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Itis shown that a Partitioned Optical Passive Stars (POB®)ark withg groups andl processors per group can
route any permutation among the= dg processors in one slot wheh= 1 and Zd/g] slots whend > 1. The
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1. INTRODUCTION

The Partitioned Optical Passive Star (POPS) netmrk [QHiat al. 1994; Gravenstreter
et al. 1995| Gravenstreter and Melhem 1998; Melhem et alglli8% SIMD interconnec-
tion network that uses multiple optical passive star (ORfsipters. Ad x d OPS coupler
(see Figurﬂl) is an all-optical passive device which is blpeaf receiving an optical signal
from one of itsd sources and broadcast it to all of dslestinations. Being a passive all-
optical technology it benefits from a number of charactessiuch as no opto-electronic
conversion, high noise immunity, and low latency.

The number of processors of the network is denotech,bgnd each processor has a
distinct index in{0,...,n—1}. Then processors are partitioned ingp= n/d groups
in such a way that processoibelongs to group groyp := |i/d]|. It is assumed that
d dividesn, consequently, each group consistddgfrocessors. For each pair of groups
a,be{0,...,g—1}, acouplerc(b,a) is introduced which has all the processors of graup
as sources and all the processors of groag destinations. The number of couplers used
is g%. Such an architecture will be denoted by PQ®8) (see FigurﬂZ).

For alli € {0,...,n— 1}, processor hasg transmitters which are connected to couplers
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Fig. 1. A 4x 4 Optical Passive Star (OPS) coupler.
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Fig. 2. APOPS$3,2).

c(a,groufi)),a=0,...,g—1. Similarly, processdrhasg receivers connected to couplers
c(group(i),b),b=0,...,g— 1. During a step of computation, each processor in parallel:

—Performs some local computations;
—sends a packet to a subset of its transmitters;
—receives a packet from one of its receivers.

In order to avoid conflicts, there shouldn’t be any pair ofqgassors sending a packet to
the same coupler. The time needed to perform such a stegrsaéto as alot

One of the advantages of a PQES)) network is that its diameter is 1. A packet can be
sent from process@to processoy, i # j, in one slot by using couplefgrougj), groug(i)).
However, its bandwidth varies accordinggoln a POP$n, 1) network, only one packet
can be sent through the single coupler per slot. On the ottraree, a POP@, n) network
is a highly expensive, fully interconnected optical netasingn? OPS couplers.

A one-to-all communication pattern can also be performeahily one slot in the fol-
lowing way: Processar(the speaker) sends the packet to all the couglEgroup(i)),
ae {0,...,g— 1}, during the same slot all the processgrs € {0,...,n— 1}, can receive
the packet trough coupletgrour(j),grougi)).

The POPS network model has been used to develop a number dfiviah algo-
rithms. Several common communication patterns are rehliz§Gravenstreter and Mel-
hem 1998]. Simulation algorithms for the mesh and hyperéuteeconnection networks
can be found in[[Sahni 2000b]. Algorithms for data sum, prefir, consecutive sum,
adjacent sum, and several data movement operations ardelstbed in [Sahni 2000b].
An algorithm for matrix multiplication is provided iff [SahR0004]. These algorithms are
based on sophisticated communication patterns, which e investigated one by one,
and shown to be routable on a PQB3)) network. However, most of these patterns belong
to a more general class of permutation routing problems e/nostability on the POPS
network was not known in general. In this paper, we show tHDRS3d, g) network can
efficiently routen = dg packets arranged in theprocessors according to any permutation,
generalizing and unifying several known results appeardié recent literature.
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2. DEFINITION OF THE PROBLEM AND RELATED WORK

Let Ny :={0,1,...,n— 1} denote the set of the first natural numbers, and let be a
permutation of the sé¥,. A permutation routing problensonsists of a set af packets
Po,---, Pn_1. Packetp; is stored in the local memory of processdior alli € Ny, and has
a desired destination(i). The problem is to route the packets to their destinatioresin
few slots as possible.

No general solution has been given for this problem on the P@&&work. Efficient
routings are known for a few particular permutations, whietve been independently at-
tacked, and most of them require one slot wien 1 and Zd/g] slots wherd > 1. Here
follow a few examples.

In [Gravenstreter and Melhem 1998], a characterizatioiviesgof the permutation rout-
ing problems that can be routed in a single slot. Howevey; anery restricted number of
permutations fall in this class. Indeed, if two packets iodgjng at the same group are to
be routed to the same destination group, then one slot i®oblyi not enough to route all
the packets.

