
An FPGA Interpreter with Virtual Hardware Management

Oliver Diessel Usama Malik
School of Computer Science and Engineering

University of New South Wales
Sydney NSW 2052�

odiessel,umalik � @cse.unsw.edu.au

Abstract

This paper describes the design of an interpreter that
overcomes FPGA resource limitations for a class of control-
oriented circuits by automatically partitioning, elaborating,
and loading circuit components as directed by their execu-
tion. By providing a virtual hardware management facility,
this enables us to implement large systems, specified in Cir-
cal, on small FPGA chips.

1. Introduction

Reconfigurable computers, based on FPGAs, allow ap-
plications to be realized directly in hardware. This has the
potential to achieve high performance at a reasonable cost.
However, the ready uptake and use of this technology con-
tinues to be hampered by the lack of convenient languages,
tools, and abstractions

We are investigating the use of the Circal process alge-
bra as the basis for high-level programming constructs and
compilation techniques that can make use of the capabil-
ities of the technology, including large-scale, fine-grained
parallelism and adaptation through run-time reconfigurabil-
ity. Circal allows the behaviour of control-oriented designs
such as assemblies of interacting finite state machines to be
captured in a very natural, abstract, incremental manner.

Previous work has resulted in a compiler that translates
Circal specifications into FPGA circuits that might be used
as controllers in embedded applications, or that can be in-
terfaced with external sensors and actuators in their envi-
ronment to perform control-oriented tasks [3]. The com-
piler produces a static circuit design that is constrained in
its size and complexity by the available FPGA area. Auto-
mated mappings contribute to the inefficiency in the use of
this area. However, the compiler was originally envisaged
to be extended to support some form of circuit swapping.
Options for doing so were explored in [2].

In this paper we outline our design for an interpreter that
manages the run-time progress of a Circal computation, and
that elaborates the design of and loads circuit components
as directed by execution flow. Conceivably, this capability
will benefit systems in which the available reconfigurable
resource cannot be arbitrarily increased to suit the needs of
applications. Satellite and consumer electronic devices are
examples of systems for which the desired applications (and
their size) continue to evolve after system deployment.

Previous efforts at implementing hardware virtualization
have largely targeted data-oriented applications and have
relied upon manual circuit partitioning and the design of
specialized controllers that manage the swapping of circuit
modules at run time [4, 5, 6, for example]. At present,
tool support for hardware swapping is not readily available.
Concepts for general, coarse-grained approaches to virtual
hardware management have also been explored by several
researchers [7, 1].

Our approach is necessarily different. Since we have as
an ultimate goal high-level programming environments and
support for reconfigurable computing, we aim to provide
automated techniques for partitioning and run-time man-
agement. As much as possible, we aim to hide the details of
providing these facilities from the user. At this stage of the
development, there are significant costs associated with cir-
cuit switching and inefficient mappings, but we believe the
progress so far is an exciting step towards the design and
implementation of future systems that will provide such ca-
pabilities as a matter of course.

The regularity and modularity inherent in the Circal ap-
plication specification and solution space allows us to inves-
tigate a consistent approach and to propose a fine-grained
solution for a class of problems and their associated hard-
ware realizations. We hope this work will provide us with
insights that will lead to a more general solution to virtual
hardware management that is applicable to data-oriented
applications as well.

Section 2 describes Circal and the existing compiler.
Section 3 describes the design of the interpreter. We con-



clude the paper with a brief summary of the results and out-
line the directions that we are interested in developing this
work.

2. Circal compiler

Circal is a type of formal language, known as a pro-
cess algebra, that is suited to modelling concurrent sys-
tems. Circal describes systems as compositions of interact-
ing processes that synchronize on shared events. The be-
haviours of the processes are described independently and
using a formal notation that describes their state evolution
as events occur. When processes are composed together, the
behaviour of the composed system is determined by process
algebraic laws.

