
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Real-time Communication for Distributed Vision
Processing based on Imprecise Computation Model

Yoshimoto, Hiromasa
Department of Intelligent Systems, Kyushu University

Arita, Daisaku
Department of Intelligent Systems, Kyushu University

Taniguchi, Rin-ichiro
Department of Intelligent Systems, Kyushu University

https://hdl.handle.net/2324/5836

出版情報：Proceedings of International Parallel and Distributed Processing Symposium, IPDPS
2002, pp.128-133, 2002-04. IEEE
バージョン：
権利関係：(c) 2002 IEEE

Real-time Communication for Distributed Vision Processing based on
Imprecise Computation Model

Hiromasa Yoshimoto, Daisaku Arita and Rin-ichiro Taniguchi
Department of Intelligent Systems, Kyushu University,
6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580 Japan.

{yosimoto, arita, rin}@limu.is.kyushu-u.ac.jp
http://limu.is.kyushu-u.ac.jp

Abstract

In this paper we propose an efficient real-time com-
munication mechanism for distributed vision processing.
One of the biggest problems of distributed vision pro-
cessing, as is the same as in other distributed systems,
is how to reduce the overhead of communication among
computation nodes. In vision processing, we have to
deal with a lot of time varying variables, some of
which are large in size, and, therefore, the efficiency
of sending and receiving of those variables is essen-
tial. To solve the problem, we propose Accuracy-driven
Memory architecture, whose key idea is based on im-
precise computation model and predictive coding. Here,
we will present the basic framework of Accuracy-driven
Memory architecture and show its efficiency based on
some simulation results.

1 Introduction

Recently, especially in computer vision community,
image analysis using multiple cameras has been ex-
tensively researched. When we use multiple cameras,
distributed systems are indispensable because a single
or centralized system can not handle a large amount
of image data[1, 2, 3, 4]. When we require real-
time analysis of those images, the problem becomes
much more serious because of their large bandwidth.
To solve the problem, we have developed a distributed
real-time vision system on a PC-cluster, which con-
sists of multiple off-the-shelf PCs connected via very
high speed network[1]. The key issues of such dis-
tributed real-time vision systems are synchronization
among distributed PCs, the performance of network,
the end-to-end latency at user level, the programming
framework[5]. The biggest problem of our current sys-

tem is that to realize real-time processing we have to
prepare sufficient computation resources and to set the
deadline for real-time processing with enough margins,
which decreases the execution efficiency of the system,
i.e., throughput and latency of the system.

In this paper, we propose a framework of efficient
real-time communication for distributed real-time vision
system to solve this problem, or to increase the system
efficiency. The key idea is based on the facts that data
handled by real-time vision processing such as image
sequences and time varying variables related to them
have a lot of redundancies and that the reduction of
the redundancies can lead to decrease of the commu-
nication overhead. For example, when estimating the
position of a target object, the estimated position in
the previous frame can be a good cue for the esti-
mation in the current frame, i.e., search region of the
object is restricted in the neighborhood of the previous
position. If we know more detailed characteristics of
the object, e.g., the motion of the object is uniform
velocity, we can further narrow down the search re-
gion. Thus, we can drastically reduce the amount of
data to be actually processed and transferred based on
this kind of estimation.

The proposed framework is Accuracy-driven Mem-
ory architecture, where the most important point is that
the accuracy of processed result required by an applica-
tion is explicitly considered. When required accuracy is
high, relatively dense communication is invoked, and,
as a result, fast computation is required. On the other
hand, required accuracy is low, relatively sparse com-
munication is invoked, and relatively slow computation
is permitted. Thus, according to the required accuracy,
network bandwidth and allocable time slot for compu-
tation is controlled, and, as a result, higher execution
efficiency can be achieved.

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

2 Related Works

Here, to clarify our motivation, we discuss several
related works which provide frameworks of real-time
processing on distributed systems.

