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It is shown that a Partitioned Optical Passive Stars (POPS) network withg groups andd processors per group can
route any permutation among then = dg processors in one slot whend = 1 and 2⌈d/g⌉ slots whend > 1. The
number of slots used is optimal in the worst case, and is at most the double of the optimum for all permutations
π such thatπ(i) 6= i, for all i.
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1. INTRODUCTION

The Partitioned Optical Passive Star (POPS) network [Chiarulli et al. 1994; Gravenstreter
et al. 1995; Gravenstreter and Melhem 1998; Melhem et al. 1998] is a SIMD interconnec-
tion network that uses multiple optical passive star (OPS) couplers. Ad×d OPS coupler
(see Figure 1) is an all-optical passive device which is capable of receiving an optical signal
from one of itsd sources and broadcast it to all of itsd destinations. Being a passive all-
optical technology it benefits from a number of characteristics such as no opto-electronic
conversion, high noise immunity, and low latency.

The number of processors of the network is denoted byn, and each processor has a
distinct index in{0, . . . ,n− 1}. The n processors are partitioned intog = n/d groups
in such a way that processori belongs to group group(i) := ⌊i/d⌋. It is assumed that
d dividesn, consequently, each group consists ofd processors. For each pair of groups
a,b∈ {0, . . . ,g−1}, a couplerc(b,a) is introduced which has all the processors of groupa
as sources and all the processors of groupb as destinations. The number of couplers used
is g2. Such an architecture will be denoted by POPS(d,g) (see Figure 2).

For all i ∈ {0, . . . ,n−1}, processori hasg transmitters which are connected to couplers
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Fig. 1. A 4×4 Optical Passive Star (OPS) coupler.
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Fig. 2. A POPS(3,2).

c(a,group(i)), a= 0, . . . ,g−1. Similarly, processori hasg receivers connected to couplers
c(group(i),b), b = 0, . . . ,g−1. During a step of computation, each processor in parallel:

—Performs some local computations;
—sends a packet to a subset of its transmitters;

—receives a packet from one of its receivers.

In order to avoid conflicts, there shouldn’t be any pair of processors sending a packet to
the same coupler. The time needed to perform such a step is referred to as aslot.

One of the advantages of a POPS(d,g) network is that its diameter is 1. A packet can be
sent from processori to processorj, i 6= j, in one slot by using couplerc(group( j),group(i)).
However, its bandwidth varies according tog. In a POPS(n,1) network, only one packet
can be sent through the single coupler per slot. On the other extreme, a POPS(1,n) network
is a highly expensive, fully interconnected optical network usingn2 OPS couplers.

A one-to-all communication pattern can also be performed inonly one slot in the fol-
lowing way: Processori (the speaker) sends the packet to all the couplersc(a,group(i)),
a∈ {0, . . . ,g−1}, during the same slot all the processorsj, j ∈ {0, . . . ,n−1}, can receive
the packet trough couplerc(group( j),group(i)).

The POPS network model has been used to develop a number of nontrivial algo-
rithms. Several common communication patterns are realized in [Gravenstreter and Mel-
hem 1998]. Simulation algorithms for the mesh and hypercubeinterconnection networks
can be found in [Sahni 2000b]. Algorithms for data sum, prefixsum, consecutive sum,
adjacent sum, and several data movement operations are alsodescribed in [Sahni 2000b].
An algorithm for matrix multiplication is provided in [Sahni 2000a]. These algorithms are
based on sophisticated communication patterns, which havebeen investigated one by one,
and shown to be routable on a POPS(d,g) network. However, most of these patterns belong
to a more general class of permutation routing problems whose routability on the POPS
network was not known in general. In this paper, we show that aPOPS(d,g) network can
efficiently routen = dgpackets arranged in then processors according to any permutation,
generalizing and unifying several known results appeared in the recent literature.
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2. DEFINITION OF THE PROBLEM AND RELATED WORK

Let Nn := {0,1, . . . ,n− 1} denote the set of the firstn natural numbers, and letπ be a
permutation of the setNn. A permutation routing problemconsists of a set ofn packets
p0, . . . , pn−1. Packetpi is stored in the local memory of processori, for all i ∈ Nn, and has
a desired destinationπ(i). The problem is to route the packets to their destinations inas
few slots as possible.

