
Empirical Observations Regarding Predictability in User Access-Behavior in a
Distributed Digital Library System

Jochen Hollmann
CSE, Chalmers

412 96 Göteborg, Sweden
joho@ce.chalmers.se

Anders Ardö
DTV, DTU

2800 Lyngby, Denmark
and@dtv.dk

Per Stenström
CSE, Chalmers

412 96 Göteborg, Sweden
pers@ce.chalmers.se

Abstract

Today document archives are geographically distributed
but often not replicated. This can potentially result in a
low quality of service in terms of reduced availability and
long user-perceived access times. Instead of indiscriminate
replication we study the effectiveness of caching techniques
such as prefetching and selective preloading.

Our technique analyzes whether user access behavior is
predictable enough to guess what articles to prefetch or to
preload based on access logs from DADS, a digital library
system for scientific journal articles developed at DTV, the
Technical Knowledge Center of Denmark. We have found
that once a literature search has been narrowed to up to ten
articles, there is a high likelihood that some of them will be
eventually downloaded. This suggests that prefetching can
be used to hide the article transfer latency. We have also
found that 80% of the article downloads are confined to less
than 20% of the journals, so preloading a small fraction of
the digital library database could significantly shorten the
access latency and improve the availability.

1. Introduction

The number of digital library services and users is in-
creasing dramatically with the advent of the Internet. As a
result, there is a growing need for a federated service that
provides the user with an integrated access to the fulltext
archives as well as bibliographic information provided by
multiple publishers.

The objective of DTV’s Article Database Service
(DADS)[1, 14] is to provide the users with an integrated
search facility and a direct electronic document delivery of
scientific journal articles. The system has been in produc-
tion since 1998 and serves many, mainly Danish, univer-
sities; in particular the Technical University of Denmark,
were DTV, the Technical Knowledge Center of Denmark,

is located. In contrast to many digital library services from
large publishers, used by many libraries today, DADS inte-
grates information from different sources into a single point
of access with a generic interface – a one stop shop (for
journal articles).

DADS consists of a number of databases encompassing
indexing databases and fulltext archives. Users from each
organizational unit, for example a university, have access
to this collection of databases through a web server with a
common gateway interface. Each organizational unit usu-
ally connects to DADS through a dedicated gateway.

Implementing digital libraries using a centralized struc-
ture poses severe scalability limits. The user-perceived ac-
cess latency encompasses both the network latency as well
as the time to process requests at the various servers in-
volved. With a growing number of users, this latency is in-
creasing owing to contention effects which may reduce the
user-perceived quality-of-service. Another scalability issue
concerns reduced availability; a centralized digital library
structure is prone to single-point-of-failures.

These scalability issues can be addressed using caching
techniques. In an ongoing project, we are investigating the
prospects of two such techniques:prefetchingandpreload-
ing. Prefetching means that data that is anticipated to be
accessed in a near future is brought closer to the user before
it is actually used. Preloading, on the other hand, means that
data that is anticipated to be accessed frequently is cached
locally. These techniques have been applied to a spectrum
of systems in which it is essential to reduce or hide the la-
tency to access remote data ranging from cache hierarchies
in computer systems [7] to web caching [4]. Their use in
digital library systems has not been addressed so far to the
best of our knowledge.

In this paper, we study the effectiveness of prefetching
and preloading. Prefetching effectiveness depends on the
accuracy by which future bibliographic requests can be pre-
dicted. Using request logs collected during one year, we
find that at the time users have narrowed down the search to
a handful articles, the likelihood of requesting one of them

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 20, 2008 at 07:50 from IEEE Xplore. Restrictions apply.

Fulltext
server

Fulltext
server

Fulltext
server

Fulltext
server

Fulltext
server

Fulltext
server

Client

Client
Gateway

Index

Cache

Client

Client
Gateway

Index

Cache

Client

Client
Gateway

Index

Cache

University

Figure 1. Distributed Digital Library Architec-
ture

from the fulltext archive is quite high. This suggests that
prefetching can be used to hide access latencies. Another
finding is that preloading only a small fraction (typically
20%) is enough to satisfy more than 80% of the user re-
quests. While a brute-force solution for a digital library
would be to preload all fulltext archives locally, the current
local fulltext archive of DADS contains around 2.5 million
documents with a total size of about 1 Tb – data from only
one publisher. Considering how many publishers exist in
the world, full replication seems rather expensive.