2.1 Dynamic Memory Architecture[6]

Dynamic Memory is a kind of distributed shared
memory which provides a mechanism of real-time asyn-
chronous Read and Write operations of time varying
variables among multiple parallel processes. Read op-
eration has a mechanism of interpolation and prediction
of a value at any timing referring to previously written
values of a time varying variable, and this mechanism
provides complete asynchronous data exchange. Since,
in principle, synchronization process on Dynamic Mem-
ory causes no delay, users can acquire a communication
path with very wide bandwidth. Also they can de-
scribe programs without explicit synchronization, which
simplifies the program description. The problem of Dy-
namic Memory is that it cannot deal with the accuracy
of read values, because a function used to interpolation
and prediction function can calculate a value at any
timing, which has no responsibility how the value ac-
curate is, especially when future values, or values not
yet written, are predicted.

2.2 Dead Reckoning

Using very high-speed network, we can acquire high
throughput. However, the latency problem still remains,
and we have to introduce a software mechanism to re-
duce the latency. A typical example is “Dead Reckon-
ing,” which is widely used in applications of networked
virtual reality system[7]. Dead Reckoning is that when
object state is shared in multiple nodes, each node ex-
cept for the home node of the object estimates the
object state based on its previous states. When the
actual object state is received, the error of the object
state is compensated. It is a kind of predictive coding
and can reduce the communication bandwidth and the
latency.

2.3 Imprecise Computation[8]

In general, valid computation results are only ones
produced by a task whose execution is completed. In
other words, results of a suspended task are meaning-
less, and can not be used at all. In imprecise com-
putation model, on the other hand, results of a sus-
pended task can be used for further computation. Of
course, the results have some errors in some sense,

but they can be still used by other tasks. The feature
of the imprecise computation model that the compu-
tation can be suspended gives us flexibility of task
scheduling. For example, we can establish a processing
scheme in which the accuracy of the computation can
be changed according to the restriction of allowed com-
putation time, which is suitable for real-time scheduling.

3 Accuracy-driven Memory

3.1 Basic Idea

When computation is started, a processor has to wait
for all the data required for the computation. When dis-
tributed processing on processors which do not share a
common bus is executed, the overhead of communi-
cation among processors for data synchronization can
not be ignored. For example, a required data for com-
putation of a processor is on another processor, or a
sender, the processor, or a receiver, should always wait
for arrival of the data to guarantee the data synchro-
nization, and it causes the delay in starting the compu-
tation. Therefore, we can not realize real-time systems
without wastefully redundant computation resources in-
cluding allocable time slot.

To solve the problem, or to establish more effi-
cient and flexible framework for real-time processing,
we propose a new idea of data synchronization for dis-
tributed processing. The key idea is that in many cases
image or vision bears redundant information and, there-
fore, strictly precise computation is not always required.
In other words, imprecise computation model can be in-
troduced to some extent. The important point is that
it can be imprecise but still some accuracy is required,
which should be specified by a target application.

In our architecture, when reading a remote variable
which is time varying, we specify two kinds of addi-
tional parameters: required accuracy and deadline for
the read operation. When the remote data at specified
time is not ready on the receiver, the memory sys-
tem estimates the value, based on a given estimation
function, referring to previously received data. The im-
portant point on the estimation mechanism is that an
accuracy evaluation function, which evaluates the ac-
curacy of the estimation, is linked to the estimation
function, and that if the evaluated accuracy is less than
the given accuracy of read instruction the read opera-
tion is blocked until the estimation accuracy is larger
than the parameter. If the deadline arrives and if the
evaluated accuracy is still below the threshold, a value
estimated at this timing is returned.

2

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

3.2 Framework of Accuracy-driven Memory

In our Accuracy-driven Memory architecture, for
each memory, we define two functions: Fx(t) for esti-
mating a required value at time t and Fa(t) for esti-
mating the accuracy of the estimated value at time t.
Of course, Fx and Fa implicitly refer to the previously
written data. These functions, which are specified by a
user programmer, have the following characteristics1:

• If t is before the latest time of data arrival, in Fx
a required value is interpolated from previously
arrived data. Otherwise, it is predicted.

• Fa(t) is ranging from 0 to 1, and the higher the
value is, the more accurate, i.e., the more con-
fident, the estimation is. The accuracy 1 means
that the required time t is older than or equal to
the time of the latest data, and it can be pre-
cisely interpolated from previously received data.
In case that a value is predicted in Fx(t) , Fa is
monotonically decreasing according to the differ-
ence between t and the latest time of data arrival.

