 Bidirectional Ping

In this benchmark, whose results are shown in Figure 9, we continue to draw
the curves corresponding to the five experiments described in the previous
case. The first overall observation is that, whereas the curves in Figure 8
are very smooth, the ones in this case exhibit some fluctuations. We see
that the claimed hi-directionality of the network is not fully achievable. The
maximum unidirectional value obtained as 1/2 of the measured bidirectional
traffic with both communication buffers mapped on the Elan is about 270
MB/s, whereas in the previous case it was 335 MB/s. This difference in
the Elan-to-Elan bandwidth identifies potential bottlenecks in the network
or the network interface, as opposed to the PCI bus. Potential causes of
this performance degradation can be the interleaving of the DMA engine
and the inputter, the sharing of the internal data bus of the Elan and also
interferences at link level in the Elite network. We plan to further investigate
this problem using the performance counters available on the Elan.

The bidirectional bandwidth for the main memory to main memory traffic
is 140 MB/s. We anticipate here that the results for the total exchange will
depend upon this bandwidth.

The bidirectional bandwidth for the processors inside the same SMP is
low, 70-80 MB/s, compared to 150 M13/s for unidirectional experiments.
This is due to the doubling of the message traffic through the Elan, since
the memory traffic in this case takes place through the Elan and not through
SMP memory bus. We note that is optimization is feasible and important to
implement.
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The bidirectional latency measurements are shown in Figure 9 b). In
this case, since the message sizes are small, the bandwidth cannot be the
limitation. Instead, the latency per processor based on half the measured
bidirectional latency, gives an indication of the extra overheads incurred in
the case of a bidirectional communication.

We note (Figure 9 c) that the latency increase for small messages is about
1/2 ps: from 2.3 ps to 2.8 ps from Elan-to-Elan communication and from
3.6 ps to 4.1 for main memory to main memory. The main-to-main case for
intra-SMP processors leads to higher latency due to the same effect of an
increased memory traffic over the PCI bus.

5.5 Read Hotspot
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Figure 10: Read Hotspot

In this experiment we attempt to read the same memory location from
an increasing number of processors (one per SMP). The bandwidth plot is
depicted in Figure 10. The upper (constant) curve is the aggregate bandwidth
of all processes. The curve is remarkably fiat, to a constant value of 200
MB/s, exactly the value in Figure 8 a) for the main memory to main memory
curve. The lower curve is the per-process bandwidth for fetch operations.
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The scalability of this type of memory operation is very good, up to the
available number of processors
on read and on write, are very
scalability of hotspot resolution

in our cluster. Hot-spot operations, both
common in scientific computing, hence the
is very important.

5.6 Write Hotspot
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Figure 11: Write Hotspot

The two curves depicted in figure 11 are the same as those in Figure 10,
only for writes. The global bandwidth on writes is pretty constant to a value
of 275 MB/s, the upper bound determined by the PCI bus for the burst
write. The initial jump in bandwidth when going from 2 to more processors
is due to the fact that on the sending side, only 200 MB/s can be achieved.
On the receiving side, as seen from figure 8 a), 275 MB/s are achievable.

5.7 Total Exchange

In this type of communication kernel, all processors are involved in both
sending and receiving. As already mentioned earlier, the maximum achiev-
able performance in this case, based on the measurements of the bidirectional
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bandwidth is 140 MB/s per node. We see from figure 12 a) that the maxi-
mum measured bandwidth is approximately 130 MB/s, relatively close to the
140 MB/s achievable value. The worrisome trend clearly seen in the figure
is the degradation for message sizes larger than 256 KB. This indicates an
inefficiency in the buffering scheme, which would lead to scalability probIems
for large global communication kernels.

Figure 12 b) shows the latency for global communication. For messages
up to 256 bytes, the latency is constant to a value of 20 p. As this involves the
cost of synchronization and actual message exchanges, the value if relatively
low.

The various curves correspond to different messages sizes in figure 12 c)
Obviously, as the message size increases, the round trip timing includes a
sizable component of bandwidth. We see that for each curve, the value of
the “latency” is pretty constant, up to the available number of processors we
used in our experiments.