As for the rest of the paper, we describe a general dis-
tributed digital library architecture and the DADS system
in particular in more detail in the next section. Then, we
present the methodology used to do the analysis of user re-
quest logs in Section 3. Section 4 presents our experimental
observations along with a discussion about their implica-
tions. Finally, we contrast our findings to other research
done in this area before we conclude.

2. A Digital Library System

The primary function of a library is to organize published
work (information) from different sources as well as to act
as an intermediary for finding and accessing the content.
Earlier libraries used to build up a physical collection from
different publishers on site. If a certain book or article was
not available in the local collection, it was typically ordered
from another library or the publisher.

With the advent of computers and networks like the in-
ternet, publishing information and running a library has
changed radically. While searching information has be-
come much easier and quicker, the primary function of a
library remains the same. What has changed is the method
for distributing the bibliographic and content data. Today
many libraries provide an electronic search interface to bib-
liographic databases and some do also provide direct digital
access to the content.

2.1. Digital Library Architecture Overview

Figure 1 shows the schematic architecture of such a dig-
ital library. A client application such as a web browser is
used in order to connect to the gateway provided by the lo-
cal library. In an academic context, this is typically a uni-
versity library. The gateway executes on the user’s behalf
queries against the index of the library.

It is technically feasible for libraries to have the indices
locally in order to provide short access times. This is pos-
sible because bibliographic data requires only a small per-
centage of the total storage capacity needed for the fulltext
archive.

Once the user has located an interesting publication, in
our case an article, it is naturally to download the publica-
tion immediately. Because such an article is in most cases
not available locally, it needs to be downloaded from a re-
mote fulltext server. Transferring the article from the re-
mote site may take considerable time which can adversely
affect the user-perceived quality of the system.

2.2. The DADS system

The DTV Article Database Service (DADS)[1, 14] is an
implementation of parts of the above architecture according
to Figure 1. DADS offers its services through a web server
which acts as a gateway. Hence a standard web browser is
used as the client application. The web server uses server
side scripts to communicate with the index databases avail-
able. Currently a cache component is not implemented.

In the DADS system, articles are not only located on re-
mote fulltext servers. Additionally, DADS has a large local
fulltext archive, which can serve the user quickly. Online ar-
ticles not found in the local fulltext archive are fetched from
a remote fulltext server. In contrast to the general architec-
ture as shown in Figure 1, this is not done by the gateway
directly. Instead the gateway sends a HTTP redirection to
the client, containing the real location of the document. The
client will then fetch the article itself.

The system implements two major modes of usage,
browsing and searching. Browsing is much like the tradi-
tional browsing in a library. The user looks for a journal
and browses the issues of this journal. Searching, on the
other hand, means finding articles in a more unstructured
way by using the index database.

2.3. The DADS User Model

DADS features a simple user model. Every function is
coupled to a web page containing some functionality. This
can be either a form to be filled in or a page with hyperlinks,
which the user can follow. The web browser will transmit

2

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 20, 2008 at 07:50 from IEEE Xplore. Restrictions apply.

download fulltext

show record

hit list

refine

search

Figure 2. User model during a search session.

the user’s decision to the gateway, which will generate the
next page.

Figure 2 shows the user/system interaction in a state rep-
resentation where a user selected action or a system re-
sponse results in the transition to a new state. We only dis-
play the set of states that are relevant for the results of this
study.

The user starts from thesearchstate, in which the user is
asked to enter key words and other information controlling
the search. When the outcome of a search results in more
than ten articles, which is often the case, the system enters
therefinestate to offer the user an easy way to improve the
search.

Then the user can either use this opportunity by giving
more search terms, or the user can start to view the hit list
of articles that match the search criterion. In this case, the
hit list state, and its corresponding page, will present the
user up to ten hits at a time. The articles are presented with
their title, author, etc, but without the abstract.

Once the user selects a particular article the transition to
the show recordstate is performed. This is the only state
where the abstract together with all other bibliographic data
from the index database is shown.

Eventually the user can decide to get the article. The user
expects a download to happen immediately when selecting
“get article”. Because not all articles are available online,
the next statefulltextdoes not present the user the article on
the screen, but asks the user to take another decision about
the delivery method. The system offers photo copying for
all articles for a fee and fulltext download for those which
have a fulltext available online. If the article is available
online, the user can enter thedownloadstate and download
the article.

