

O'Donnell, J.T. (2006) Overview of Hydra: a concurrent language for
synchronous digital circuit design. International Journal of Information
9(2):pp. 249-264.

http://eprints.gla.ac.uk/3461/

Overview of Hydra: A Concurrent Language for

Synchronous Digital Circuit Design

John T. O’Donnell

Computing Science Department, University of Glasgow,

Glasgow G12 8QQ, United Kingdom

jtod@dcs.gla.ac.uk

www.dcs.gla.ac.uk/∼jtod/

Abstract

Hydra is a computer hardware description language that integrates
several kinds of software tool (simulation, netlist generation and timing
analysis) within a single circuit specification. The design language is in-
herently concurrent, and it offers black box abstraction and general design
patterns that simplify the design of circuits with regular structure. Hy-
dra specifications are concise, allowing the complete design of a computer
system as a digital circuit within a few pages. This paper discusses the
motivations behind Hydra, and illustrates the system with a significant
portion of the design of a basic RISC processor.
Keywords: hardware description language, synchronous circuit

1 Introduction

Software systems that support the design of digital circuits have become crucial
for the entire application area of hardware design. Such systems are called
computer hardware description languages (CHDLs), and they generally comprise
a specification language which the designer uses to describe the circuit precisely,
along with a set of software tools that provide a range of necessary services such
as simulation, netlist generation, and timing analysis.

Hardware description languages are much like programming languages, as
both are used to express algorithms. The main difference lies in the execution
platform: programming languages express algorithms that run on computers,
whereas hardware description languages describe the structure and behaviour
of digital circuits. At a practical level, several issues—particularly multiple
semantics and a highly concurrent model of behaviour—make hardware design
languages quite different from programming languages.

The purpose of this paper is to give an overview of Hydra, a CHDL de-
signed specifically to address the issues of concurrency, multiple semantics and
behavioural models. Hydra was motivated by Johnson’s work on modeling hard-
ware with recursion equations [13], and previous papers have discussed its use
of recursion equations [19], geometric design patterns [20], overloaded semantics
[22], preliminary approaches to the difficult problem of netlist generation [21],
and applications to formal reasoning [23]. This paper gives a brief introduction

1

to the current version of Hydra, discusses how the key issues identified above
are addressed, and illustrates how Hydra is used in practice by presenting a
significant portion of a digital circuit implementing a simple CPU.

Section 2 motivates Hydra, while Section 3 defines the underlying syn-
chronous model. Multiple circuit semantics is discussed in Section 4, and Sec-
tion 5 describes design patterns. Section 6 illustrates the flavour of the language
through an extended example, Section 7 describes related work, and Section 8
concludes.

2 Motivation

Digital circuits are highly concurrent, yet many circuit specification languages
are based on sequential programming languages with special support for con-
currency. This masks the concurrency inherent in the hardware, making it
unnecessarily difficult for the designer to grasp the timing of events. Ideally,
a hardware description language should not require the designer to introduce
spurious serialization that has nothing to do with the hardware, but is simply
inherited from an imperative programming paradigm.

Practical hardware design requires a variety of software tools to help with
expressing the design, synthesizing parts of the circuit that can be generated au-
tomatically, ensuring correctness, analysing the performance, and building the
hardware. These software tools are so different that many systems provide a
family of related specification languages, leading to potential inconsistency. For
example, four of the most important software tools are regular pattern genera-
tors, circuit simulators, netlist generators, and timing analysers. However, these
tools require quite different information about the circuit, and consequently
many circuit design languages separate the specification of the structure of a
circuit from the specification of its behaviour. Unfortunately, this approach can
sometimes allow inconsistencies to arise among the multiple specifications of a
circuit. Thus the designer might simulate a circuit and find that it works, and
then generate the netlist in order to fabricate the circuit, only to discover that
the real hardware fails to work because it is different from the version of the
circuit that was simulated. The multiple specification approach is dangerous.

Complex digital circuits contain many components, ranging from the order
of 104 components for a simplified processor to 108 for a current high perfor-
mance chip. Designers are more productive when the specifications of such large
systems are kept as simple as possible. Several effective methods for achieving
this are utilized in Hydra, including black box abstraction (Section 4), design
patterns (Section 5), and the separation between datapath and control (Section
6).