5.8 Elan31ib, Tports and MPI

The following set of experiments are done at the Tport and the MPI level in
the communication layer pyramid. Tport is the highest level in the memory
hierarchy at which experiments involving memory buffers in all the memory
layers in the Elan and the processors are possible. At the MPI level, it is not
possible to access the memory allocators and experiments are possible only
involving memory allocations in the main memory.

5.8.1 Unidirectional Ping

Figure 13 compares the performance of the unidirectional ping for the three
communication libraries. The lowest values of approximately 200 MB/s for
the bandwidth (the lowest two overlapped curves) are the Tport and MPI
bandwidth when the buffers are allocated in the main memory. At Tport lev-
el, when the source and destination buffers are allocated in the Elan memory,
we note a significant bandwidth increase in all message size ranges, as ex-
pected. The saturation value of the bandwidth in this case increases from
200 MB/s to 335 MB/s. The intermediate value of 275 MB/s is obtained
when the source buffer is in the Elan and the destination buffer is in the
memory. An interesting observation from these measurements comes from

28



. .
.

noting that the 6 plots in the figure are grouped in 3 sets of two with identical
saturation values. Given the fact that the bottleneck, as explained above, is
the PCI bus, the same maximum value of the bandwidth is achieved when
the source buffer is in the main memory, no matter where the destination
is. However, up to the maximum rate allowed by the PCI bus, the values of
the bandwidth differ, for smaller message sizes. The differences between the
curves in each set is visible for a message size range between 64 bytes and
32 KB. The practical implication is that we need to be aware of the memory
allocation for messages in this range only. We also note that any of these
measurements are not noisy.

The latency measurements for Tport and MPI, contrasted with Elan31ib
are shown in figure 14. We note an increase in the latency at the Tport and
MPI level, compared to the latency at the Elan31ib level, from approximately
3 ps to 5 ps. The extra cost is due to the overhead of tag matching, meaning
that from the Elan31ib level, in which latency is mostly hardware, system
software is needed to run as a thread in the elan microprocessor in order to
match the message tags. This introduces the extra overhead responsible for
the higher latency value. We see that the “latency” curves further diverge for
higher message sizes. The noisy upper 2 curves are the latency measurements
for Tport when the source is mapped into the Elan. Currently we have no
explanation for the performance glitch shown in this measurement.

5.8.2 Bidirectional Ping

We note in Figure 15 the noisier curves for the bidirectional bandwidth. Most
notably, the MPI measurements indicate a sharp drop in the bandwidth in
this important case for global communication kernels. As opposed to the uni-
directional bandwidth measurement, the uni-directional bandwidth based on
a hi-directional measurement is 50% lower for some message sizes. By con-
trast, the values for Tport are not lower by the same amount. The lower val-
ues are consistent with the observation that, in this case, we are hitting the
maximum rate allowed by the PCI bus of 140MB/s for hi-directional band-
width. The hi-directional bandwidth is significantly higher at the elan31ib
level, indicating that implementation of global communication kernels at this
level would pay off from a performance standpoint.

[14] [16] [15] [18] [19] [17] [20] [21]

29



. .

Ping Bandwidth

350

300

50

0

— MPI
----x---- TDort, Elan to Elan #,. o---~...e-.-e.-g::%=+::%=+-.x..> ---I....-*-.-- Tpoti: Mainto Elan .,+ ,,x”--
-..-.=..... Tpoti, Elan to Main ,0’

t, Main to Main
-t

~<..*..:;::&:,:&::e:e*...*-+.
~.;’ ......A.;,2.-Jr,-.. ●,. c,-- ,=

i
-...+----Tpofl

-.-+---- E\an& =,a,, ,“ =Id, , ., ~

-.-+-- Elan3, Main to Elan j’e..”” :
-----+-- Eian3, Elan to Main J,’
--+-- EIan3, Main to Mai~~.;’

. ..

_ — I
14 16 64 256 lK 4K 16K 64K 256K lM 4M

Msg Size (bytes)

Figure 13: Comparison

Ping Latency

60
MPI
Tport, Elan to Elan -x---- ;$>

50 - Tport, Main to Elan -----=--- ,,: i,
Tport, Elan to Main -’+- ,J:~’i\
Tport, Main to Main --+-- ,,’

,?
Elan3, Elan to Elan --*-- /? ~

40 - Elan3, Main to Elan .....s.... ,, i,?
2 Elan3, Elan to Main -----------

i
,,~ z

> Elan3, Main to Main
,?.* )

2 30 ,/~
\

al !
\

z ,;f \
-1 I ,:.. \

10 -
.-

1

0
01 4 16 64 256 lK

Msg Size (bytes)

Figure 14: Comparison

30



Bidirectional Ping Bandwidth

. .

