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Abstract

We compare three remote visualization strategies used for in-
teractive exploration of large data sets: image-based render-
ing, parallel visualization servers, and subsampling. We review
each strategy and provide details for an adaptive multiresolu-
tion subsampling technique that we have developed. To deter-
mine the problem regimes for which each approach is most cost
effective, we develop performance models to analyze the costs
of computation and communication associated with the com-
mon visualization task of isosurface generation. Using these
models, we investigate a number of hardware system configu-
rations and task complexity scenarios when parameters such as
problem size, visualization demands, and network bandwidth
change. For one particular strategy, subsampling, we further
investigate the tradeoffs between multiresolution and uniform
grid methods in terms of performance and approximation er-
rors.

Keywords: Remote Visualization, Interactive Visualization,
Large Data Set Exploration, Performance Models

1 Introduction

Tera- and petabyte size data sets are becoming more common
as scientists gain access to ever increasing computational re-
sources. Interactively exploring these data sets is an extremely
challenging task, particularly for scientists whose primary ac-
cess to visualization resources is a desktop graphics worksta-
tion. To address this problem, researchers are exploring a num-
ber of approaches that provide interactive navigation and explo-
ration of very large data sets. The approaches combine remote
computational or visualization resources with high-speed net-
works to deliver the images or reduced geometries to the local
graphics workstation.

In this paper, we consider three commonly used strategies for
performing interactive, remote data exploration: image-based
rendering, parallel visualization servers, and subsampling of
the original data set. Each approach has inherent advantages
and disadvantages, and we give an overview of these strategies
in Section 2. We also describe our approach, which is based on

an adaptive, general-purpose, multiresolution data subsampling
technique.

To determine the most cost-effective strategy for particular sys-
tem or problem configurations, we examine the performance
characteristics of each by developing theoretical performance
models. These models estimate the costs of computation and
communication when parameters such as network bandwidth,
problem size, and visualization demands change. We describe
the models in Section 3 and analyze them in Section 4 for a
variety of problem scenarios.

For the subsampling approaches, we develop two theoretical
models: one for uniform grids and one for multiresolution
grids. Uniform grids are advantageous for two reasons: (1)
they can be represented with a comparatively small amount of
data, and (2) visualization algorithms on uniform grids gen-
erally outperform their nonuniform grid counterparts. There-
fore, a larger number of grid points can be used with uniform
grid subsampling than with multiresolution techniques. How-
ever, multiresolution techniques are designed to minimize the
approximation error associated with subsampling by placing
more points where the data is changing rapidly. To examine the
tradeoffs between these two subsampling methods, we compare
the results for several different application data sets.

2 Remote Data Exploration Strategies

For each of the three strategies considered for remote data ex-
ploration, we briefly describe the fundamental concepts and
give an overview of the method’s advantages and disadvan-
tages. We then describe a particular data reduction strategy
that we have developed for multiresolution subsampling using
a parallel octree data structure.

2.1 Overview

Image-based rendering techniques use two or more reference
images from multiple viewpoints to reconstruct either the ge-
ometry in a scene or new images of the scene as the user’s



viewpoint changes.1 In this paper, we consider image warping
techniques that use reference images containing color, depth,
and surface normal information to “warp” or change the in-
put images to the desired output image (see, for example,
[22, 19, 7, 18, 2]). Typically, several reference images are
needed to reconstruct the scene for arbitrary viewpoints; if only
a few reference viewpoints are available, the reconstructed im-
age is more likely to contain approximation errors or holes gen-
erated by surfaces not represented in the original images.

The primary advantage of this technique for remote data explo-
ration is that the amount of data transmitted and manipulated
locally is independent of the complexity of the scene or origi-
nal data set. Thus the costs are fixed as data set sizes increase.
In addition, if remote resources are used to generate the derived
visualization entities using the full data set, no approximation
errors are associated with the reference images. However, as
the user rotates the scene or otherwise changes the view per-
spective, errors associated with the reconstruction process can
misrepresent the original data set. In addition, these techniques
are still moderately expensive, and even fairly sophisticated hi-
erarchical techniques can require 1.5 seconds/frame using four
reference images [2]. Finally, the addition of a temporal di-
mension, although not significant for the results of this paper,
remains an open area of research.