In Figure 2 we have marked the above described main
path with a dotted line.

2.4. Problem Statement and Approach

Ideally, transitions from one state to another would oc-
cur in zero time. Unfortunately this is, especially in a dis-
tributed system, not the case. Network delays and service
times add up and the user perceives delays, which we would
like to reduce.

In order to reduce the delays for the end user that down-
loads articles, we plan to add a proxy cache component,
which is located close to the user as shown in Figure 1.
The idea is to transfer some articles from the remote full-
text servers ahead of time and store them locally for later
use.

Our approach is to use prefetching in order to initiate ar-
ticle downloads early on in the user/system dialogue during
a search session as outlined above so that the access laten-
cies can be overlapped with user interaction. Another ap-
proach we take is to use preloading to selectively cache a
fraction of the fulltext archives that the users tend to access
often.

In this paper, we aim at studying the feasibility of both
approaches by answering whether (1) prefetching can be
triggered sufficiently in advance to hide access latencies
and (2) whether a sufficiently small fraction of the fulltext
archive will cover most user accesses. We next study the
methodology used to answer these questions.

3. Analysis Method

3.1. Logging Infrastructure

Our analysis is based on log files containing user re-
quests captured at a gateway in DADS, where all incoming
HTTP requests are recorded by the Apache Web server. By
default the log files contain the client’s IP-address or host-
name, a timestamp for every incoming request, the type and
URL of the request as well as the status code and the size
of the data delivered. Due to the implementation as dy-
namic pages, the URL itself contains all the data passed
to the backend of the DADS system, for example the state
name as described in Section 2.3.

3.2. The Log Files

We base our analysis on the log files gathered from the
gateway used primarily by the Technical University of Den-
mark including its library DTV. For our analysis, we have
removed all requests from domains outside the university.
We base our studies on the time frame of a whole year from
July 2000 to June 2001. The log files occupy 1 GB raw data
and correspond roughly to 7 million HTTP requests.

In order to simplify the analysis, we stripped off requests
that are irrelevant. The remaining data is stored in a rela-

3

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 20, 2008 at 07:50 from IEEE Xplore. Restrictions apply.

tional database. We have also gathered bibliographic data
for documents where at least the abstract was viewed once,
which is also stored in our database.

After preprocessing we store unique identifiers for the
session, the client and the function for each request. Re-
quests from the same host within the same session get a
running number in the order of the log file entries to include
ordering within a session. Where available, we store a page
and document identifier. Finally for each request we store
the amount of data transfered and a timestamp, when the
request arrived at the server.

The database allows us to quickly retrieve subsets of the
requests, for example for a certain session, request type
or document. Based on this infrastructure, the analysis is
done by counting requests of a certain type, comparing time
stamps, etc. More details how the various analyses are done
is given in Section 4.

4. Analysis Results and Discussion

In this section we present our analysis results. We first
investigate which parts of the system are most commonly
used. Then we will identify when prefetching and preload-
ing can be useful.

4.1. State Probabilities

As described in Section 2.3 we associate the user state
with the last requested page. Every page type has its own
name, which we will also use as the state name of the user.
In order to find out the relative frequency of requests of a
certain type, we have counted the requests for each type.

The results of our state probability analysis are as fol-
lows: Most of the requests are in the article search part.
Together with the article viewing part (which is common to
browsing and searching), it is responsible for about 50.8%
+ 22.4% � 3/4 of the user activity. In fact, activity due to
browsing by journal and article is less than half of the activ-
ity due to searching.

We conclude from this statistics that users primarily
search for articles. Hence, it seems worthwhile to focus
on the searching capability of the system. Interestingly, the
impression of librarians we have talked to is that users tend
to use the browsing capability more than the searching ca-
pability. There are two possible explanations for this ob-
servation: (1) Searching requires far more interactions than
browsing making the latter more convenient and (2) Librar-
ians primarily talk to users that already know what paper
they are looking for and therefore tend to use browsing.
Since the techniques we are considering apply to browsing
as well, we will not focus on this point subsequently.

download fulltext

show record

hit list

refine

search
65%

16%

7%

43%

43%

4%

7%3%
38%

42%

25%

49% (76%)

13%

9%

64%

13%

25%

8%

11%
6%

20%

Figure 3. Probability of state transitions.