Process algebras such as Circal have traditionally been
used for modelling, analyzing and specifying concurrent
systems. We’re interested in Circal’s use as a descriptive
medium for the exploration of high-level specification and
compilation tools for dynamically reconfigurable systems.
Simple yet powerful abstractions such as Circal are attrac-
tive for this purpose because they capture the essence of
concurrent and synchronous behaviour without the clutter
of sequential high-level languages, and they also offer the
possibility of verifying the correctness of an implementa-
tion

2.1. Circal hardware description language

Circal is an event–based language and processes interact
by participating in the occurrence of events. For an event to
occur, all processes that include the event in their specifica-
tion must be in a state that allows them to participate in the
event. The Circal language primitives relevant to hardware
design are:

State Definition ����� defines process � to have the be-
haviour of term � . Process � is given the name � .

Termination � is a deadlock state from which a process
cannot evolve.

Guarding ��� is a process that synchronizes to perform
event � and then behaves as, or evolves to, � . �	��

���
synchronizes with events � and 
 simultaneously and
then behaves as � .

Choice ����� is a term that chooses between the actions in
process � and those in � , the choice depending upon
the environment in which the process is executed. Usu-
ally the choice is mediated through the offering by the
environment of a guarding event.

Composition ����� runs � and � in parallel, with synchro-
nization occurring over similarly named events. When

� and � share a common event, both must be in a state
in which they can accept that event before the event
and synchronous state evolution can occur. � and �
may independently respond to events that are unique
to their specification. Should such independent events
occur simultaneously, the processes respond simulta-
neously.

Relabelling ��� ����
�� replaces references to event 
 in � with
the event named � . This feature is similar to calling
procedures with parameter substitution.

Circal differs from most process algebras in that it has
a strict interpretation of the response of processes to the
simultaneous occurrence of events and is therefore well-
suited to modelling synchronous devices such as FPGAs.

Since processes essentially describe finite state machine
behaviours, Circal in its hardware descriptive form can be
used to specify interacting finite state machines - instead of
building a monolithic controller, using Circal we can spec-
ify its component behaviours and the composed behaviour
can then be synthesized using a hardware compiler. Another
current research thrust is directed at extending the descrip-
tive capabilities of Circal to data-oriented applications

2.2. Overview of the XC6200 compiler

In [3] we described a compiler for the Xilinx XC6200
FPGA that derives and implements a digital logic repre-
sentation of high-level behavioural descriptions of systems
specified using Circal.

Significantly, this compiler structures the derived circuits
so as to reflect the design hierarchy and interconnection of
process modules given in the specification. This approach
simplifies the composition of modules since the majority of
interconnections that are to be implemented are between co-
located blocks of logic and the replacement or exchange of
system modules is facilitated by the replacement of a com-
pact region rather than of distributed logic. At the topmost
design level, the circuit is clustered into blocks of logic that
correspond to the processes of a system. These are wired to-
gether on similarly labelled ports to effect event broadcast
and to allow process state transitions to be synchronized.

An overview of the realization of Circal expressions in
digital logic is depicted in Figure 1(a). The process logic
blocks individually implement circuits with behaviours cor-
responding to the component processes of the specification
— see Figure 1(b). Each block is provided with inputs
corresponding to the events in its sort (set of event ports).
Events are realized by the presence or absence of signals
that are generated by the environment on similarly named
wires. The response of process logic blocks to an event is
determined by the global acceptability of an event. Pro-
cesses independently assert a request signal when accept-

2



able events for the current state are offered by the environ-
ment. Synchronized state evolution occurs upon the next
clock edge if all processes agree on the acceptability of the
event.

events

Environmental
inputs

Process logic
blocks

Event synchronization
logic

Request
signals

Synchronization
signal

W

V

Q

P

x
y

Process
state

state feedback

transition
state

Enable

transition
state
Select

Request
signal

Synch
signal

x

y

sort
process
in the
events

inputs
Environmental

Figure 1. (a) Circuit block diagram, and (b)
Circal process logic block.

2.3. Module representation of circuits

Below the process level in the hierarchy, the circuits are
partitioned into component circuit modules that implement
combinational logic functions of minor complexity. The
module arrangement for a typical system � � � � ����� is de-
picted in Figure 2.

We distinguish between 10 module types. Inputs are cap-
tured by an Environmental Inputs (EI) block and are routed
to process logic by Bus (B) and Input Junction (IJ) blocks.