Parallel visualization serversutilize remote computational re-
sources to visualize full-resolution data sets either as the com-
putation proceeds (e.g., [8, 26]) or as a post-processing step
(e.g., [3, 4, 16, 9]). The geometries of the derived visual-
ization entities, rather than images, are extracted and com-
municated to the graphics workstation for display. Typically,
lower-dimensional entities such as isosurfaces or streamlines
are targeted for use with these systems because their transmis-
sion and memory requirements are much smaller than the full-
dimensional data set.

The primary advantage of these techniques is that the derived
visualization entities have no subsampling or other approxima-
tion errors. In addition, once the geometry is loaded into the
local graphics workstation, it may be freely rotated or manip-
ulated without reconstruction errors. The primary disadvan-
tage is that the geometries transmitted to the local graphics
workstation are functions of the overall problem size. Thus, as
the problem size increases, the demands on computational re-
sources, both remotely and locally, and on network bandwidths
also increase.

Subsampling and clustering techniques create smaller, full-
dimensional data sets by sampling the original data at specified
locations or by averaging clusters of points from the original
data set. The simplest approach to subsampling is to create a
uniform grid representation of the original data set, and this is
common in practice. Alternatively, a hierarchical, multireso-
lution representation of the data can be constructed using, for
example, quadtrees or octrees [15, 11, 14], progressive meshes
[13, 12], wavelets [23], or other clustering approaches [10, 25].
The level of detail in each region is controlled through a variety
of mechanisms, such as error tolerance bounds that control fi-
delity to the original model, or user input, such as field of view.

1We note that simply sending each image as the object is manipu-
lated from the remote resources requires more network bandwidth than
is generally available.

The primary advantage of subsampling or clustering ap-
proaches is that they are useful for fast, local exploration of
the reduced data set. The computation and transmission costs
are fixed regardless of the number of visualization tasks. The
primary disadvantage is that the maximum resolution of the re-
duced data set is limited by the memory size and speed of the
local graphics workstation. Thus, as the original problem size
increases, a smaller percentage of points can be used in the re-
duced data set, resulting in higher approximation errors. This
disadvantage can be somewhat mitigated, at the cost of more
communication, by an adaptive approach such as the one de-
scribed in the next section.

2.2 Adaptive Multiresolution Subsampling
Using a Parallel Octree

Our approach to interactive remote data exploration is to use
a parallel octree infrastructure to create a general-purpose tool
for adaptive, multiresolution subsampling of the original data
set. Currently, our system allows file-based scalar field input
and inserts each data point into the appropriate leaf octant. That
leaf is then evaluated according to a specified criterion and re-
fined if necessary with its associated data points reassigned to
the new leaf octants. Our subsampling code is general purpose
and requires only spatial coordinate information from the orig-
inal data set, with no connectivity information necessary. We
have successfully used our approach with unstructured tetrahe-
dral and hexahedral, block adaptive, and uniform meshes. We
provide default routines to support reductions that meet user-
specified bounds in standard or maximum deviation, or to auto-
matically determine the error bound on these quantities given a
performance constraint specified by a maximum target number
of leaf octants. Additionally, we provide stubs to allow cus-
tom, user-defined insertion criteria to ensure wide applicability
of our software.

To provide an indication of the error associated with the re-
duced data set, for each leaf octant we compute and store sta-
tistical values such as the standard deviation, �, and maximum
deviation from the mean, e. These values are normalized by
the mean to yield �n and en, respectively. One or both of these
values are included as additional scalar fields to be visualized
so that the user has an indication of the fidelity of the reduced
data set to the original data set. These measures of error also
serve to highlight potential regions of interest; the cells with a
large deviation from the average value are likely to have fine-
scale structure that was not adequately captured by the reduc-
tion process. The computed scalar fields are either stored to a
file for later processing or communicated directly to the graph-
ics workstation for visualization.

The graphics application we have developed uses JAVA Swing
components [5] to provide a GUI to vtk classes [24]. The user
interface supports adaptive level-of-detail requests to the par-
allel octree code so that the user may interactively change the
leaf criterion and thereby the resolution of the reduced data.
The new criterion may be applied either globally or in a spec-
ified region of interest. In this way, the user can “zoom in”
with high-resolution views in local subregions without sacrific-
ing graphics performance. Communication between the octree
code and the desktop graphics application is performed using



the ALICE Memory Snooper (AMS) [1] from Argonne Na-
tional Laboratory, which uses a client/server model based on
TCP/IP and Unix sockets.