4.2. Transition Probabilities

Let us now focus on the states involved in the search pro-
cedures and article viewing, in particular the most common
path across these states. To analyse this, we have selected
all requests of a particular type from the database. For all
such request, we have then selected the following request
within the same session, one at a time. The different types
of those requests are counted and weighted against the to-
tal amount of request to form transition probabilities. Be-
cause users may sometimes open multiple windows which
are not traceable in the log files, the statistics we have gath-
ered may contain some uncertainties. Since we believe that
such occurrences are rare, it should only slightly affect the
statistics.

In Figure 3, we show the state transition probabilities for
the interesting paths through the system. The values are
rounded to full percentage points. Note that not all possible
and existing transitions are shown. This means that we sum
of all outgoing transition probabilities does not add up to
100%.

65% of the initial search queries are not precise enough
to generate ahit list of ten or less articles. As a result, the
next staterefineis used to refine the search within the result
set.

When in this state, there is a chance of 43% that the user
is going to refine the search again, a chance of 43% that
the user decides to see (the first 10 articles of) the result set
anyhow and, finally, a chance of 4% that the user did hit
exactly one document. In the remaining case, the user goes
to some other state.

Normally it appears that the next state of the user ishit
list, presenting the user with a list of ten or less articles.
With a chance of more than 40% the user views an article
abstract next. The other possibilities include to scan the
continuation of the list (38%) or to refine the search (7%).

Once the user has taken a look at the article record in-

4

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 20, 2008 at 07:50 from IEEE Xplore. Restrictions apply.

40

45

50

55

60

1 2 3 4 5 6 7 8 9 10
40

45

50

55

60

pr
op

ab
ili

ty
 in

 %

original paper position within the hit list

hit list with papers 1 - 10
hit list with papers 11 - 20
hit list with papers 21 - 30
hit list with papers 31 - 40
hit list with papers 41 - 50

Figure 4. Probability to proceed to fulltext
when viewing the bibliographic record includ-
ing the abstract

cluding the abstract, there is a chance of more than 49%,
that the article is also requested for viewing. Note that in
our system, this does not imply a download directly as not
all articles are available electronically.

Interestingly enough, when being in theshow record
state from browsing, the probability is 76% to go to the full-
text state next. This is important, because it shows that the
high probability is not limited to searching and also present
in the case of browsing.

In 25% of the cases, the user views the next record in-
stead. In 13% of the cases, the user transfers to the next list
of articles. Because there is no direct link to this, we assume
that the user pressed the back button and continued from an
earlier page.

In summary, there is a straight path from searching in-
cluding a lot of refinement effort to narrow the amount of
articles on the hit list. After the refinement, there is a high
probability to fetch an abstract and continue to download.

As mentioned, the low probability fromfulltext to down-
load is caused by the articles that are not availble in fulltext,
which make up about 80% of the bibliographic records. In-
tuitively, this percentage will diminish as more articles be-
come available in digital libraries.

4.3. Prefetching Opportunities

For our further discussion we will assume, that the user
wants to have the fulltext paper when issuing the fulltext
request. Also we narrow our scope and study only on the
transition from ahit list overshow recordto fulltext in more
detail.

The obvious technique in this situation would be
prefetching. We have a small amount of data, either the

0

30

60

90

120

150

180

210

240

270

300

330

360

390

1 2 3 4 5 6 7 8 9 10
0

30

60

90

120

150

180

210

240

270

300

330

360

390

tim
e

in
 s

ec
on

ds

�

paper position within the hit list

time lines were x% of the fulltext data was not yet requested

20% line
40% line
50% line
60% line
80% line

Figure 5. Transfer time from show record to
fulltext for the first ten articles.

articles on the hit list or only one article in case of the ab-
stract being viewed. Also, the time from thehit list or show
recordcreation to thefulltext request is limited. So within
this time frame we may or may not be able to prefetch those
articles.

For the transition fromhit list via show recordto fulltext
we can actually take into account from which article in the
result set the user starts. Our result sets are organized as
lists of 10 articles each and articles are numbered 1 to 10
for the position on the list plus the list number itself.

When analyzing timing, we first select allhit list or show
record requests from the database. For all those requests
we then try to find the subsequentshow recordor full-
text requests. This is the most restrictive analysis possible,
because session sequences with intermediate requests are
sorted out, which may have increased the decision time.

We ran the timing analysis with precise time stamps col-
lected at the beginning and the end of serving a HTTP re-
quest and substracting the service time from the total time
delay. Doing this we found no fundamental differences to
using only the incomming timestamp, because the service
time delay is small compared to the time between the re-
quests.