MTMTMT P

Q

B

EI

B

IJ

B

B

SL

B

R

IS

G

G

G

NIS NIS

OT

OT

OT
R R

Figure 2. Typical circuit module arrangement

Within a process, a series of Minterm (MT) blocks detects
the combinations of event inputs a process can respond to.
The sets of minterms that lead to particular next states from
a given current state are summed in so-called Guard (G)
blocks. Associated with each Initial State (IS) and Non-
Initial State (NIS) block is a Request (R) block that deter-
mines whether any of the Guard block outputs are accepted
in the current state. The process request signals are formed
from the disjunction of Request block outputs in OR Tree
(OT) blocks, and the Synchronization Logic (SL) blocks
form the synchronization signal from the individual process
request signals.

Each module type implements a particular combina-
tional logic function using a specific spatial arrangement.
Modules are specified by giving the exact function to be
implemented, e.g., a Minterm block is specified by the pro-
cess sort size, the minterm number, and its location on the
array. To simplify the layout of the circuits, all modules are
rectangular in shape and communicate via adjoining ports
when they are abutted on the array surface.

As an example, consider the process � defined by the
following equations:

� � � � (1)

� � � �	��� ����� � 
 �
	 (2)

��� � 
 ����� � �
	 (3)

�
	 � �	��

����� (4)

��� � � ��� � � ��� (5)

This process has the module representation of Figure 3.
Event signals flow into the circuit at its top left edge. Each

3



minterm recognizes one of the event combinations, �	��

� ,

 , etc. guarding a state transition. Event combinations that
lead to identical transitions are combined below in guard
blocks that have been labelled here with the minterm com-
bination that is output and the transition it guards. Note the
guard blocks are arranged in next state, current state order.

= minterm nmn
= AND

Σ = ORm0 m1 m2 m3 m4 m5b

m0 + m4 (P4 −> P4)

m3 (P3 −> P4)

m0 (P3 −> P3)

m1 (P2 −> P3)

m5 (P1 −> P2)

m0 (P1 −> P1)

P1 P3 P4P2

Σ

Σ

Σ
m1 (P4 −> P2)

m0 + m2 (P2 −> P2)

m2 (P1 −> P3)

Σ

Σ

P

(lsb) a

x

y

SL

IJ
(msb) c

Figure 3. Module arrangement for process �

Circuits recycle the current state when the current event
combination is not in the process sort or when the system
cannot accept the current event. In the first case, none of
the event signals for a process is asserted, which results
in the null event for a process (minterm 0) being asserted.
In the latter case, the synchronization signal is not asserted
because some process does not accept the input event and
hence does not assert its request signal.

An input event is acceptable if it guards a transition from
the current state. The circuit performs this check by com-
bining a guard block’s output with its current state in a re-
quester block. Those outputs that lead to the same next state
are further combined to form a next state select signal that
is fed back through the requesters to the appropriate state
block. State is stored using a one-hot encoding. If a se-
lect signal is asserted, then the request signal, ��� , is also
asserted. The synchronization signal, � , if asserted by the
synchronization logic, then enables the transition to the next
state that has been selected.

2.4. Compiler operation

Figure 4 provides an overview of the compiler’s oper-
ations. A Circal specification is parsed and analyzed by
the so-called front-end, which determines the logic required
to implement the specification and produces the parame-
ters for the set of modules required to implement the sys-
tem. The set of module parameters is largely determined
by the logical requirements of the circuits which are in-
dependent of the physical requirements of its implementa-
tion. A system configuration is then produced by generat-

ing a bitstream fragment for each module in the so-called
back-end of the compiler. The host loads this configura-
tion onto the coprocessor and controls interaction with the
system. The user/environment provides event traces and ob-
serves/responds to the resulting changes in system state.

User

Respone

P

Q

R

Y
Circuit
Modules

Specification

Circal FPGA

Front End Back End
(generates 

(performs
analysis)

bit stream)
Driver

Process P
Process Q
Process R
Process Y

P*Q*R*Y

Logic
Synch

reads state back configuration
loadsloads events

Eventsas module parameters
Intermediate Circuit Representation

Figure 4. Overview of the compiler operation

3. Circal interpreter

3.1. Overview

The Circal interpreter enhances the existing compiler
by incorporating virtual hardware management facilities.
Whereas the Circal compiler derives a monolithic circuit
and loads it onto an FPGA in a single configuration, the
interpreter elaborates and loads parts of the circuit as they
are needed.