Additional details about the parallel octree algorithms, our soft-
ware architecture, and results obtained on large data sets can be
found in [6].

3 Performance Models

For each of the remote data exploration strategies discussed in
Section 2, we now develop a theoretical performance model
describing the computation and communication costs. The vi-
sualization task used in these models is isosurface generation,
which we chose for three reasons:

1. Isosurfaces are one of the most commonly used visualiza-
tion techniques for exploring scientific data sets.

2. Much research in the visualization community has tar-
geted efficient isosurface generation for both uniform and
multi-resolution data sets and for both serial and parallel
computers.

3. The fact that isosurfaces are lower-dimensional entities
ensures that all three strategies are fairly considered.

Other commonly used visualization techniques such as cutting
planes, streamlines, vector glyphs, and volume visualization
could be easily modeled by replacing the isosurface-specific
information.

The costs included in our models include the time to compute
a specified number of isosurfaces, the time to transmit infor-
mation over a wide area network to the local graphics worksta-
tion, and, for the subsampling techniques, the time to compute
the reduced data sets.2 Because the data sets of interest are
large, we assume that the scientist has access to a remote par-
allel computer and that any remote isosurface or subsampling
computations are done scalably in parallel. We assume that
the original data is preloaded and distributed across the proces-
sors of the remote parallel computer, because this is common
to each approach and does not differentiate the models. For
all models, we assume that the original computational mesh is
nonuniform.

The parameters and cost variables used in our models are de-
fined in Table 1. To define the hardware characteristics of our
remote visualization system, we use P to define the number of
remote processors available for parallel computation andR and
L to define the network bandwidth and latency in Mbs and sec-
onds, respectively. The data set size, N , and the number of iso-
surfaces to be computed and rendered, I , define the complexity
of our visualization task. The parametersX andNR define the
size of the images in pixels and the reduced data sets for image-
based rendering and subsampling, respectively. The parameters

2Our models do not address the costs associated with loading and
processing the resulting data sets on the local graphics workstation.

CRu andCRm give the total serial cost of subsampling for uni-
form and multiresolution grids, respectively. The parameters
CIu andCIm give the cost per element of isosurface generation
on uniform and multiresolution grids, respectively. A detailed
analysis of these costs will be given in Section 4.

Table 1: Variables and parameters used in the cost models

Symbol Definition
P Number of Remote Processors
R Network Bandwidth (Mbs)
L Network Latency (s)
N Number of Elements
I Number of Isosurfaces
X Pixels/Image
NR Number of Subsampled Elements

System-Dependent Computational Costs
CRu Uniform Grid Subsampling Cost
CRm Multiresolution Subsampling Cost
CIu Uniform Grid Isosurface Cost/Element
CIm Multiresolution Isosurface Cost/Element

3.1 Model 1: Image-based Rendering

For image-based rendering techniques, we assume that the iso-
surfaces are computed in parallel and that six depth images are
used for reconstruction on the local graphics workstation [22].
To determine the number of bits that must be transmitted for
each pixel in the depth image, we use the best-case scenario in-
formation given in [17] for a postrendering warping technique.
In particular, we assume 24 bits for color, 16 bits for depth, and
8 bits for surface orientation information, for a total of 48 bits
per pixel. We assume that a new set of reference depth images
is required for each new isosurface generated. 3 The total cost
of the image-based rendering technique is

MI =
N CIm I

P
+

48 � 6 X I

106 R
+ 2 L I: (1)

The first term gives the time required to compute the isosur-
faces in parallel on the original data set. The second term gives
the transmission time required to send the depth images asso-
ciated with each isosurface. The final term gives the network
latency for new isosurface requests. We assume that the cost of
generating the six depth images is negligible and the volume of
information to request new isosurfaces is minimal.

3.2 Model 2: Parallel Visualization Servers

The parallel visualization server also computes the isosurfaces
in parallel, so the first term of this model is identical to the first
term in Equation 1. The transmission costs for each isosurface
are three spatial coordinates for each data point as well as the

3We note that if multiple isosurfaces are generated during each re-
quest, the number of reference depth images does not necessarily in-
crease, which has the potential to increase the attractiveness of this
approach.



connectivity information for each triangle. If we assume that
each isosurface contains N

2

3 triangles, the total cost of the re-
mote visualization server is

MV =
N CIm I

P
+

32 � 6 N
2

3 I

106 R
+ 2 L I: (2)

In this model we assume 32 bit information for all scalar and
integer values and use the fact that the numbers of vertices and
elements in a triangular mesh are approximately equal.