Digital circuits have behaviour at many levels of abstraction [12], ranging
from effects that depend on quantum physics (such as tunnel diodes) all the
way up to large scale systems (such as multiprocessor systems). Some CHDLs
attempt to cover both physical and logical aspects of a circuit in the same
specification. This is flexible, but it can be difficult to control so many levels of
complexity at the same time.

One example of the confusion that can result from mixing the physical and
logical levels arises from the treatment of clocks. Some standard circuits perform
an action (e.g. loading a register) at every clock tick, but the designer may prefer

2

to load the register only at clock ticks when a special control signal ctl ld is 1.
Exactly this situation is common in circuit design, and a popular solution is to
generate a special clock signal for the register by anding the real clock with ctl ld.
The problem with this approach is that clock skew results from the and-gate on
the register’s clock input, and the circuit may no longer have a simple behaviour
describable as a state machine. This is arguably a misuse of the components: a
true conditional load register (as presented in Section 4.1) should be used, and
it is poor design style to force the wrong component to do a job by misusing its
inputs. An aim of Hydra is to support simple reasoning about the correctness
of circuits, so tricks like performing logic on clock signals are banned.

All of the issues discussed above were considered in the development of
Hydra. The language uses a simple functional model of circuits, enabling it to
be implemented by embedding within an ordinary functional language, Haskell
[25]. Hydra is inherently concurrent, and it provides alternative semantics to
allow different software tools to be applied to the same circuit specification.
Finally, Hydra embodies a precise implementation of the synchronous model for
digital circuits.

3 The Synchronous Model

Most modern circuit design is carried out within the synchronous model, which
simplifies reasoning about behaviour at the cost of strict requirements on clock-
ing. An active current research subject is aimed at finding ways to relax the
constraints of the synchronous model in order to achieve higher speeds without
having too damaging an impact on the ability to understand and reason about
designs. This section briefly summarizes the synchronous model [3].

All digital components are classified as either combinational or sequential.
A combinational component produces one or more outputs that depend solely
on the current values of the inputs; i.e. there is no internal state. Every physical
component takes some time to respond to a change in its inputs, so a change
in the input values to component f at time t will be reflected in the outputs at
time t + df , where df is the gate delay of f .

Suppose that all the inputs I to a combinational circuit are known at the
beginning of a clock cycle, and they remain stable for the duration of the cycle.
Each signal y has a path depth defined as follows. If y ∈ I then pd(y) = 0. Oth-
erwise, y must be an output of a component c whose inputs are x0, x1, . . . , xk−1,
and y becomes valid one gate delay after all those inputs are valid. Therefore
pd(y) = 1 + max(pd(x0), . . . , pd(xk−1)). Feedback within combinational circuits
is disallowed, so each signal has a well founded path depth, and it is guaranteed
that a signal y is valid after pd(y) gate delays have elapsed. The critical path
depth of the circuit is the maximum path depth over all signals.

A sequential component produces outputs that depend on an internal state
and a global clock, as well as on the current input values. The clock can be
viewed abstractly as defining a sequence of points in time called clock ticks.
The delay flip flop dff has a one-bit state which it outputs continuously, and
it receives a data input which it stores in the state at each clock tick. As long
as the clock period is larger than the product of the gate delay and the critical
path depth, the inputs to all flip flops are guaranteed to be valid whenever a
tick occurs.

3

and2 out
inva

b

Figure 1: Named and anonymous signals

The synchronous model has costs that may impair performance: it pro-
hibits logic operations on clock signals, disallows purely combinational feedback
loops, and places a speed limit on the clock. The benefit is a simple semantics
that supports the design of very large circuits: the combinational logic can be
analysed using Boolean algebra, and the behaviour of the entire system can be
analysed as a single state machine, where the state of the entire circuit is a
vector consisting of all the individual flip flop states.

4 Executable Specification

Hydra uses mathematical functions to model circuits: the inputs to a circuit are
the arguments to the function, and the result defines the circuit outputs.