In the case of thehit list to show recordtransition, we
compare the total number ofhit list request with theshow
record requests for a particular paper position to calculate
the probability. This is more relaxed than to require that
both request follow each other and reflects the possibility
that a user actually requests more than one abstract from
the samehit list. In contrast, theshow recordto fulltext
transition analysis requires, that both requests follow each
other directly.

First we look at the second transition fromshow record
to fulltext. In Figure 4 we show the result of the probability

5

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 20, 2008 at 07:50 from IEEE Xplore. Restrictions apply.

0

5

10

15

20

25

0 2 4 6 8 10
0

5

10

15

20

25

pr
op

ab
ili

ty
 in

 %

paper position within the hit list (position 0 means no paper selected)

hit list with papers 1 - 10
hit list with papers 11 - 20
hit list with papers 21 - 30
hit list with papers 31 - 40
hit list with papers 41 - 50

Figure 6. Relative fequencies of bibliographic
record/abstract requests compared to view-
ing a hit list

analysis. One can see clearly, that the probabilities are quite
uniformly distributed over all list member of the first 5 hit
lists in the range 44% to 50%. An exception is the first list
of ten articles, where we see slightly higher probabilities
especially for the top listed articles.

As for the timing analysis, which was done for the first
list of ten articles only, shown in Figure 5, the results are
quite similar independent of the papar position. Around
60% of the articles are requested with a think time around
30 seconds.

The timing analysis has shown, that users need around 30
seconds to read the abstract and decide whether to request
the article or not. This timeframe seems to be long enough
to manage prefetching the article in most cases.

The high probability of around 50% makes prefetching
from this state very profitable. By transferring only about
the double amount from what is requested, we would be
able to satisfy all of the requests, if the time frame of 30
seconds is long enough for a succesfull prefetch.

If the time is not sufficient, we may have to start prefeting
earlier, when we have the scope of a list of articles as in the
hit list state.

Figure 6 shows the probability to take the first, second,
etc article from a hit list or none at all. The different lines
show the first, second, etc hit list respectively.

We see that the probabilities are almost equally dis-
tributed for the various hit lists, with the exception of the
first hit list, where the first articles are prefered.

In the timing analysis in Figure 7 – again only shown
for the first hit list (of up to 10 articles) – we see a quicker
decision for the first articles on the list.

We think that the anomalies on the first list are due to the
users assumption, that the results are ranked, which they

0

30

60

90

120

150

180

210

240

270

300

330

360

390

420

1 2 3 4 5 6 7 8 9 10
0

30

60

90

120

150

180

210

240

270

300

330

360

390

420

tim
e

in
 s

ec
on

ds

�

paper position within the hit list

time lines were x% of the records were not yet requested

20% line
40% line
50% line
60% line
80% line

Figure 7. Transfer time from hit list to show
record for the first 10 articles

are not. Jones et al. [8] have found almost twice as high a
probability for viewing the first document compared to the
second on such a list, no matter if ranked or not. Hence we
think that this is not random.

Because the time to decision is shorter for the top entries
on the list, and the probability is higher for those items, too,
a prefetch strategy should start from the top of the list.

4.4. Preloading Opportunities

The previous analysis focused on user behavior. In this
experiment, we change our focus to a system view by an-
alyzing the accesses to our local fulltext archive. An inter-
esting question is whether the accesses are equally scattered
over all documents in our fulltext archive or if we can find
hot spots. Hot spots could guide us to preload the cache
with only parts of the fulltext archive and still achieve a
high hit rate within the preloaded data.

As articles can naturally be grouped in several ways, we
can study the accesses on various levels, namely on the is-
sue, volume and journal level. By grouping all document
accesses on these levels, we can get an estimation on the
probability to hit a document locally, if the whole journal,
volume or issue would be preloaded.

In this analysis we ignore multiple downloads of the
same document (since it mostly represent users issuing a
reload request due to impatience). Besides combined with
prefetching it assures that all accessed documents will be
loaded and available in the cache for repeated downloads.

After sorting the journals according to the number of ac-
cesses to different documents within the journals, we can
observe hot spots. Figure 8 shows this graph, where the top
journal was accessed more than 1500 times. We have done
similar studies on the volume and issue level, which show

6

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 20, 2008 at 07:50 from IEEE Xplore. Restrictions apply.