3.3 Model 3: Uniform Subsampling

For uniform grid subsampling, we assume that the original data
is partitioned such that the reduction operations may be per-
formed with minimal communication and will scale linearly as
a functionP . The transmission costs for a uniform grid include
the cost of sending the origin, grid spacing, and problem size in
each of the three dimensions, and the scalar data and error as-
sociated with each element. No additional spatial or coordinate
information is required.

The total cost of uniform subsampling is

MU =
CRu

P
+NR CIu I +

32 � (9 + 2NR)

106 R
+ 2L: (3)

The first two terms are the computational costs associated with
data reduction and isosurface generation on the reduced uni-
form grid, respectively. The third and fourth terms are the trans-
mission and latency costs for a single request for a subsampled
grid, respectively.

3.4 Model 4: Multiresolution Subsampling

The model for multiresolution subsampling is similar to Equa-
tion 3. Because we are using an octree data representation,
the spatial coordinates and connectivity information for the re-
duced mesh must be transmitted in addition to the scalar infor-
mation. Given a number of octant leaves, the number of asso-
ciated vertices cannot be determined a priori. An upper bound
for the number of vertices is 8NR, which is the case when no
vertex is shared between octants. A lower bound for the num-
ber of vertices is NR, which is the case when the vertices are
maximally shared by octants, that is, when the leaf octants form
a uniform mesh. For the purposes of our model, we assume an
average case of 4NR. Thus, the total amount of information
that must be transmitted is 3� 4NR for the spatial coordinates
plus 10NR for the connectivity, scalar, and error data. With
these assumptions, our cost model for multiresolution subsam-
pling is

MM =
CRm

P
+NR CIm I +

32 � (22NR)

106 R
+ 2L: (4)

Note the use of the nonuniform grid costs for data reduction and
isosurface generation, CRm and CIm , in the first two terms of
the model.

4 Results

To determine the regimes for which the models developed in
Section 3 are most cost effective, we first determine typical
values for the parameters CIu , CIm , CRu , andCRm . We then
analyze the performance models for various values of N , P ,
I , and R and determine the breakeven points between them.
Finally, we compare the uniform grid and multiresolution sub-
sampling techniques in terms of performance and approxima-
tion error for several different application problems. All exper-
iments were performed on one or more processors of an SGI
Origin with 250 MHz R10000 chips, and all timings were per-
formed using the Unix subroutine gettimeofday().

Network bandwidth and latency estimations are based on the
vBNS and ESnet networks. Each of these networks consists
of OC3 lines for a maximum throughput of 155 Mbs, although
expected performance is often far less [21]. Latency measure-
ments listed on the vBNS net traffic web page [20] range from
3 to 40 ms depending on the destination/origination combina-
tion. For the purposes of this paper we consider bandwidth
rates ranging from R=.5 Mbs to 100 Mbs and use a latency
value of L = 20 ms.

4.1 Determining Cost Parameter Values

We first determine the cost per element of isosurface genera-
tion on uniform and multiresolution grids, CIu and CIm , re-
spectively. We used vtk’s vtkContourMarchingFilter,
which uses a fast marching cubes algorithm for uniform struc-
tured point sets and a general algorithm for all other mesh
types, including our unstructured octree representation [24].
We tested the algorithms on the same uniform data set, chang-
ing only the way it was represented in vtk data structures. In
particular, we used vtkStructuredPoints to determine
CIu and vtkUnstructuredGrid to determine CIm . We
present the timing results for computing the isosurface on a cost
per element basis for five different problem sizes in Table 2.