This interpreter is constructed by inserting a virtual hard-
ware manager (VHM) between the compiler front-end and
the module generators of the compiler. The VHM deter-
mines through feedback from application execution which
components to implement next.

Since the interpreter only knows at run time which com-
ponents to load, the physical details of the circuits are fi-
nalized at run time. There is thus an ongoing interaction
between the progress of computation and the operation of
the design suite.

The design flow incorporates the function of run-time
management and the ongoing configuration of the FPGA.
Circuit design therefore does not complete until execution
has finished.

3.2. Interpreter operation

The interpreter works by partitioning an intermediate
representation of the circuits into functional (or more pre-
cisely, behavioural) components that are implemented as

4



they are needed. In order to manage the resource, the FPGA
is statically partitioned with each region being allocated a
Circal process. Such processes define behaviourally self-
contained components, while the assembly of processes de-
fines the overall system’s behaviour.

Modelling Circal circuits. The specified Circal processes
are internally modelled as state transition graphs. This rep-
resentation allows the VHM to easily determine the possible
evolution of the process states. For example, the process �
considered in the example is internally represented as the
state transition graph depicted in Figure 5.

P1

P4

P2

P3

(ac)

b a

(ab)
c

a

b

Figure 5. State transition graph for �

The nodes in this graph are in one-to-one correspon-
dence with the Circal process definitions with arcs repre-
senting the guarded transitions to new states. Each node
represents a state of the process and is thus represented us-
ing a so-called state block. The graph can be represented
as a linked network of such state blocks. A particular state
block thus leads to all possible next states by following the
links that model the transition arcs in a breadth-first manner.

The data structure for a state block contains a pointer
to each of the possible next states. Associated with each
pointer is the guard for that transition. We also store the
number of possible next states reachable from the present
state as a means of quickly estimating the area needed to
implement a circuit component. The implementation of cir-
cuit components and the estimation of their area is discussed
in more detail below.

Process partitioning. Processes are partitioned according
to their definitions. This is the most natural way to split a
process given that a definition describes the behaviour of
the process in a particular state. “Behaviour” here means
how the process is able to evolve from the current state to a
new state.

The state transition graph is thus logically partitionable
into individual states and the set of arcs leaving a state. The
state block is therefore also used to represent the unit of
partitioning.

While the interpreter allows the logic for several con-
nected states of a process to be implemented at once, it does
not permit a state to be partially implemented i.e. if there is

insufficient resource remaining to implement the logic for
an additional state in its entirety, it is not implemented at
all.

The interpreter is able to cope with the extreme case
when resource constraints allow just one state for a process
to be implemented. Similarly, the system allows the entire
state transition graph for a process to be implemented when
there is sufficient resource.

As an example, suppose the array area available to im-
plement process � suffices to implement the behaviour of
state � � , but no more. The circuit for � � is illustrated in
Figure 6. Note just those minterms and guard blocks that
are needed to complete the possible state transitions from
� � are implemented. In order to determine which transi-
tion may have occurred, registers for states ��� and �
	 are
implemented as well, but it is not possible for the circuit
to change state once it has entered one of these so-called
boundary states.

m2 m5

P1 P3P2

Σ

Σ

= minterm nmn

m0b

m0 (P1 −> P1)

m5 (P1 −> P2)

m2 (P1 −> P3)

Σ

Σ

= AND
Σ = OR

SL

y

x
P

(lsb) a
IJ

(msb) c

Figure 6. Module implementation of state � �

Determining what circuitry to load next. At initializa-
tion, the VHM divides the FPGA area into fixed sized re-
gions and allocates one to each process. Each region is large
enough to accommodate the logic for any single state block
of the process allocated to it. If space permits, the region
can accommodate the logic for several connected states (if
not all of the states) for the process. The partitioning of the
FPGA is discussed below in more detail.

As a computation proceeds, we would like to have that
part of the state transition graph which the process is about
to enter implemented on chip.

Due to resource constraints, there are situations when
only a sub-graph of the complete state transition graph can
be implemented. When the boundary of the sub-graph is
reached, the interpreter retrieves a new sub-graph rooted at
the boundary state that has become active.