0

200

400

600

800

1000

1200

1400

1600

1800

0 200 400 600 800 1000 1200 1400 1600 1800

nu
m

be
r

of
 a

cc
es

se
s

to
 d

iff
er

nt
 d

oc
um

en
ts

�

journals orderd by frequency of accesses

Figure 8. Access to different documents per
journal.

the same distribution, but vary in the number of entities and
the top frequencies.

To compare these results, we show them as a cu-
mulative distibution function in Figure 9. The jour-
nals/volumes/issues are sorted with decreasing access fre-
quency from left to right. Only those with at least one access
were used to scale the axis. For the remaining ones (with-
out accesses), it is unclear, if they were just not found by the
users or if they were of no interest to our user community
at all. So our graph shows the worst case in this respective.
The y-axis shows the coverage of document accesses.

Independent if preloading is done on the issue, volume
or journal level, we see that the shape of the curve is aprox-
imately the same. The journal-based preloading is the most
effective, but this comes at the cost of a larger granular-
ity; the journal may include many articles which are just
preloaded, but never used. This effect is reduced on the
finer granularities, but then one has to preload a higher per-
centage of the volumes or issues.

One effective setup seems to be to preload 20% of the
journals, which satisfies 80% of all accesses to documents,
as shown by the box in Figure 9.

5. Related Work

Peters [13] gives a comprehensive overview of transac-
tion log analysis in the field of library and information re-
trieval before digital libraries on the internet became widely
used.

[9, 11, 12] have extensivly studied search behavior in
network connected digital libraries, but they focus on im-
proving the user interface. Also, their studies are based on
collections of computer science papers with its associated

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

pr
oc

en
ta

ge
 o

f (
di

ffe
re

nt
)

do
cu

m
en

ts
 a

cc
es

se
d

�

procentage of journals/volumes/issue accessed

journal
volume

issue

Figure 9. Cumulative distribution function for
accesses per journal, volume and issue.

user community. In contrast, the digital library we consider
is used by researches across most technical disciplines.

Cooper [3] has studied transaction logs of digital li-
braries to identify their usage and users based on sessions.
He and Göker studied a method to separate sessions for web
log files [6]. None of the two studied predictablility of user
interactions needed for prefetching and preloading.

Related to our work is web caching done with web prox-
ies. An introduction to web cachig can be found in [5], and
a bibliography of work done in this area is in [4].

There have been extensive studies how to predict and
integrate prefetching into web proxies. Yany et al. [15]
suggest a method how to predict future web accesses and
show the proxy improvements using logfile traces. Liao and
King [10] suggest to integerate caching and prefechting into
a common strategy.

All of these studies have a fundamentally different user
model inherent in the design of the web. Basically there
are no distinct user states, which guide the user interaction
as in our system. In addition none of those systems have
two decision points for one document access. In contrast,
in a digital library the user accesses first the abstract of an
article, which gives the system time to prefech only articles
with an extremly high probability to be viewed.

An interesting approach to web prefetching is reported
by Cohen and Kaplan [2]. These authors have found that a
large proportion of the latency perceived by the web users
is not attributable to the actual data transfer but rather to the
setup times for the download connection. In particular, he
mentions name resolution for IP-addresses, setting up the
TCP connection and loading the data into the server. By
doing theses steps in advance, the authors find a dramatic
reduction of latency.

These techniques are not limited to web prefetching and

7

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 20, 2008 at 07:50 from IEEE Xplore. Restrictions apply.

can be easily applied in our system at thehit list state. Set-
ting up the connections to remote fulltext servers and giving
them a hint what document we are potentially interested in,
can help to reduce the latency, once the user has decided to
view an abstract, when we start to prefetch.

6. Conclusions

A basic functionality of a digital library is to assist the
user to find relevant information. One way is to narrow
the scope (searching and refining) to a subset of the archive
which is viewable by the user. We have shown, that we can
use this functionality to reduce the potential candidates for
prefetching effectively. In the extreme case of a result set
of only one article, combined with the time the user nor-
mally needs to read the abstract of this article, we can apply
prefetching with a bandwidth overhead of only a factor of
two. If the network latency and capacity is good enough, we
will be able to fetch the article in most cases before the user
actually request it, because the typical user needs enough
time to scan through the abstract of an article.