Table 2: Isosurface Generation Costs (ms)

N CIu CIm

C
Iu

C
Im

20
3 .0036 .0243 6.75

30
3 .0026 .0246 9.46

40
3 .0022 .0240 10.91

50
3 .0018 .0240 13.33

60
3 .0016 .0239 14.93

The cost parameter CIu decreases as the problem size in-
creases, reflecting the fact that the cost of processing the data
structure is far less than the cost of processing cells containing
contour values. Thus, as the percentage of cells containing con-
tour data decreases, the average cost per cell decreases. Plotting
the results for CIu shows that the parameter is asymptotically
approaching a value of approximately :0015 ms/cell as N in-
creases, and this is the value used in our model. In contrast,
the cost of using general data structures in vtk, along with the



Table 3: Data reduction costs for uniform subsampling (s)

N NR = 1 NR = 5
3

NR = 10
3

NR = 20
3 Add. Cost

50
3 .108 .111 .142 .618 6:57 � 10

�5
NR

75
3 .368 .371 .403 .885 6:66 � 10

�5
NR

100
3 .873 .874 .908 1.41 6:94 � 10

�5
NR

Table 4: Data reduction costs for multiresolution subsampling (s)

N NR = 1 NR Time NR Time Add. Cost

50
3 3.76 512 4.61 32768 6.38 4:34 � 10

�5
NR

75
3 12.67 512 15.55 23696 18.85 11:0 � 10

�5
NR

100
3 31.74 512 41.05 18404 43.60 26:2 � 10

�5
NR

associated virtual function calls, results in the parameter CIm
remaining fixed at approximately :024 ms/cell, a factor of 16
greater than CIu . We note that this factor should be signifi-
cantly less for routines specific to octree data types and is also
implementation dependent.

To determine CRu , we subsampled a tetrahedral mesh onto a
uniform grid of different sizes and monitored the time required
to collect the reduced data set averages and compute the nor-
malized standard deviations for each subsampled grid point.
We also computed the average and maximum deviation over the
entire reduced data set. Timing results in seconds are given in
Table 3 forN = 50

3
; 75

3 , and 1003 and forNR = 1; 5
3
; 10

3
;

and 20
3 . Linear least squares analysis for NR = 1 yields

a base cost for visiting every point in the original data set of
8:75 � 10

�7
N . To obtain the additional cost of data reduction

per point as NR increases, we performed a least squares anal-
ysis on each row of Table 3. The results are given in the last
column and show that the total data reduction costs grow as a
function of both N and NR. Linear least squares analysis on
the coefficient of NR given in the last column of Table 3 de-
termines the dependence on N . Our final expression for CRu

is

CRu = 8:75 � 10
�7
N + (6:50 � 10

�5
+ 4:31 � 10

�12
N)NR:

To determine CR
M

, we performed a similar analysis using the
octree data reduction technique described in Section 2. The
timing results in seconds for various values of N and NR are
given in Table 4. Linear least squares analysis for the NR = 1

case yields a base cost of 3:21�10�5N . Again, the costs of data
reduction increase as a function of both N and NR. A linear
least squares analysis on the coefficients from the last column
of Table 4 yields our final formula for CRm :

CRm = 3:21 � 10
�5
N + (:87 � 10

�5
+ 2:5 � 10

�10
N)NR:

4.2 Performance Model Comparisons

To determine the regimes for which each model is the most cost
effective, we first consider the image-based rendering and the
parallel visualization servers models. The computational costs

for isosurface generation are identical; the models are differ-
entiated only by the amount of data transmitted. By equating
MI and MV , we can easily derive the breakeven function that
relatesX and N :

X =
2

3
N

2

3 : (5)

For pixels sizes less that X , MI <MV . Note that this expres-
sion is independent of both the number of isosurfaces and the
network bandwidth and latency. A few representative data pairs
are (N;X) = (128

3
; 104

2
); (256

3
; 209

2
); (512

3
; 418

2
) and

(1024
3
; 836

2
). Thus, if the resolution of the images used is

fixed, image-based rendering becomes increasingly attractive
as the data set sizes increase.

For the subsampling techniques, the costs will far exceed the
costs of image-based rendering or parallel visualization servers
as NR �! N . Therefore, we determine the breakeven points
for these models by finding a value of NR such that the costs
of the subsampling model are equal to the smaller of either
Model 1 or Model 2 costs. We consider a large number of sce-
narios, and in Figure 1 we show the breakeven percentages,
PN =

N
R

N
� 100, for both uniform and multiresolution sub-

sampling. We choose a representative set of base parameters
and vary N , P , R, and I to examine the effect on PN . We
choose base values of R = 10 and I = 64 for all cases; the top
two figures show uniform and multiresolution cases for base
parametersN = 128

3 and P = 8, and the bottom two figures
show a larger problem whose base parameters are N = 256

3

andP = 16. Percentage values,PN , below the curves indicate
the regimes for which subsampling is more cost effective than
either parallel visualization servers or image-based rendering at
a resolution of X = 512

2.