When the locus of control for a process reaches a bound-
ary state, i.e., a state that is at the head of an arc in the state
transition graph, but which has not been implemented due
to space constraints, the interpreter accesses that boundary
state’s description. By following the transition links it also
retrieves the details of all possible next states, and so on,

5



in breadth-first order. The retrieval of state blocks and the
construction of the corresponding circuit continues until the
interpreter first fails to add an additional state due to space
constraints.

In order to quickly determine which states can be imple-
mented, the interpreter makes an estimate of the required
space for a state based on the size of the sort of the process
and the total number of terms in the process definitions of
the states. This avoids back-tracking in circuit construction
should it be discovered that an additional state cannot be
accommodated.

The function used to estimate the area needed to imple-
ment the circuit for a sub-graph depends upon the mapping
of the circuit to the target architecture. In calculating an es-
timate, let ��� ��� be the number of connected states of the
process � that are being considered for implementation.
Furthermore, let the size of the process sort be � , and for
each of the

�
process definitions �	� contributing to the pro-

cess, let there be 
�� terms in the definition. Then for the
XC6200 circuit implementations, the estimated width of the
circuit implementing the sub-graph is at most

�
� � � ������������� � � ����������� ��� ����������� (6)

where ����� 
!� for the states of the sub-graph to be imple-
mented. The height of the corresponding circuit is at most

����� ����� ��� � � � (7)

The worst case impact of adding another state to the
sub-graph being built is easily determined by including the
number of terms, 
�� , for the state in � and recalculating the
above equations. The consideration of further states is aban-
doned as soon as the logic for a state cannot be added to the
circuit under construction.

As the states to be implemented next are identified, the
parameters defining its associated minterms, guard blocks,
requesters, and state blocks are added to a list of sub-graph
modules if they are not already included. For example,
minterms and next states are often common to several defi-
nitions within the one process. When the sub-graph cannot
be expanded, the module parameters are then used to gen-
erate fragments of the configuration for the corresponding
circuit.

In the case of our example, let us assume the array area
allocated to � suffices to implement ����" total sub-graph
terms. The initial configuration can therefore accommodate
the logic for states � � , ��� , and �
	 , with ����# , but the in-
clusion of ��� , with 
!$%� � , is estimated to exceed the avail-
able space. The resulting circuit is depicted in Figure 7. In
this case note that when the boundary state ��� is encoun-
tered, a configuration for the sub-graph rooted at ��� , which

includes states ��� , ��� , and �
	 , with �&�&# , is created, and
since this sub-graph is strongly connected, no subsequent
reconfiguration is needed for process � .

m5

P1 P3 P4P2

Σ

Σ

Σ

= minterm nmn

m0 m1 m2 m3b

Σ

Σ

= AND
Σ = OR

SL

r

y
P

(lsb) a
IJ

(msb) c

m5 (P1 −> P2)

m0 (P1 −> P1)

m0 + m2 (P2 −> P2)

m3 (P3 −> P4)

m0 (P3 −> P3)

m1 (P2 −> P3)

m2 (P1 −> P3)

Figure 7. Module implementation of states � � ,
��� , and �
	

Detecting the need for configuration swapping. Note that
the circuit implementing the sub-graph includes a set of flip-
flops that store the current state of the circuit (and, by im-
plication, the process) using a one-hot encoding. A subset
of these represents states that are included in the sub-graph,
while the remainder represent boundary states that could not
be accommodated in the breadth-first traversal of the state
transition graph. When one of the boundary states becomes
active, the interpreter forms a new sub-graph rooted at the
active boundary state.

We currently envisage operating the system in one of
two modes. Either the system is operated in an “observed”
mode, in which the observer monitors the state evolution of
the system, or the system is “unobserved”, in which case its
state is not monitored.

In the observed mode of operation the current state of
the system is polled after each clock pulse. This involves
reading all process state flip-flops to determine which state
is active. In this mode of operation, the interpreter need only
check whether the currently active state is implemented to
determine whether a process needs to deploy a new region
of the state transition graph.

On the other hand, if the system is operating in the un-
observed mode, as part of an embedded system say, then it
is feasible to associate with the boundary states additional
logic that will interrupt the VHM when a new sub-graph is
required. With static chip partitioning, it suffices to inform
the VHM which region(s) issued the request. The VHM
is then able to inspect the state flip-flops for the process
allocated to each interrupting region in order to determine
which boundary state has become active.