By defining the circuit functions in a suitable programming language, we
can give a semantics to the circuit. As explained in Section 2, there are several
different semantics required for practical design. Hydra addresses this problem
by providing libraries containing alternative definitions for all the primitive cir-
cuits. For example, the inverter function inv has several definitions; one will
simulate it, another will generate its netlist, and another will analyse its tim-
ing. Hydra uses a distinct signal type for each semantics, so we can execute a
circuit simply by applying its specification to inputs of a suitable type without

modifying the circuit specification. For example, by applying the inv function
to a Boolean we can simulate it; by applying it to a wire name we get a netlist;
by applying it to a path depth table we get a timing analysis.

Hydra is implemented by embedding it in the standard functional language
Haskell [25], which supports the choice of semantics through function overload-
ing based on type. Haskell also supports formal reasoning, it provides nonstrict
semantics, which simplifies the implementation of circuit simulation, and it has
a rich syntax and semantics for programming with functions.

4.1 Hydra Specifications

A component is introduced by providing it with inputs, and the result is one
or more output signals. For example, the expression and2 a b denotes the
output produced by a two-input logical and gate connected to inputs a and b.
Equations are used to give names to signals; the name appears on the left hand
side, and the signal value on the right hand side. The input to a circuit can
be either a named signal or an output from a circuit. For example, the circuit
shown in Figure 1 is specified by out = and2 (inv a) b. This defines out to
be the name of the output produced by the and2 gate, while the inverter output
is simply connected to an input of the and2 gate.

Abstraction—the definition and reuse of black box circuits—is the most im-
portant technique for keeping specifications concise while allowing large circuits.

4

or2

c
x

y

inv
and2

and2

out

Figure 2: Multiplexer

A Hydra circuit definition is used to create a new black box circuit using existing
components and circuits. With the definition in place, further circuits can in-
corporate the newly defined black box just like any other component or circuit.
A circuit definition consists of two parts: an optional type declaration (the line
containing ::) which specifies the number and organization of the inputs and
outputs to the circuit, and a defining equation. The multiplexer (Figure 2) is a
standard black box that implements a conditional: its output is x if c = 0, and
otherwise y.

mux1 :: Signal a => a -> a -> a -> a

mux1 c x y = or2 (and2 (inv c) x)

(and2 c y)

A word is a group of signals [x0, x1, . . . , xk−1], where the elements are in-
dexed. A tuple is a group of related signals, where the elements are referred to
by name rather than index.

Feedback is introduced using self-referential equations with a unique anno-
tation of the form label i (used to assist with netlist generation). The 1-bit
register circuit reg1 contains a delay flip flop within a feedback loop. The reg-
ister outputs the state of the flip flop, which is given the name s by the local
equation. At each clock tick, the flip flop will store a new value, and this should
be either the old state value s (if the load control ld is 0) or the data input
value x (if ld is 1). The correct value to be placed into the flip flop is selected
by a multiplexer.

reg1 :: Clocked a => a -> a -> a

reg1 ld x =

let s = label 0 (dff (mux1 ld s x))

in s

4.2 Circuit Behaviour: Simulation

Hydra defines the behaviour of a circuit to be a simulation function that takes
the circuit inputs as arguments, and returns the circuit outputs as results. In
addition to serving as a formal definition of the circuit behaviour, the simulation
functions are useful for practical testing [11], since it is costly to fabricate a
circuit using real hardware.

Circuit simulation in Hydra is based on recursively defined systems of streams.
A stream is an infinite list of values [x0, x1, x2, . . .], where xi is the value
of the signal during clock cycle i. Combinational components are simulated

5

by mapping a logic function over a stream of values. For example, the in-
verter implements the (¬) logic function, so an inverter whose input signal is
[x0, x1, x2, . . .] will output [¬x0,¬x1,¬x2, . . .]. Thus the inverter semantics is
defined by inv xs = map (¬) xs.

The delay flip flop introduces a time shift: its input during cycle i becomes
its output during cycle i + 1, and it has a characteristic “power up” value dff0

during cycle 0. This means that a flip flop with input [x0, x1, x2, . . .] will produce
the output stream [dff0, x0, x1, x2, . . .], which has the value xi during cycle i+1.
Thus the semantics of the flip flop is defined as dff xs = dff0 : xs.

A great advantage of stream simulation is that feedback is handled correctly
[13, 19]. For example, the register circuit reg1, defined above, introduces feed-
back through the signal s, which appears on both sides of the equation. This
corresponds exactly to the circularity in the circuit diagram. Despite the cir-
cularity, the value of s = [s0, s1, . . .] is well founded: s0 is the initial power-up
value dff0, and si depends on si−1 for i > 0.