For both problem sizes, a given case that employs uniform grid
subsampling can use a higher percentage of grid points than
can be used with multiresolution grid subsampling. For the
smaller problem size, a full-resolution view resampled to a uni-
form grid is often the most cost effective of all strategies con-
sidered. In contrast, the multiresolution subsampling is cost ef-
fective for subsampling percentages less than 12 in the smaller
problem size, and less than 5 for the larger problem size. In
all cases, as N increases, PN decreases as a result of the in-
creased cost of creating the reduced data sets. Similarly, as P
increases, PN decreases because the parallel isosurface com-
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Figure 1: The breakeven graphs for uniform and multiresolution subsampling; the base parameters for the first row are are N =

128
3 , P = 8, R = 10 Mbs, I = 64; the base parameters for the second row are N = 256

3 , P = 16, R = 10 Mbs, I = 64

putation costs in Models 1 and 2 decrease. Network bandwidth
has very little effect on PN , except for small values, showing
that transmission costs are not the limiting factor for any of the
models. Finally, as expected, as the number of isosurfaces gen-
erated, I , increases,PN also increases.

4.3 Uniform and Multiresolution Subsampling

For a given set of parameters, the graphs in Figure 1 clearly
show that uniform grid resampling is significantly more cost
effective than multiresolution subsampling. To determine rela-
tive performance benefits, we plot the ratios of the uniform and
multiresolution subsampling breakeven percentages in Figure
2. We see that the uniform grid is about 12 and 22 times better
than the multiresolution grid for the smaller and larger problem
sizes, respectively. We note that the primary difference between
the two methods is the large difference inCIu andCIm . In fact,
if we consider a case in which CIm is 5:0 � 10�6 or about four
times slower than CIu , the corresponding performance ratios
are 4 and 17, respectively.

Thus, the multiresolution technique will outperform the uni-
form grid method only if the subsampling approximation errors
are reduced by the same amount or more using significantly
fewer grid points. To explore these tradeoffs, we subsample
three different application data sets of varying size, dimension-
ality, and mesh type. The first two data sets are from Rayleigh-
Taylor (R-T) simulations in both two and three dimensions and
containN = 5:3 � 10

4 and N = 3:7 � 10
5 data points, respec-

tively. These data sets are characterized by a contact discon-
tinuity between two fluids of different density and represent a
broad class of applications whose primary features are sharp
discontinuities which are typically local, lower-dimensional
phenomena. The third data set is from a three-dimensional sim-
ulation of hairpin vortices developing in flow around a hemi-
sphere and containsN = 2:05 � 10

6 data points. This problem
is representative of a class of applications in which the scalar
field of interest describes fully three-dimensional features.

For each problem, we create reduced data sets of approximately
5, 10, 25, and 50 percent in the uniform grid case and approxi-
mately 1.5, 3, 6, 12, and 25 percent in the multiresolution case.
For multiresolution subsampling, NR was specified, and the
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Figure 2: The relative outperformance of the uniform grid subsampling compared to multiresolution subsampling for a fixed value
of NR and the base parameters used in Figure 1.

code automatically determined the best decomposition to min-
imize one of the two different error criteria defined in Section
2: the standard deviation, �n, in the leaf octants, and the maxi-
mum deviation, en , in the leaf octants. In Table 5, we report the
the average �n and maximum en over all octants for each case.
The first value gives a measure of the overall fidelity of the re-
duced data set to the original data set; the latter value gives a
worst-case measure of fidelity.

In all cases, we achieve the same average and maximum errors
using far fewer multiresolution grid points than uniform grid
points. The number of cells required to achieve similar results
depends on both the insertion criterion used and the error val-
ues used to make the comparison. For example, for the 2D
Rayleigh-Taylor problem, if we use average standard deviation
as our insertion criterion, the same average error is achieved by
approximately a factor of five fewer grid points, but the max-
imum error is approximately doubled. Similarly, if we use an
insertion criterion based on the maximum deviation, the same
maximum error can be achieved in approximately a factor of
30 fewer grid points, but the average standard deviation is in-
creased by about a factor of six. For the 3D Rayleigh-Taylor
problem, the corresponding results are decreases by a factor
of two and ten for the average and maximum error insertion
criteria, with corresponding increases of about 10 percent and
double for the error measure not targeted. For the hairpin vor-
tex data set, the scalar field is interesting in that only values
less than negative one are of interest; all other values are disre-
garded as noise. These noise values can vary dramatically out-
side the regime of interest, rendering the maximum deviation
error measure ineffective. By comparing the results achieved
with the average error measure, we find that we can obtain the
same errors with roughly a factor of ten fewer grid points.