250

50

0

60

50

40
%.

20

10

0

—MPI ‘ ‘ ‘
----x---- Tport, Elan to Elan
----.s---- Tp@, Main to Elan
-- e.. .- Tport, Elan to Main
---+---- Tport, Main to Main
-.-.+-. Elan3, Elan to Elan
-..-+.- Elan3, Main to Elan
--+-- Elan3, Elan to Main
--.+-- Elan3, Main to Main

14 16 64 256 IK 4K 16K 64K 256K IM 4M

Figure

Msg Size (bytes)

15: Comparison

Bidirectional Ping Latency

MPI’ “
,,.,
,,~,,

Tport, Elan to Elan x.... ---- /,’;:’‘:;
Tporl, Main to Elan -----*-- ,,!,,,,,/ .,,
Tport, Elan to Main = - ,?,: ,,,

;,$ :::
Tport, Main to Main --+- .,,,,//’ ,,
Elan3, Elan to Elan ----- ,!,, y,

,,,, ‘!.:!,
Elan3, Main to Elan - -+.-. ,:,(:.”’
Elan3, Elan to Main ---+- .::!,
Elan3, Main to Main ,($ 2,,,.....*....

,,!...
,::;:?’

,,,~

-.,.M ...
,,.,

,--- ..::;

01 4 16 64 256 IK 4K

Msg Size (bytes)

Figure 16: Comparison

31



6 Conclusion and Future Work

We presented the results of several performance tests on the QNET targeting
essential performance characteristics. At the lowest level of the communica-
tion hierarchy, the unidirectional latency is as low 2.1 ps and the bandwidth
as high as 200 MB/s. These performance numbers are influenced by the
mapping of the buffers in various levels of the memory hierarchy. The raw
network bandwidth, measured by placing the communication buffers in the
Elan memory is about 335 MB/s. Bidirectional measurements indicate a
degradation in performance which is analyzed and explained in the paper.
At higher leveIs in the communication hierarchy, Tports still exhibit excellent
performance figures comparable to the ones at Elan31ib level. The current
MPI implementation shows some performance degradation under contention.
In summary, our analysis shows that in all the components of the performance
space we analyzed, the network delivers adequate performance levels to the
end user. The glitches that we uncovered are likely to be fixed in the network
designers in the near future.

Future work includes scalability analysis for larger configurations, perfor-
mance of a larger subset of collective communication patterns and perfor-
mance analysis of ASCI applications.
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A k-ary n-trees

In this section we formalize the fat-trees, giving a recursive definition that is general enough
to embed many different topologies that are often quoted as fat-trees. We then turn our
attention to a particular subclass: the k-ary n-trees. As the k-ary n-cubes and the k-ary
n-butterflies [4], the k-my n-trees are a parametric family of regular topologies that can
be built varying the two parameters k and n.

Definition A.1 A fat-tree is a collection of vertices connected by edges and is defined
recursively as follows.

. A single vertex by itself is a fat-tree. This vertex is also the root of the fat-tree.

● Ifvl, vz, ..., vi are vertices and T1, T2, . . . . Tj are fat-trees, with rl, rz, . . . . r~ as
roots (j and k need not to be equal), a new fat-tree is built by connecting with edges,
in any manner, the vetiices V1,V2, . . . ,v~ to the roots Tl, r2, . ..Tk. The roots of the
new fat-tree are U1,Vz, . . ., Ui.

Definition A.1 is extremely general and covers many existing examples in the litera-
ture. It includes ordinary trees, “full” fat-trees with variable-sized switches and multiple
connections between vertices and irregular constructions. The only exception being the or-
thogonal fat-trees, that allow connections between the roots VI, vz, ..., vi. Some examples
are shown in Figure 17.