Ensuring configuration, design, and execution integrity.
The pseudocode for the interpreter is listed in Figure 8.

6



/* Initialisation: */
analyze specification
partition FPGA area
for each process in turn

define state transition graph
set current state = boundary state = initial state

/* Operation: */
while system not halted
/* configuration phase */
for each process in turn

if boundary state active
calculate configuration rooted at boundary

state and load
/* execution phase */
get event from environment and present to system
allow system to respond to event in parallel

Figure 8. Interpreter operation

Execution integrity is guaranteed by ensuring circuit
configuration and execution occur in separate phases of the
operating cycle. By ensuring the logic for the current state,
at least, is implemented on chip, the integrity of the design
is maintained. We ensure the electrical integrity of the cir-
cuit that is not reconfigured by disconnecting a reconfigur-
ing process circuit from the rest of the system at its Input
Junction and Synchronization Logic. The circuit is not re-
connected until the root state of the newly configured sub-
graph circuit is made active.

FPGA partitioning. The FPGA area available to the inter-
preter is statically partitioned. This approach reduces con-
figuration overheads at run time since the region available
to each process is guaranteed not to change.

The interpreter initially allocates sufficient space to each
process for it to be able to implement its largest state block.
Thereafter the region allocated to the process is expanded
in order to provide more space for implementing additional
states when possible.

The circuit area needs for a state block depend upon the
implementation. From Equations 6 and 7 the width and
height of the largest state block for a process can be de-
termined if � is replaced by � ������� � 
��	� over all states
for the process, and � � ��� � �

is substituted into the equa-
tions. For the XC6200 implementation, these substitutions
allow the width of a state block to be approximated by
 ��� �
� ����� � � , and its height to be approximated by� ��� � � ��� � . From these approximations it can be ob-
served that as � increases the width of the circuit increases
by a factor of ������� more than its height. In order to im-
plement more terms, as becomes necessary when additional
states are to be added to a configuration, it is therefore pri-
marily important to provide additional width.

Whereas the compiler stacks the processes above one an-
other into a single strip, the interpreter packs the processes
into multiple strips in order of decreasing width. Given
an ordering on a set of allocation requests, a strip-packing
stacks the requests in the given order into vertical strips be-
ginning at the left edge of the available array. Within a strip,
allocations are made starting at the top of the strip and ex-
tending to the base of the array. Allocations are alligned on
their left boundary. If the FPGA height does not suffice to
pack a request at the bottom of the current strip, a new strip
is formed adjacent to the previous strip on its right. See Fig-
ure 9 for an example. If the processes cannot be packed into
the available area, the interpreter stops. Otherwise there will
generally be some free columns to the right of the packing
and at the bottom of some of the strips.

Π1

Π2

Π3

Π4

Π5

Π6

Π7

Π8
Π9

Π1 Π5

Π2

Π3

Π4

Π6

Π1

Π2

Π5

Π3

Π4

Π6

Π7

Π8

Π9

Π7

Π8

Π9

U
na

llo
ca

te
d

sp
ac

e

After Step 3 After Step 5

After Step 6

Figure 9. An example FPGA packing

Each allocation is subsequently expanded to fully use the
available area. This expansion is carried out to allow the
logic for additional states to be deployed. As described in
the following algorithm, we expand the width of each block
in proportion to the fraction of the FPGA’s width left free.
We expand the height according to the change in aspect ratio
needed to accommodate additional logic as suggested by the
approximations above.

Let � � � ��� � � be the sort size and the maximum over all
states of the number of terms in a process definition for
process � � . Let � 
 � � � � � be the width and height required
to implement the largest state logic block for process � � as
described above. Let the system to be implemented be com-
posed of the � processes ��� ������� � � � ����� . Define the width
of the FPGA area to be � and the number of columns left

7



free by a strip-packing to be � . The algorithm for par-
titioning the available FPGA area is listed in Figure 10.
Note the run-time complexity of the algorithm is at most
� � � ������� ��� ������� � .

/* initial packing */
1. given � � � ��
!� � for each �%� , calculate � 
 ��� � � �
2. sort the � 
 ��� � � � list into decreasing width
3. strip-pack the FPGA and determine �
4. if �����

abort the execution
/* expand requests */
5. if �����

scale each � 
 � � � � � by �	� ��� ��� ��
�� � and
��
������	� � ����� � �

strip-pack the scaled list into the FPGA and
determine ���

if �������
halve � and repeat step 5.