In the left image in Figure 3, we show the two-dimensional
Rayleigh-Taylor data set subsampled using a uniform grid con-
taining 15616 data points. On the right, we show the same data
set subsampled with the multiresolution technique using 4102
data points. The average errors are .0347 and .0339, respec-
tively. In Figure 4, we show isosurfaces from the hairpin vortex

set for vorticity indicator of -.28. The left figure shows uniform
grid subsampling using 34798 grid points which results in an
average error of 3.18. The right figure shows multiresolution
subsampling with 34725 grid points which results in an aver-
age error of 1.46.

Figure 3: The left figure shows the results of uniform sub-
sampling using 15616 grid points for the two-dimensional
Rayleigh-Taylor; the right figure shows the results of multires-
olution subsampling using 4102 grid points



Figure 4: The left figure shows the results of uniform subsampling using 34798 grid points for the hairpin vortex applications; the
right figure shows the results of multiresolution subsampling for 34725 grid points

5 Conclusions

Much useful information can be obtained by studying perfor-
mance cost estimates for a variety of techniques that accom-
plish the same goal. From our analysis of the computation and
communication costs associated with three different strategies
for remote, interactive exploration of large data sets, we find
that each has regimes for which is it is the most cost effec-
tive approach. Our results show that using a full-resolution
view resampled to a uniform grid is often the most cost ef-
fective approach. However, many computations are performed
on nonuniform, adaptive grids which implies that a uniform
grid resampling will have more error in regions containing a
large number of grid points which are typically the areas con-
taining features of interest. Multiresolution approaches address
this difficulty; large numbers of resampled points may be con-
centrated in the same regions as the original computation. In
addition, our tests showed that they can also be the most cost
effective approach when the metric used is the cost to achieve
a given error level.
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Table 5: Results for uniform grid and multiresolution data re-
duction techniques

Method NR PN Avg �n Max en

2D Rayleigh Taylor
Uniform 4096 7.5 .0652 .932
Uniform 7179 14.0 .0506 .763
Uniform 15616 28.9 .0347 .569
Uniform 23560 43.6 .0230 .555

Criteria = Avg. �n
Multi-Res 808 1.5 .114 1.24
Multi-Res 1630 3.0 .0703 1.24
Multi-Res 3268 6.0 .0397 1.08
Multi-Res 6550 12.1 .0238 1.05
Multi-Res 13108 24.2 .0083 .515

Criteria = Max en
Multi-Res 808 1.5 .131 .538
Multi-Res 1630 3.0 .108 .457
Multi-Res 3268 6.0 .0817 .362
Multi-Res 6550 12.1 .0405 .241
Multi-Res 13108 24.2 .0122 .116

3D Rayleigh Taylor
Uniform 24344 6.5 .0262 .448
Uniform 43750 11.8 .0225 .311
Uniform 95152 25.7 .0159 .245
Uniform 156309 42.4 .0103 .152

Criteria = Avg. �n
Multi-Res 5835 1.6 .0482 .460
Multi-Res 11669 3.1 .0391 .392
Multi-Res 23345 6.3 .0286 .271
Multi-Res 46697 12.6 .0192 .271
Multi-Res 93397 25.2 .0100 .165

Criteria = Max en
Multi-Res 5836 1.6 .0530 .265
Multi-Res 11672 3.1 .0456 .210
Multi-Res 23348 6.3 .0354 .146
Multi-Res 46697 12.6 .0260 .103
Multi-Res 93396 25.2 .0148 .059

3D Hairpin Vortices
Uniform 202799 9.9 1.08 –
Uniform 474443 23.3 .701 –
Uniform 800602 39.1 .699 –
Uniform 1212327 59.2 .268 –

Criteria = Avg. �n
Multi-Res 62642 3.1 .568 –
Multi-Res 124667 6.1 .343 –
Multi-Res 250790 12.2 .176 –
Multi-Res 502772 24.5 .080 –