Let’s turn our attention to a particular class of fat-trees, the k-ary n-trees. k-ary
n-trees borrow from a popular class of multistage interconnection networks, the k-ary n-
butterflies [12] (or k-ary n-flies for short), the topology of the internal switches. The k-ary
n-fly is a generalization of the butterfly and is useful to model those topologies that use
communication switches with k greater than two. This topology has a recursive structure:
one k-ary n-fry contains k butterflies of dimension n – 1 as subgraphs. Also, each level O
switch is linked to any level n switch by a unique path of length n, that is k-ary n-flies
are banyan networks.

We can define the class of k-ary n-trees in the following way.

Definition A.2 A k-ary n-tree is composed of two types of vertices: N = kn processing
nodes and nkn–l k* k communication switches 5. Each node is an n-tuple {O, 1, . . . . k–l}n,
while each switch is defined as an ordered pair (w, 1), where w ~ {O, 1, . . . . k – l}n–l and
lE{O,l,...,1}l}.

v TWOswitches

(w@,wl,... ,wn–2,1) and (w&,w{,. ... w~_2, )’)

are connected by an edge if and only if 1’ = 1+ 1 and wi = w: for i # 1. The edge
is iabelled with W; on the level 1 vertex and with W1 on the level 11vertex.

5A k-ary n-tree of dimension n = O is composed of a single processing node
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Figure 17: a) A fat-tree is recursively built connecting the new roots
‘U1,V2,..., vi to the roots rl, r2, . . ., r~ of the subtrees. b) A fat-tree with
two roots. c) A fat-tree with multiple edges between the root V1 and the
roots of the subtrees T1 and T2.
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● There is an edge between the switch (wo, WI, . . . . wn_z, n–1) and the processing node

PO>Pi>.. . ,P~-I if and only if

Wi=P~ /07’ ~E {0,1, . . ..n–2}.

This edge is labelled with pn–l on the level n – 1 switch.

It can be easily seen that a k-ary n-tree is a fat-tree, according to Definition Al. In
fact, the level O switches (w, O) are the roots of a k-ary n-tree whose subtrees are (n– l)-
dimensional k-ary n-trees. Also, the labelling scheme shown in Definition A.2 makes the
k-ary n-tree a delta network [12]: any path starting from a level O switch and leading to
a given node po, pi,... ,p~._l traverses the same sequence of edge labels (po, pl, ..., pn_l).

Some examples are shown in Eigure 18.

A.1 Topological properties
k-ary n-trees are built using two building blocks: processing nodes and switches. These
switches are logically arranged in a n * kn– 1 matrix. Communication between a pair of
nodes p and q takes place within one of the minimal subtrees of the network that contain
both source and destination. The roots of these subtrees can be determined using the
numerical representation of both nodes.

Definition A.3 Given a pair of nodes

P= PO,Pi,... ,p~–I and q=qo, ql,. ... q1,l, P#q,

the minimal different index of p and q, mdi(p, q), is defined as

mdi(p, q) = min{j IPj # qj}. (2)

From the hypothesis that p # q, we know that there is at least an index j such that

Pj # qj. The mdi(p, q) is n–l when both nodes are rooteclat the same level n–1 switch, O
when p and q belong to distinct k-ar y n-trees of dimension n—1, and an intermediate value
between O and n – 1 otherwise. The mdi can be used to compute the minimal
between two nodes.

Corollary A.1 The distance between two nodes p and q p # q, d(p, q), is given

d(p, q) = 2 (n – rndi(p, q)) .

Also, we can define the minimal different index of a node and a switch.

Definition A.4 Given a node p and a switch s

P= Po, Pl, ..-, P17l7 S=(wo, wl, ..., wn_2,1),

the minimal different index of p and s, mdi(p, s), is defined as
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● n–l ‘i~j9i=W~j iE {0,1,...,2},},

● min{j Ipj # Wj } otherwise.

As in the previous case, the minimal different index between a node and a switch is a
number in the range {O, 1,. ... n– 1}. Using the minimal different index we can characterize
the set of nearest common ancestors of any pair of nodes.

Definition A.5 Given two nodes p = po, pi,... ,p~–1 and q = qo, ql, ..., q~–1, P # q,
with minimal different index m = mdi(p, q), the set of their nearest common ancestors
nca(p, q) can be defined as

nca(j, q) = {(pO, pI, . . ..pI.t Om,t Om+IjIj ...,7-W-2~~)}> (4)

withwi G {0,1, . . ..1}l}.