No general solution has been given for this problem on the POPS network. Efficient
routings are known for a few particular permutations, whichhave been independently at-
tacked, and most of them require one slot whend = 1 and 2⌈d/g⌉ slots whend > 1. Here
follow a few examples.

In [Gravenstreter and Melhem 1998], a characterization is given of the permutation rout-
ing problems that can be routed in a single slot. However, only a very restricted number of
permutations fall in this class. Indeed, if two packets originating at the same group are to
be routed to the same destination group, then one slot is obviously not enough to route all
the packets.

In [Sahni 2000b], several permutation routing problems areconsidered in the context of
the simulation of hypercube and mesh-connected computers on the POPS network. As-
sume that processori of ann = 2D processor SIMD hypercube is mapped onto processori
of a POPS(d,g) network,dg= n. For every fixedb, 0≤ b< D, a primitive communication
pattern is defined such that processori sends a packet to processori(b), wherei(b) is the
number whose binary representation differs from that ofi only in bit b. Each of theD
communication patterns defined is a permutation routing problem. Theorem 1 of [Sahni
2000b] shows that all of them can be routed in one slot whend = 1 and 2⌈d/g⌉ slots when
d > 1.

The same result has been obtained when considering the problem of simulating anN×N
SIMD mesh with wraparound, where data can be moved one processor up/down along
the columns of the mesh, or right/left along the rows of the mesh. Again, assuming that
processor(i, j) of the mesh is mapped onto processori + jN of a POPS(d,g) network
(dg = N2 and eitherd or g dividesN), Theorem 2 of [Sahni 2000b] shows that one slot
whend = 1 and 2⌈d/g⌉ slots whend > 1 are enough to route each of the four permutation
routing problems.

The routability of other specific permutation routing problems is investigated in [Sahni
2000a]. For example, a vector reversal (a permutation routing problem, whereπ(i) =
n−1− i, 0≤ i < n) is shown to be routable in one slot whend = 1 and 2⌈d/g⌉ slots when
d> 1 on a POPS(d,g) network,dg= n, which is optimal wheng is even. To route a matrix
transpose, conversely,⌈d/g⌉ is the optimal number of slots required.

Moreover, [Sahni 2000a] considers BPC permutations. A BPC permutation is a rear-
rangement of the bits of the source processor index, while some or all of the bits can be
complemented. Formally, assume thatn is a power of 2,n = 2k, and that the binary repre-
sentation ofi is [ik−1ik−2 · · · i0]2, the set of BPC permutations is the smallest set BPC closed
under composition such that:

(1) π(i) =
[

iσ(k−1)iσ(k−2) · · · iσ(0)

]

2
∈ BPC, for allσ permutation ofNk;

(2) π(i) =
[

ik−1 · · · i j · · · i0
]

2 ∈ BPC, for all j.

Again, [Sahni 2000a] describes how BPC permutations can be routed in one slot when
d = 1 and 2⌈d/g⌉ slots whend > 1 on a POPS(d,g) network,dg= n.
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Fig. 3. Getting to a fair distribution on a POPS(3,3). Packets are drawn as circles next to their sources on the
left. Inside each packet its destinationxy can be found, wherey is the index of the destination processor, andx is
its group. On the right, the intermediate destination of thepacket as described by Section 3.1.

In this paper we unify, generalize, and simplify the previously known results, by show-
ing that a POPS(d,g) network,dg= n, can routeanypermutation in one slot whend = 1
and 2⌈d/g⌉ slots whend > 1. This gives evidence of the versatility of the network. For
example, a consequence of our Theorem 2 is that the simulation results for hypercube and
mesh-connected computers shown in [Sahni 2000b] do not depend on how the proces-
sors of the simulated architecture are mapped onto the processors of the POPS network,
provided that it is a one-to-one mapping, which is somewhat surprising.

3. ROUTING PERMUTATIONS IN THE POPS NETWORK

Assume the permutation routing problem defined byπ on a POPS(d,g) network,dg= n,
whereπ is a permutation ofNn. Our goal is to prove thatπ can be routed in one slot when
d = 1 and 2⌈d/g⌉ slots whend > 1.