Figure 1 shows a protocol of reading and writing a
value at time t with the accuracy p and the maximum
blocking time is w. In this basic protocol, the write
protocol is the same as the other memory architecture2.
For comparison, Figure 3.2 (a) shows a read proto-
col of Dynamic Memory and (b) shows one of or-
dinary memory system. If we set p=0, the architec-
ture is equivalent to Dynamic Memory, and if we re-
place Fx(t) by a FIFO queue, it is almost equivalent
to buffered read mechanism provided by an ordinary
operating system.

3.3 Programming Interface for Imprecise
Computation Model

In the imprecise computation model, the writer task
may terminate the processing according to the required
accuracy in the reader task. The required accuracy
depends on applications and runtime situations, but it
can be obtained from the read() operation’s parame-
ter. The write() operation returns either SATISFIED
or NOT_SATISFIED which means whether the written
value with the specified accuracy satisfies the read()
operation. With this write() can be used as shown
in Figure 3.3:

1We assume that computation costs of these functions are small
enough.

2We have a plan to extend the write protocol.

write(Memory m, Value x, Accuracy a,
Time t)
{
insert(m, x, a, t);
send_signal(m);
if (a > m.required_accuracy)
return SATISFIED;
else
return NOT_SATISFIED;

}

(a) Write Operation

read(Memory m, Time t, Accuracy a,
Deadline w)
{
m.required_accuracy = a;
while(Fa(m,t) < a){
wait_for_a_signal(m, w);
if (timeout(w)) break;
}
return {Fx(m,t), Fa(m,t)};

}

(b) Read Operation

Figure 1. Memory Access Protocol of
Accuracy-driven Memory

3.4 Barrier Synchronization

poll() is the barrier synchronous mechanism that
waits for two or more memories to become accurate
enough. Like the “poll” system call of UNIX, it can
wait for some accuracy-specified values without busy-
wait. Specifically, poll() is called with a set of N in-
dependent memories and a set of N required accuracies.
poll() will wait for M values out of N memories to
become available for reading. On exit, the calculated
N accuracies of the memories are returned. According
to the returned accuracies, for example, an application
program can read the most accurate memory.

3.5 Node-to-node Communication over the
Accuracy-driven Memory

The communication by transmitting packets in a dis-
tributed environment such as PC cluster can be re-

3

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

read(Memory m, Time t)
{
return Fx(m,t);

}

(a) Dynamic Memory

read(Memory m, Time t)
{
while (!data_exist(m,t));
return receive(m,t);

}

(b) Ordinary Read Operation

Figure 2. Read Protocol of Other Method

Memory m;
time t;
value x;

x = make_a_rough_estimation(t);
if (write(m, x, 0.3, t) == SATISFIED)
goto end;

x = calculate_more_accurately(x,t);
if (write(m, x, 0.6, t) == SATISFIED)
goto end;

x = calculate_precisely(x, t);
write(m, x, 1.0, t);

Figure 3. Programming Interface for Impre-
cise Computation Model

placed with Accuracy-driven Memory. Figure 4 shows
an overview of node-to-node communication over the
Accuracy-driven Memory. It should be noted that all
the packet are not transmitted actually, but some of
them are transmitted by which a required accuracy can
be satisfied. An application with Accuracy-driven Mem-
ory works with predicted data, and, therefore, there is
no need for the application to calculate and transmit
data while the accuracy of predicating data is enough
accurate for the application.

4 Preliminary Experiment and Evaluation

Here, we show the efficiency of Accuracy-driven
Memory architecture by preliminary experiments, in
which a time varying variable having sinusoidal value
is transferred. In this experiment, linear interpolation

Figure 4. Node-to-node Communication

and prediction is used for Fx(t). Figure 5 shows time
chart of reading and writing the variable where

• a dotted sinusoidal line shows continuous real data,
which is represented in

f(t) = 10sin(
ô

1800
t+

ô

4
)

• Fa(t) is defined as follows:

Fa(t) =

8><>:
1 t < T

(1Ä ktÄ Tk
100

)p(T) T î t < T + 100

0 T + 100 î t

where T is the latest time of data arrival.

• required accuracy p is 0.8.

• x’s show values written to the memory (write
commands are issued every 330 msec).

• +’s show values read from the memory (read com-
mands are issued every 30 msec).

• downward arrows show correspondence between
read command issues and their completion where
the tails indicate when read commands are issued
and the heads indicate when they are completed.
When a read command is completed a value indi-
cated at the tail of the arrow is returned.