4.3 Parallel Simulation

The main benefit of concurrency in Hydra is that it simplifies reasoning about
the timing in digital circuits, which are inherently concurrent. A second benefit
is that it supports the development of parallel circuit simulators. All the func-
tion applications corresponding to components that operate in parallel can be
evaluated simultaneously by a parallel implementation of Haskell, such as GPH
[27]. Another approach, which is the subject of current research, is to define
an analysis-based transformation that produces an efficient SPMD style parallel
simulator from a Hydra specification.

4.4 Circuit Structure: Netlist

A netlist is a precise specification of the structure of a circuit which can be
used to fabricate a physical hardware system. A netlist consists a list of the
components in a circuit, along with a list of all the connections to be made
between component ports. Netlists are unreadable to humans, but they can be
used to construct hardware automatically. For example, a wire wrap system,
used for prototyping circuits of moderate complexity, can take a netlist as input
and will produce a physical circuit board as output. VLSI CAD systems can
take a netlist (possibly augmented with information about geometric layout)
and will generate the masks used by integrated circuit fabrication lines. In
short, the ultimate aim of a circuit designer is to produce a netlist that will
generate a correct circuit.

Hydra uses a two-step process to generate netlists [20]. First, a new sig-
nal type is introduced, representing signals as nodes in a graph structure, and
primitive components are redefined to produce a node in the graph. For exam-
ple, to generate a netlist for the circuit x = and2 (inv a) b, we must apply
it to suitable netlist-typed inputs InPort "a" and InPort "b". Executing this
circuit specification now produces a definition of x as a graph node:

x = OutPort "x" (Prim2 And2

(Prim1 Inv (InPort "a"))

(InPort "b"))

6

In the second step, Hydra traverses the graph to build the netlist, which consists
of lists of input ports, output ports, components, and wires. A signal is produced
by an InPort or a numbered output of a numbered component, and a wire
specifies which sinks are connected to a signal. A netlist is straightforward
though unreadable; it is intended for fabrication machines, not for being read
by people:

([(0, InPort "a"), (1, InPort "b")],

[(2, OutPort "x")],

[(3, Inv), (4, And2)],

[((0,0), [(3,0)]), ((1,0), [(4,1)]),

((3,1), [(4,0)]), ((4,2), [(2,0)])])

Circuits with feedback yield circular graphs. In fact, the circuit graph pro-
duced by Hydra is always isomorphic to the corresponding circuit schematic
diagram. There is a technical problem with traversing circular graphs in pure
functional programming languages, and this gives rise to a difficulty with gen-
erating netlists in functional CHDLs. There are several ways the problem can
be solved, including pointer equality [20, 5] and explicit signal labeling [21].
The current version of Hydra uses a program transformation to introduce the
necessary labels automatically; this allows the label 0 to be omitted from the
definition of reg1.

4.5 Circuit Analysis: Path Depth

To make circuits fast, the designer must minimize the critical path depth (the
number of gate delays that must be allowed between clock ticks). Hydra provides
a special circuit semantics which causes the execution of a specification to output
a timing analysis, including the critical path depth.

4.6 Formal Reasoning

Haskell supports formal derivations and correctness proofs through equational
reasoning, a form of algebra based on “substituting equals for equals”. Hydra
inherits this property; indeed, the ability to reason formally about hardware
was one of its original aims. Experience has shown that formal reasoning is
practical for realistic and useful circuits [23]. An advantage of this technique is
that the formalism can help in producing the design, as well as in establishing
its correctness. Theorem proving technology [18] can also be applied to Hydra
circuits during the design process.

5 Design Patterns

Typical circuits contain large numbers of components arranged in regular pat-
terns. For example, the four-bit ripple carry adder consists of a full adder for
each bit position, where each full adder is connected to its neighbors in a uni-
form manner. A straightforward specification mentions each component and
signal explicitly:

7

rippleAdd4 :: Signal a => a -> [(a,a)] -> (a,[a])

rippleAdd4 cin [(x0,y0),(x1,y1),(x2,y2),(x3,y3)] =

let (c0,s0) = fullAdd (x0,y0) c1

(c1,s1) = fullAdd (x1,y1) c2

(c2,s2) = fullAdd (x2,y2) c3

(c3,s3) = fullAdd (x3,y3) cin

in (c0, [s0,s1,s2,s3])

This style of specification does not scale up well: a realistic 64-bit adder
would require 64 equations. A more subtle problem is that it works for only one
word size, so we may need to design a large family of circuits at different sizes
that are conceptually the same.