In [Bahni 2000b], several permutation routing problemscaresidered in the context of
the simulation of hypercube and mesh-connected computetiseoPOPS network. As-
sume that processopof ann = 2° processor SIMD hypercube is mapped onto processor
of a POP&d, g) network,dg= n. For every fixed, 0< b < D, a primitive communication
pattern is defined such that processeends a packet to process®¥, wherei® is the
number whose binary representation differs from that ofly in bit b. Each of theD
communication patterns defined is a permutation routingplero. Theorem 1 of [Sahni
2000b] shows that all of them can be routed in one slot whenl and Zd/g] slots when
d>1.

The same result has been obtained when considering theepratblsimulating atN x N
SIMD mesh with wraparound, where data can be moved one wocep/down along
the columns of the mesh, or right/left along the rows of thesimeAgain, assuming that
processof(i, j) of the mesh is mapped onto procesgear jN of a POP%d,g) network
(dg= N2 and eitherd or g dividesN), Theorem 2 of[[Sahni 200pb] shows that one slot
whend = 1 and Zd/g] slots wherd > 1 are enough to route each of the four permutation
routing problems.

The routability of other specific permutation routing predols is investigated in [Sahni
2000a]. For example, a vector reversal (a permutation mgytroblem, wherat(i) =
n—1—i,0<i<n)is shown to be routable in one slot wheér- 1 and Zd/g] slots when
d > 1 onaPOPS8lI,g) network,dg= n, which is optimal whem is even. To route a matrix
transpose, converselyd/g| is the optimal number of slots required.

Moreover, [Sahni 200pa] considers BPC permutations. A BE@nptation is a rear-
rangement of the bits of the source processor index, whiteesor all of the bits can be
complemented. Formally, assume thas a power of 2n = 2%, and that the binary repre-
sentation of is [ix_1ik—2- - -ig],, the set of BPC permutations is the smallest set BPC closed
under composition such that:

(1) m(i) = [i(,(k,l)ic(k,z) e i(,(o)}z € BPC, for allo permutation ofNy;
(2) m(i) = [ik-1---j---i0] , € BPC, for allj.

Again, [[Sahni 2000a] describes how BPC permutations carobid in one slot when
d=1and 7d/g] slots wherd > 1 on a POP8&, g) network,dg=n.
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Fig. 3. Getting to a fair distribution on a PORS3). Packets are drawn as circles next to their sources on the
left. Inside each packet its destinatigncan be found, whergis the index of the destination processor, arisl
its group. On the right, the intermediate destination offtheket as described by Sect 3.1.

In this paper we unify, generalize, and simplify the pregigiknown results, by show-
ing that a POP@I, g) network,dg = n, can routeany permutation in one slot wheth= 1
and Zd/g] slots whend > 1. This gives evidence of the versatility of the network. For
example, a consequence of our Theofém 2 is that the simuliegsults for hypercube and
mesh-connected computers shown hOOb] do notndepe how the proces-
sors of the simulated architecture are mapped onto the gsoce of the POPS network,
provided that it is a one-to-one mapping, which is somewhgdrssing.

3. ROUTING PERMUTATIONS IN THE POPS NETWORK

Assume the permutation routing problem definedtnn a POP$, g) network,dg=n,
wherertis a permutation olN,. Our goal is to prove that can be routed in one slot when
d=1and 7d/g] slots wherd > 1.

We start, for the ease of explanation, from the adseg = \/n. In this case, for most
permutations one slot is not enough to route all the packetiestination. Take, as an
example, the permutation shown in Figﬂe 3. Packets sgafitom processor 4 and pro-
cessor 5, both belonging to group 1, have the same group Gaedleestination. If only
one slot is allowed, there is an unavoidable conflict on ceugl,1). Hence, two slots
are necessary to route

Itis not hard to find a sufficient condition for a set of packetbe routable in one slot.
We will say thatm packets, each with a different destination, are arrangedrdig to a
fair distributionin a POP$d, g) network if no two packets are stored in the same processor,
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and no two packets with the same destination group are sitotbé same group. In this
case, we will also say that the packets faidy distributed

It is straightforward to see that a fairly distributed sepatkets is routable in one slot.
Indeed, no conflict occurs on any coupler.

FacT 1. InaPOPSd,g) network, a fairly distributed set of m packets can be routed t
destination in one slot.

Whend = g = /n, only a very small number of permutations can be routed insioie
However, we will show that all of them can be routed in two sloThe idea is that one
slot is always enough to move a setropackets arranged accordingmmn such a way
to become fairly distributed. Then, a second one routesalptickets to destination by
Fact]L.

Next, in Subsectio@.l, we formalize the above intuitiamd demonstrate our claim,
properly generalized in order to deal with any valuedodindg. Note that, for a set of
packets to be fairly distributed, we don't really need toecabout their processor desti-
nation. What we need is just to know whgibup destination each packet has. Thus, in
Subsectiol we can reduce our discussion to source gesupdestination groups
packets originate at each source group, dpdckets have a specific destination group.