If an arrow is vertical, there is no delay. Otherwise a
certain delay occurs3. The important point shown here
is that even if the write cycle is large, i.e., throughput
of actual data transfer is not large, its following com-
putation can be done eagerly based on the estimation
and the computation efficiency in the following stage
can be kept high. When the reliability of the estimation
seems to be low, such eager computation is blocked.

3Since read commands issued during this delay are automatically
canceled here, read transactions completed in the figure become rather
sparse.

4

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

Figure 5. Timing of Read and Write

Figure 6 shows relation between write cycle and read
cycle, where the write cycle gradually becomes longer.
When the write cycle is short, good estimation can be
done and, as a result, the throughput of computation
issuing the read commands becomes high. When the
write cycle becomes long, the throughput becomes low,
but, compared with an ordinary remote memory mech-
anism, the throughput is still higher.

Figure 7 shows the change of the latency and the
change of the errors between real values and read val-
ues, or estimated values when a specified accuracy
changes. The experimental data is the same as in Fig-
ure 6. The result indicates that if the specified accuracy
is high, the error becomes low but the latency becomes
large. On the other hand, the specified accuracy is low,
the error becomes large but the latency becomes low.
This means that the system performance can be well
controlled by the accuracy.

5 Conclusion and Future Works

In this paper, we propose Accuracy-driven Memory
architecture, an efficient real-time communication mech-
anism for distributed vision processing. The architecture
has similar features to Imprecise Computation Model
and Dynamic Memory. The important point is that it
provides a mechanism of synchronization with respect
to accuracy, which can increase the system execution
efficiency in terms of throughput and latency. Because
it is a practice technique to use predicated values, we
believe, the application which will get a benefit is in
large numbers more. By using this accuracy driven
memory architecture, the programmer can describe real-
time computer vision applications more briefly, without
taking care of the problem of deadlock, the time re-

Figure 6. Influence of Change of Write Cy-
cle

Figure 7. Influence of Accuracy

quired for computation, and latency of communication.
One of important future works is investigation into

Fx() and Fa(). Since the effectiveness was shown in
simulation results, we are evaluating its effectiveness
based on actual vision applications.

Acknowledgment

This work has been partly supported by R&D activi-
ties in the info-communication area, Telecommunication
Advancement Organization of Japan, No.10080.

References

[1] D. Arita, S. Yonemoto and R. Taniguchi. real-time
computer vision on PC-cluster and its application
to real-time motion capture. Proc. of IEEE Work-
shop on Computer Architectures for Machine Per-
ception, pp.205–214, 2000.

5

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

[2] T. Kanade, H. Saito and S. Vedula. The 3D room:
digitizing time-varying 3D events by synchronized
multiple video streams. Technical Report, CMU-
RI-TR-98-34, Carnegie Mellon University, Dec.
1998.

[3] T. Wada, X. Wu, S. Tokai, and T. Mat-
suyama. Homography based parallel volume in-
tersection. Toward real-time volume reconstruction
using active cameras. Proc. of IEEE Workshop
on Computer Architectures for Machine Percep-
tion, pp.331–339, 2000.

[4] E. Borovikov, and L. Davis. A distributed system
for real-time volume reconstruction. Proc. of IEEE
Workshop on Computer Architectures for Machine
Perception, pp.183–189, 2000.

[5] D. Arita, Y. Hamada, S. Yonemoto and
R. Taniguchi. RPV: a programming environment
for real-time parallel vision – specification and
programming methodology. Proc. of 15 IPDPS
2000 Workshops, pp.218–225, 2000.

[6] T. Matsuyama, S, Hiura, T. Wada, K. Murase and
A. Yoshioka. Dynamic Memory: Architecture for
Real Time Integration of Visual Perception, Cam-
era Action, and Network Communication, Proc. of
Computer Vision and Pattern Recognition, pp.728-
735, 2000.

[7] S. Singhal and M. Zyda. Networked Virtual Envi-
ronments, Addison Wesley, 1999.

[8] J. Liu, W. Shih, K. Lin, R. Bettati and J. Chung.
Imprecise Computation, Proc. IEEE, Vol.82, No.1,
pp.83-94, 1994.

6

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