If the network connection is not good enough, we still
have two options. We can start to prefech earlier, when the
result set is still in the range of 2 to 10 articles. Both parallel
and sequential prefetching is possible for the articles on the
hit list. Prefetching from this state can have severe impli-
cations for both the data amount transfered and the server
load. There is also a high probability that none of the data
is used, so we may easily see an overhead of a factor of ten.

The second option is preloading of articles, which are
located in frequently accessed journals, volumes or issues.
By preloading, for example 20% of the journals, we can
satisfy 80% of all download requests from the cache. Hence
we could reduce the number of remote accesses to 20%.

A combination of these techniques seems to be very
valuable. The disadvantage of the early stage prefetching
with many article transfers in a short time will be relaxed
by the fact that many articles will already be present in the
cache through preloading. On the other hand, the preload-
ing strategy benefits from early prefetching, because this
handles the 20% of journals not available from the cache.

Preloading may also help increasing the availablility of
the system in case of failures in the network or the servers.

Acknowledgment

We are grateful to Prof. Dr. Ulrich Rüde and Dr.
Graham Horton from the institution of system simulation
at the Friedrich-Alexander-Universität, Erlangen-Nürnberg,
Germany for providing us with infrastructure and a magni-
tude of insights how to gather and extract analysis relevant
data.

This research is supported by the NORDUnet2 initiative.

References

[1] A. Ardö, F. Falcoz, T. Nielsen, and S. B. Shanawa. Inte-
grating article databases and full text archives into a digital
journal collection. InProc of the Second European Con-
ference on Research and Advanced Technology for Digital
Libraries, ECDL’98, volume 1513 ofLecture Notes in Com-
puter Science, pages 641–642, Sept. 1998.

[2] E. Cohen and H. Kaplan. Prefetching the means for docu-
ment transfer: A new approach for reducing web latency. In
INFOCOM (2), pages 854–863, 2000.

[3] M. D. Cooper. Usage patterns of a web-based library cat-
alog. Journal of the American Society for Information Sci-
ence and Technology, 52(2):137–148, 2001.

[4] B. D. Davison. Brian davison’s web-caching bibliography.
http://citeseer.nj.nec.com/281347.html.

[5] B. D. Davison. A web caching primer.IEEE Internet Com-
puting, 5(4):38–45, aug 2001.

[6] D. He and A. Gker. Detecting session boundaries from web
user logs. InProceedings of the BCS-IRSG 22nd Annual
Colloquium on Information Retrieval Research, Apr. 2000.

[7] J. Hennessy and D. Patterson.Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers Inc.,
second edition, 1996.

[8] S. Jones, S. J. Cunningham, and R. J. McNab. Usage analy-
sis of a digital library. InACM DL, pages 293–294, 1998.

[9] S. Jones, S. J. Cunningham, R. J. McNab, and S. J. Boddie.
A transaction log analysis of a digital library.International
Journal on Digital Libraries, 3(2):152–169, 2000.

[10] W.-K. Liao and C.-T. King. Proxy prefetch and prefix
caching. InProceeding of the 2001 International Confer-
ence on Parallel Processing, pages 95 – 102, sep 2001.

[11] M. Mahoui and S. J. Cunningham. A comparative transac-
tion log analysis of two computing collections. In4th Eu-
ropean Conference on Research and Advanced Technology
for Digital Libraries, ECDL’2000, volume 1923 ofLecture
Notes in Computer Science, pages 418–423. Springer Ver-
lag, Nov. 2000.

[12] M. Mahoui and S. J. Cunningham. Search behavior in a
research-oriented digital library. In5th European Confer-
ence on Research and Advanced Technology for Digital Li-
braries, ECDL’2001, volume 2163 ofLecture Notes in Com-
puter Science, pages 13–24. Springer Verlag, Nov. 2000.

[13] T. Peters. The history and development of transaction log
analysis.Library Hi Tech, 42(11):41–66, 1993.

[14] M. Sandfær, A. Ardö, F. Falcoz, and S. Shanawa. The archi-
tecture of DADS - a large digital library of scientific jour-
nals. InOnline Information 99, Proceedings, pages 217–
223, Dec. 1999.

[15] Q. Yang, H. H. Zhang, and T. Li. Mining web logs for pre-
diction models in www caching and prefetching. In7th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining KDD’01, aug 2001.

8

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 20, 2008 at 07:50 from IEEE Xplore. Restrictions apply.