3.1 Permutation Routing: Getting to a Fair Distribution

A list systenis a triple (S, T, L), whereSis a set ofn; := |S| source nodesT is a set of
n2 := |T| target nodesand L : Sx N, — Sassigns a lists of A; < n not necessarily
distinct elements fronsto every source nodec S. We also let (s,s) specify how many
times the elemerd € Sappears into lisks. A list system is calleghroperwhenn;, divides
mA1, andy ¢sl(s,s) = Aq foreverys € S

LetAs = ”,11—21. A fair distributionis an assignmertt : Sx N, — T such that

[{f(s,i)|i €Ny, }|=Arforeveryse S (1)
[{(s,i) € SxNp, | f(s,i) =t}| =Ny foreveryt € T; 2

if (s1,i1) # (S,i2) andL(sy,i1) = L(S,i2), thenf(sy,i1) # f(sz,i2),
for everys;, s, € Sand everyi, iz € Ag.

3)

THEOREM 1. Every proper list system admits a fair distribution.

PROOF. LetS :={s'|se S}. Consider the bipartite multigragh = (S, S;E), on node
classesSandS, and having precisell(s,s') edges with one endnode #rand the other in
g. Clearly, for evens € S, E contains precisely; edges incident witls, namely the edges
{s,L(s,i)} fori € Np,. Moreover, for everg € S, E contains preciself\; edges incident
with s, since the list system is proper (and ﬂy (4)). Our problera fsd an edge-coloring
of G with ny (> Az and such that, dividesn;Az) colors and such that each color class has
size precisely\, 1= 1.

LetV be a set ofi; — Ay new nodes anll’ := {V'|ve V}. LetH; = (V,S;F1) be any
bipartite(ny, np — Ag)-regular bipartite graph on node classeandS. LetH, = (V/, S )
be any bipartitén,, np —A1)-regular bipartite graph on node clas$ésandS. Consider the
bipartiten,-regular multigrapl = (SUV, SUV’; EUF; UR,). By Konig's theorem [Kénig
1916b;[Konig 1916a], we can edge-coldrwith n, colors, that is, we can decompose
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EUF UR; into ny perfectmatchingMy, ... ,Mn, of G. We propos; \ F1\ P, ... ,Mp, \
F1\ F2 as the required edge-coloring & Indeed,M{\F1\Fo,... My, \F1\ R is a
decomposition oE into n, matchings ofc and|M; \ F1 \ Fz| = [Mi| — (V| + |[V']) = (np +
V)=2V|=m—|V|=n—m+A=020, foreveryi=1,... /A, O

REMARK 1. The above proof is algorithmic. The computational bottnis in com-
puting a 1-factorization of a bipartite g-regular multigraph on n= 4n; — 2A; nodes

and with m:= nn; edges. This can be done in(IYm) as in [Schrijver 1999] or in

O(mlognz+ 2 log 2 logny) as in [Kapoor and Rizzi 2000] and in virtue of the algorithm

described in[[Rizzi 2001].

3.2 Permutation Routing: the Main Theorem

The following theorem describes our main result. Note thatrbuting found by Theorem
E has the property that at each step of computation eachgmoicgtores exactly one packet.

THEOREM 2. A POP3d,g) network can route any permutatianamong the r=dg
processors using one slot wher=dl and2[d/g] slots when d> 1.

PrRoOOF Whend = 1, a POPE&L, n) network is equivalent to an processor clique, the
network is fully interconnected, and the claim of the theois thus trivial.

Now, consider the case wherdd < g. We will show thattcan be routed in2l/g] =2
slots. Take the list systerfNg,Ng, £), where L : Ng x Ny — Ng is such thatZ(h,i) =
groufdTi(i+hd)), he Ng,i € Ng. The list system is proper, sincgs a permutation, ang
clearly dividesgd. By Theorenfli(Ng, Ny, £) admits a fair distributiorf : Ng x Ng — Nj.
Consequentlyf maps every paith,i) to an integer fronNg in such a way that:

[{f(h,i)|ie Ng}| =dforeveryh e Ng; 4)
[{(h,i) e Ng x Ng | f(h,i) = j}| =dforeveryj e Ng; (5)

if (hl,il) # (hp,iz) and L(hy, il) = L(hg,i2), thenf(hl,il) #* f(hz,iz),
for everyhy,hy € Ny and everyig,i> € Ng.

(6)

Permutatiorttis routed in two slots. During the first slot,packets are routed through
of theg? couplers of the POPS network, and, precisely, the packginating at processor
i +hd is sent through couplex(f(h,i),h), h € Ng,i € Ng. No conflict can occur on any
coupler by equatiorﬂ4). Moreover, exactlypackets arrive at groufp by equation EIB),
hence, it is easy to assign a distinct processor to read ddlsh mcoming packets. After
the first slot, then packets are fairly distributed by equatic[h (6). Consedygeatsecond
slot is enough to route all of them to destination by Fﬂact 1.