We start, for the ease of explanation, from the cased = g =
√

n. In this case, for most
permutations one slot is not enough to route all the packets to destination. Take, as an
example, the permutation shown in Figure 3. Packets starting from processor 4 and pro-
cessor 5, both belonging to group 1, have the same group 0 as desired destination. If only
one slot is allowed, there is an unavoidable conflict on coupler c(0,1). Hence, two slots
are necessary to routeπ.

It is not hard to find a sufficient condition for a set of packetsto be routable in one slot.
We will say thatm packets, each with a different destination, are arranged according to a
fair distribution in a POPS(d,g) network if no two packets are stored in the same processor,
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and no two packets with the same destination group are storedin the same group. In this
case, we will also say that the packets arefairly distributed.

It is straightforward to see that a fairly distributed set ofpackets is routable in one slot.
Indeed, no conflict occurs on any coupler.

FACT 1. In a POPS(d,g) network, a fairly distributed set of m packets can be routed to
destination in one slot.

Whend = g =
√

n, only a very small number of permutations can be routed in oneslot.
However, we will show that all of them can be routed in two slots. The idea is that one
slot is always enough to move a set ofn packets arranged according toπ in such a way
to become fairly distributed. Then, a second one routes all the packets to destination by
Fact 1.

Next, in Subsection 3.1, we formalize the above intuition, and demonstrate our claim,
properly generalized in order to deal with any value ofd andg. Note that, for a set of
packets to be fairly distributed, we don’t really need to care about their processor desti-
nation. What we need is just to know whatgroup destination each packet has. Thus, in
Subsection 3.1 we can reduce our discussion to source groupsand destination groups.d
packets originate at each source group, andd packets have a specific destination group.

3.1 Permutation Routing: Getting to a Fair Distribution

A list systemis a triple(S,T,L), whereS is a set ofn1 := |S| source nodes, T is a set of
n2 := |T| target nodes, andL : S×N∆1 7→ S assigns a listLs of ∆1 ≤ n2 not necessarily
distinct elements fromS to every source nodes∈ S. We also letl(s,s′) specify how many
times the elements′ ∈ Sappears into listLs. A list system is calledproperwhenn2 divides
n1∆1, and∑s∈Sl(s,s′) = ∆1 for everys′ ∈ S.

Let ∆2 := n1∆1
n2

. A fair distribution is an assignmentf : S×N∆1 7→ T such that

|{ f (s, i) | i ∈N∆1}| = ∆1 for everys∈ S; (1)

|{(s, i) ∈ S×N∆1 | f (s, i) = t}| = ∆2 for everyt ∈ T; (2)

if (s1, i1) 6= (s2, i2) andL(s1, i1) = L(s2, i2), then f (s1, i1) 6= f (s2, i2),

for everys1,s2 ∈ Sand everyi1, i2 ∈ ∆1.
(3)

THEOREM 1. Every proper list system admits a fair distribution.

PROOF. Let S′ := {s′ |s∈ S}. Consider the bipartite multigraphG = (S,S′;E), on node
classesSandS′, and having preciselyl(s,s′) edges with one endnode insand the other in
s′. Clearly, for everys∈S, E contains precisely∆1 edges incident withs, namely the edges
{s,L(s, i)} for i ∈ N∆1. Moreover, for everys′ ∈ S, E contains precisely∆1 edges incident
with s′, since the list system is proper (and by (4)). Our problem is to find an edge-coloring
of G with n2 (≥ ∆1 and such thatn2 dividesn1∆1) colors and such that each color class has
size precisely∆2 := n1∆1

n2
.