6. increase the width of each process allocation to the
width of its strip, and divide the free rows in each
strip amongst its allocations

Figure 10. Partitioning algorithm

4. Conclusions

The interpreter is able to overcome FPGA resource limi-
tations by partitioning and scheduling large circuits that im-
plement abstract behaviours specified in Circal.

Implementation is being done now on a Virtex-targeted
version of the compiler using an RCP1000 coprocessing
board and JBits for elaborating and partially configuring the
FPGA.

The VHM allows the interpreter to adapt to the avail-
able FPGA space. It works when just one state per process
can be implemented. It can also implement the entire state-
transition graph when space permits. In principle, the in-
terpreter can also tolerate dynamic resizing of the process
regions without additional overhead.

With the XC6200 module generators, the time needed to
generate bit streams is proportional to the area of the region
being reconfigured.

Strategies for potentially minimizing reconfiguration bit-
stream sizes would be useful. We have concentrated efforts
on rapid circuit generation. These circuits overwrite the on-
chip logic for a process i.e., do not reuse the on-chip logic.
The penalty for doing so is additional configuration over-
heads.

One option for reducing run-time bitstream generation is

to consider the possibilities for storing generated partitions
so as to avoid regenerating them if they are needed again.

Dynamic chip partitioning strategies would potentially
allow those processes that need more space to gain it, and
are thus attractive. However, there is considerable overhead
in managing a dynamic resource.

The application of these techniques to data-oriented ap-
plications is of considerable importance and will be investi-
gated further.

We hope some of these techniques will apply to the im-
plementation of dynamic process behaviours and structures.
This is also to be further investigated.

References

[1] G. Brebner. The swappable logic unit: a paradigm for virtual
hardware. In K. L. Pocek and J. M. Arnold, editors, The 5th
Annual IEEE Symposium on FPGAs for Custom Computing
Machines (FCCM’97), pages 77 – 86, Los Alamitos, CA, Apr.
1997. IEEE Computer Society Press.

[2] O. Diessel and G. Milne. Behavioural language compila-
tion with virtual hardware management. In R. W. Harten-
stein and H. Grünbacher, editors, Field–Programmable Logic
and Applications, The Roadmap to Reconfigurable Comput-
ing, 10th International Workshop, FPL 2000 Proceedings,
volume 1896 of Lecture Notes in Computer Science, pages
707 – 717, Berlin, Germany, 2000. Springer–Verlag.

[3] O. Diessel and G. Milne. A hardware compiler realizing con-
current processes in reconfigurable logic. IEE Proceedings —
Computers and Digital Techniques, 148(4):152 – 162, Sept.
2001.

[4] J. G. Eldredge and B. L. Hutchings. Density enhancement
of a neural network using FPGAs and run–time reconfigura-
tion. In D. A. Buell and K. L. Pocek, editors, Proceedings
IEEE Workshop on FPGAs for Custom Computing Machines
(FCCM’94), pages 180 – 188, Los Alamitos, CA, Apr. 1994.
IEEE Computer Society Press.

[5] P. Lysaght, G. McGregor, and J. Stockwood. Configuration
controller synthesis for dynamically reconfigurable systems.
In IEE Colloquium on Hardware–Software Cosynthesis for
Reconfigurable Systems, pages 1 – 9, London, UK, Feb. 1996.
IEE.

[6] D. Robinson and P. Lysaght. Modelling and synthesis of
configuration controllers for dynamically reconfigurable logic
systems using the DCS CAD framework. In P. Lysaght,
J. Irvine, and R. W. Hartenstein, editors, Field–Programmable
Logic and Applications, 9th International Workshop, FPL’99
Proceedings, volume 1673 of Lecture Notes in Computer Sci-
ence, pages 41 – 50, Berlin, Germany, 1999. Springer–Verlag.

[7] M. J. Wirthlin and B. L. Hutchings. Sequencing run–
time reconfigured hardware with software. In FPGA’96
1996 ACM Fourth International Symposium on Field Pro-
grammable Gate Arrays, pages 122 – 128, New York, NY,
Feb. 1996. ACM Press.

8