Finally, consider the case wheh> g. Take the list systeniNg,Ngy, £), where L :
Ng x Ng — Ny is such thatZ(h,i) = groug((i + hd)), h € Ng,i € Ng. The list system
is proper, sincatis a permutation, and clearly dividesgd. By Theorenﬂl,(Ng,Nd,L)
admits a fair distributiorf : Ng x Ny — Ng. Consequentlyf maps every paith,i) to an
integer fromq in such a way that equatiof] (4), equatifln (6), and the folaveiquation[{7)
hold.

[{(h,i) € Ng x Ng | f(h,i) = j}| =dforeveryj € Ng. (7)

Permutatiormt is routed in[d/g] rounds. Each roun#l, k=0,...,[d/g] — 1, consists
of two slots. During the first slot of all rounds but the lastepg? packets are routed
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through theg? couplers of the POPS network, and, precisely, the packginating at
processoi + kg+ hd is sent through couplex( f (h,i +kg),h), h € Ng,i € Ng. No conflict
can occur on any coupler by equatinﬂ] (4). Moreover, exaptisickets arrive at groupby
equation K|7), hence, it is easy to assign a distinct procgaswong they which just sent
a packet) to read each of the incoming packets. After thedicg} theg? packets which
moved are fairly distributed by equati(ﬂu (6). Consequentiecond slot is enough to route
all of them to destination by Faﬂt 1. The last round is exddytical to the previous ones
wheng dividesd. Otherwise, onlyg(d modg) packets are routed in a similar way. After
[d/g] rounds all packets are correctly routed to destination.

The routing is completed aftgid/g] rounds, and each round consists of two slots.
Consequentlyrtis routed using one slot wheth= 1 and 2d/g] slots whend > 1, as
claimed. O

The routing described by the previous theorem can be comfficiently. The bot-
tleneck consists in finding a fair distribution for the ligstem described by, as in The-
orem[l and Remarf 1. It is easy to see that this can be do@g#) or O(g?logg),
when 1< d < g, and inO(dn) or O(nlogd) time, whend > g, by using the algorithms
in [Bchrijver 1999] and |[Kapoor and Rizzi 2Qd0; Rizzi 2D0Hspectively.

3.3 Optimality

Theoremﬂz is not far from optimality for almost all permutais. Indeed, ifrtis such
thatri(i) i for all i, then the routing found by Theorelfp 2 uses at most the douliteeof
optimal number of slots.

PropPoOsITION 1. If Ttis such thatri(i) # i for all i, then a POP%d,g) network must
use at leastd/g] slots to routert

PrROOF Under the above assumptions, all packet destinations iiezetht from the
source. Hence, at least one slot is needed by each packeicto ttee desired destination.
Since a POP@&l, g) network can move at mosf packets per slotin/g?] = [d/g] slots
must be used to route all the packetg]

Moreover, there exist permutations for which Theorﬁm 2 isnogl. One example is
vector reversal (wheg is even), the proof can be found if [Sahni 2400a]. A straight-
forward generalization of the proof ifi [Sahni 20p0a] shoat many other permutations
have the same property.

PrROPOSITION 2. If Ttis such thagroug(i) # group(m(i)) and
group(i) = group(j) = groug((i)) = groug(i(j))

for alli and j, then aPOPSd, g) network, dg=n, must use at leag{d/g] slots to route
Tt

Finally, also when the assumption that grGugs groug(Ti(i)) is removed our algorithm
gets very close to an optimal number of slots.

PropPosITION 3. If Ttis such thatrt(i) # i for all i and
group(i) = groug(j) = group(m(i)) = group(my(j))

for alli and j, then aPOPS&d, g) network, dg=n, must use at lea®{d/(1+ g)] slots to
route Tt
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PROOF Suppose that a POREg) network can routetin t slots. Ift > d, then itis
easy to see that> 2[d/(1+g)]. Hence, we can assume without loss of generality that
t<d.

Since grougi) = groug(j) = grougTi(i)) = grou(Tt(j)), at mostt packets per group
can be routed to destination in one slot only. All the otheikess, at least —t per group,
have to perform at least 2 hops to get to destination. Takitgaccount that a PORP& g)
network can move at mogt packets per slot, theig? > gt+ 2g(d —t), which implies that
t>2[d/(1+g)]. O

4. CONCLUSION

A few papers appeared in the recent literature describimgdata can be moved efficiently
ina POP%d, g) network. In particular, several permutation routing pesbht have been in-
dependently attacked in order to show they are routableérstot wherd = 1 and 2d/g]
slots whend > 1. With Theoren[]2, we demonstrate that exactly the sametraslds
for any permutationt, and that the routing fom can be efficiently computed. Moreover,
the number of slots used is optimal for a class of permutatiand at most twice of the
number of slots required by any permutatiosuch thatri(i) i for all i.
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