Let V be a set ofn1−∆2 new nodes andV ′ := {v′ |v∈ V}. Let H1 = (V,S′;F1) be any
bipartite(n2,n2−∆1)-regular bipartite graph on node classesV andS′. LetH2 = (V ′,S;F2)
be any bipartite(n2,n2−∆1)-regular bipartite graph on node classesV ′ andS. Consider the
bipartiten2-regular multigraphG= (S∪V,S′∪V ′;E∪F1∪F2). By König’s theorem [Kőnig
1916b; Kőnig 1916a], we can edge-colorG with n2 colors, that is, we can decompose
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E∪F1∪F2 into n2 perfectmatchingsM1, . . . ,Mn2 of G. We proposeM1\F1\F2, . . . ,Mn2 \
F1 \ F2 as the required edge-coloring ofG. Indeed,M1 \ F1 \ F2, . . . ,Mn2 \ F1 \ F2 is a
decomposition ofE into n2 matchings ofG and|Mi \F1\F2| = |Mi |− (|V|+ |V′|) = (n1 +
|V|)−2|V| = n1−|V| = n1−n1 + ∆2 = ∆2, for everyi = 1, . . . ,∆.

REMARK 1. The above proof is algorithmic. The computational bottleneck is in com-
puting a 1-factorization of a bipartite n2-regular multigraph on n:= 4n1 − 2∆2 nodes
and with m:= nn2 edges. This can be done in O(n2m) as in [Schrijver 1999] or in
O(mlogn2 + m

n2
log m

n2
logn2) as in [Kapoor and Rizzi 2000] and in virtue of the algorithm

described in [Rizzi 2001].

3.2 Permutation Routing: the Main Theorem

The following theorem describes our main result. Note that the routing found by Theorem
2 has the property that at each step of computation each processor stores exactly one packet.

THEOREM 2. A POPS(d,g) network can route any permutationπ among the n= dg
processors using one slot when d= 1 and2⌈d/g⌉ slots when d> 1.

PROOF. Whend = 1, a POPS(1,n) network is equivalent to ann processor clique, the
network is fully interconnected, and the claim of the theorem is thus trivial.

Now, consider the case when 1< d≤ g. We will show thatπ can be routed in 2⌈d/g⌉= 2
slots. Take the list system(Ng,Ng,L), whereL : Ng ×Nd 7→ Ng is such thatL(h, i) =
group(π(i +hd)), h∈ Ng, i ∈Nd. The list system is proper, sinceπ is a permutation, andg
clearly dividesgd. By Theorem 1,(Ng,Ng,L) admits a fair distributionf :Ng×Nd 7→Ng.
Consequently,f maps every pair(h, i) to an integer fromNg in such a way that:

|{ f (h, i) | i ∈ Nd}| = d for everyh∈Ng; (4)

|{(h, i) ∈Ng×Nd | f (h, i) = j}| = d for every j ∈ Ng; (5)

if (h1, i1) 6= (h2, i2) andL(h1, i1) = L(h2, i2), then f (h1, i1) 6= f (h2, i2),

for everyh1,h2 ∈ Ng and everyi1, i2 ∈Nd.
(6)

Permutationπ is routed in two slots. During the first slot,n packets are routed throughn
of theg2 couplers of the POPS network, and, precisely, the packet originating at processor
i + hd is sent through couplerc( f (h, i),h), h ∈ Ng, i ∈ Nd. No conflict can occur on any
coupler by equation (4). Moreover, exactlyd packets arrive at grouph by equation (5),
hence, it is easy to assign a distinct processor to read each of the incoming packets. After
the first slot, then packets are fairly distributed by equation (6). Consequently, a second
slot is enough to route all of them to destination by Fact 1.

Finally, consider the case whend > g. Take the list system(Ng,Nd,L), whereL :
Ng ×Nd 7→ Ng is such thatL(h, i) = group(π(i + hd)), h ∈ Ng, i ∈ Nd. The list system
is proper, sinceπ is a permutation, andd clearly dividesgd. By Theorem 1,(Ng,Nd,L)
admits a fair distributionf : Ng×Nd 7→ Nd. Consequently,f maps every pair(h, i) to an
integer fromNg in such a way that equation (4), equation (6), and the following equation (7)
hold.

|{(h, i) ∈ Ng×Nd | f (h, i) = j}| = d for every j ∈ Nd. (7)