The cardinality of nca(p, q) is k - -n 1 mWP~gJand varies between 1, when the nodes are

directly connected to the same switch, and kn-l. In the second case, nca(p, q) is the set
of all level O switches.

In the worst case, a message sent from node p to node q must reach one of the level O
switches and then follow the only path to the destination. This implies that the diameter
D of this network is

D = 2n = 210g~N. (5)

To compute the average distance dm we can observe that each node has k – 1 nodes at
distance 2, kz – k nodes at distance 4, . . ., kn – kn–l nodes at distance 2n. The solution
of the corresponding geometric series gives

‘m=2(”-+J+WL‘ 2(”-+) (6)

This analytic formulation shows that the average distance is very close the network diam-
eter. For example, in the 4-ary n-trees drn s 2n – 2/3.

When a k-ary n-tree is divided into two symmetric halves, lcn/2 links between level O
and level 1 switches are cut. Thus, the bisection width B is

(7)

As in the butterflies, the bisection width scales as a linear function of the number of
nodes. Also, the overall communication bandwidth between level i and level i + 1, i c
{O, 1, . . . . n–2} and between level n–l and the processing nodes is constant and proportional
to the number of nodes N.
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Figure 18: a) Thelinklabellingof Definition A.2 makes the k-ary n-tree a
delta network: allpaths connecting level Oswitches tothenode 3,2 (solid
lines) cross the same sequence of edge labels (3, 2). b) The mdi of nodes
2,1 and 2,3 is 1: this implies that their nca is the common root (2, 1). The
mdi of nodes O,1 and 3,2 is O; in this case the nca is composed of all level O
switches. These two nodes are connected by four distinct minimal paths.
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A.2 Message routing
As outlined above, minimal routing between a pair nodes on a k-ary n-tree can be accom-
plished sending the message to one of the nearest common ancestors and from thereto the
destination. That is, each message experiences two phases, an ascending phase to get to a
nearest common ancestor, followed by a descending phase. If we attach at the beginning of
each message a header containing the address of the destination p = PO,PI, ..., p~–1, the
switches can execute straightforward routing algorithms using the edge labelling scheme
of Definition A.2. Each switch s = (w., WI, ..., w~–.-z,1) has 2k edges: k of these are
connected to level 1– 1 switches (if 1> O) and the remaining k to level 1+ 1 switches or to
processing nodes. We will call, the former, level 1– 1 edges and, the latter, level 1 edges.
The following fragment of pseudo-code describes the skeleton of such a class of routing
algorithms.

if ( the message comes from a level 1 edge )
/“ the message is in the ascending phase */
if ( rrzdi~, s) = 1 )

/* begin the descending phase “/
( route the message to the level 1 edge labelled pl )

else
/’ continue the ascending phase */
( pick one of the level 1-1 edges )

else
/“ the message is in the descending phase “/
( route the message to the level i edge labelled P1)

Figure 19: The skeleton of the routing algorithms.

The routing decision is taken according to the provenience of the message: if it comes
from a level 1 edge, the message is in the ascending phase. The switch reads the message
header and computes the mdi(p, s): if it is equal to 1, the switch is a nearest common
ancestor according to Definitions A.3 and A.5 and the message can begin the descending
phase. The outgoing edge is chosen according to the labelling scheme of Definition A.2,
in order to correct the lt~ field. Otherwise, the message continue its ascending path: any
of the level 1—1 edges will do. According to the way we choose this edge we can have
different routing algorithms.

● A deterministic algorithm always chooses the same path for a given pair of nodes.

. .
. #

● An adaptive algorithm makes a decision according to the local state of the switch,
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avoiding congested edges. This version is expected to give the best performance, at
the cost of a major complexity in the implementation.

Descending messages, coming from a level 1–1 edge, are routed, according to the usual
labelling scheme, to the only path leading to the destination.

The deadlock-freedom6 can be easily proved buildlng an acyclic buffer or channel
dependency graph, according to the flow control strategy in use [7] [5].

‘The algorithms are livelock-free because they are minimal and so, they guarantee the
progress of each message toward the destination at each routing step.
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