Permutationπ is routed in⌈d/g⌉ rounds. Each roundk, k = 0, . . . ,⌈d/g⌉− 1, consists
of two slots. During the first slot of all rounds but the last one, g2 packets are routed
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through theg2 couplers of the POPS network, and, precisely, the packet originating at
processori + kg+ hd is sent through couplerc( f (h, i + kg),h), h∈ Ng, i ∈Ng. No conflict
can occur on any coupler by equation (4). Moreover, exactlyg packets arrive at grouph by
equation (7), hence, it is easy to assign a distinct processor (among theg which just sent
a packet) to read each of the incoming packets. After the firstslot, theg2 packets which
moved are fairly distributed by equation (6). Consequently, a second slot is enough to route
all of them to destination by Fact 1. The last round is exactlyidentical to the previous ones
wheng dividesd. Otherwise, onlyg(d modg) packets are routed in a similar way. After
⌈d/g⌉ rounds all packets are correctly routed to destination.

The routing is completed after⌈d/g⌉ rounds, and each round consists of two slots.
Consequently,π is routed using one slot whend = 1 and 2⌈d/g⌉ slots whend > 1, as
claimed.

The routing described by the previous theorem can be computed efficiently. The bot-
tleneck consists in finding a fair distribution for the list system described byπ, as in The-
orem 1 and Remark 1. It is easy to see that this can be done inO(g3) or O(g2 logg),
when 1< d ≤ g, and inO(dn) or O(nlogd) time, whend > g, by using the algorithms
in [Schrijver 1999] and [Kapoor and Rizzi 2000; Rizzi 2001],respectively.

3.3 Optimality

Theorem 2 is not far from optimality for almost all permutations. Indeed, ifπ is such
thatπ(i) 6= i for all i, then the routing found by Theorem 2 uses at most the double ofthe
optimal number of slots.

PROPOSITION 1. If π is such thatπ(i) 6= i for all i, then a POPS(d,g) network must
use at least⌈d/g⌉ slots to routeπ.

PROOF. Under the above assumptions, all packet destinations are different from the
source. Hence, at least one slot is needed by each packet to reach the desired destination.
Since a POPS(d,g) network can move at mostg2 packets per slot,⌈n/g2⌉ = ⌈d/g⌉ slots
must be used to route all the packets.

Moreover, there exist permutations for which Theorem 2 is optimal. One example is
vector reversal (wheng is even), the proof can be found in [Sahni 2000a]. A straight-
forward generalization of the proof in [Sahni 2000a] shows that many other permutations
have the same property.

PROPOSITION 2. If π is such thatgroup(i) 6= group(π(i)) and

group(i) = group( j) ⇒ group(π(i)) = group(π( j))

for all i and j, then aPOPS(d,g) network, dg= n, must use at least2⌈d/g⌉ slots to route
π.

Finally, also when the assumption that group(i) 6= group(π(i)) is removed our algorithm
gets very close to an optimal number of slots.

PROPOSITION 3. If π is such thatπ(i) 6= i for all i and

group(i) = group( j) ⇒ group(π(i)) = group(π( j))

for all i and j, then aPOPS(d,g) network, dg= n, must use at least2⌈d/(1+ g)⌉ slots to
routeπ.
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PROOF. Suppose that a POPS(d,g) network can routeπ in t slots. If t > d, then it is
easy to see thatt ≥ 2⌈d/(1+ g)⌉. Hence, we can assume without loss of generality that
t ≤ d.

Since group(i) = group( j) ⇒ group(π(i)) = group(π( j)), at mostt packets per group
can be routed to destination in one slot only. All the other packets, at leastd− t per group,
have to perform at least 2 hops to get to destination. Taking into account that a POPS(d,g)
network can move at mostg2 packets per slot, thentg2 ≥ gt+2g(d− t), which implies that
t ≥ 2⌈d/(1+ g)⌉.

4. CONCLUSION

A few papers appeared in the recent literature describing how data can be moved efficiently
in a POPS(d,g) network. In particular, several permutation routing problems have been in-
dependently attacked in order to show they are routable in one slot whend = 1 and 2⌈d/g⌉
slots whend > 1. With Theorem 2, we demonstrate that exactly the same result holds
for any permutationπ, and that the routing forπ can be efficiently computed. Moreover,
the number of slots used is optimal for a class of permutations, and at most twice of the
number of slots required by any permutationπ such thatπ(i) 6= i for all i.
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