A solution to these problems is a design pattern, which describes how to build
a larger system by replicating a building block circuit and making connections
according to a regular pattern. Hydra offers a large library of design patterns.
One of them, called mscanr, describes a row of building blocks where each
takes an input from its right neighbor and sends an output to the left neighbor,
allowing a succinct definition of a general n-bit ripple carry adder:

rippleAdd :: Signal a => a -> [(a,a)] -> (a,[a])

rippleAdd = mscanr fullAdd

Hydra has a library of design patterns for circuits with linear organisation
(such as mscanr), as well as grid structures, trees, banyans and butterflies, and
other general interconnection patterns. Design patterns in Hydra are not built-
in language constructs, they can be defined by the designer and added to the
libraries for reuse. For example, the mscanr design pattern is defined recursively
using a general building block circuit f. In the base case, when the word input
is the empty word [], the pattern generates an empty circuit. In the recursive
case, when the input data word has the form (x:xs), with an initial bit x and
suffix xs, the pattern generates one f circuit, and it uses the mscanr pattern
recursively to handle xs, and finally it connects the a’ output from the mscanr

f a xs to the appropriate input of the f circuit.

mscanr :: (a->b->(b,c)) -> b -> [a] -> (b,[c])

mscanr f a [] = (a,[])

mscanr f a (x:xs) =

let (a’,ys) = mscanr f a xs

(a’’,y) = f x a’

in (a’’,y:ys)

The designer can also use recursion directly to specify circuits, as in the
design of a register file. This family of circuits takes an integer size parameter
k; by applying regfile1 to a specific number k we get a register file circuit that
contains 2k registers. The circuit takes a load control ld and data input x, and
three register addresses d, sa and sb. The register file continuously outputs the
contents of the registers addressed by sa and sb, and at a clock tick it assigns
reg[d] := x if the load control is 1.

The base case of the recursion says that a register file of size 0 is simply
a register. The inductive case defines a circuit containing 2k+1 registers by
constructing two smaller ones with 2k registers, and introducing multiplexers
and demultiplexers to decode the address bits.

8

regfile1 :: Clocked a => Int

-> a -> [a] -> [a] -> [a] -> a -> (a,a)

regfile1 0 ld d sa sb x =

let r = reg1 ld x

in (r,r)

regfile1 (k+1) ld (d:ds) (sa:sas) (sb:sbs) x =

let (ld0,ld1) = demux1 d ld

(a0,b0) = regfile1 k ld0 ds sas sbs x

(a1,b1) = regfile1 k ld1 ds sas sbs x

a = mux1 sa a0 a1

b = mux1 sb b0 b1

in (a,b)

6 Design of a CPU

Hydra specifications are more concise than corresponding definitions in VHDL,
and much more concise (as well as precise) than schematic diagrams. An entire
CPU circuit, including all definitions going right down to individual transistors
and wires, can be written in a few hundred lines of Hydra. Several complex
circuits, including complete computer systems, have been designed successfully
using Hydra. This section gives an impression of what is involved by presenting
the key parts of a basic RISC processor circuit. The processor is simplified, and
does not support cache or pipelining, but these features can be added.

In addition to black box abstraction and design pattern abstraction, de-
scribed above, another helpful technique in designing large systems is a separa-
tion of datapath and control. A datapath is the part of the circuit that contains
the basic registers and combinational functions. The datapath defines a large
set of possible operations, and its behaviour is controlled by a set of control sig-
nals generated by a control circuit. A useful analogy is to think of the datapath
as being like a programming language (it provides a set of possible operations),
while the control is like a program (it says which operations will actually be
performed).

6.1 Datapath Circuit

The datapath circuit has two inputs: control, a tuple consisting of all the
signals produced by the control circuit, and an input data word indat, which can
come either from the memory or from an input device. The Hydra specification
defines the word size n and register file size k, and then defines names for the
individual control signals: thus ctl rf ld is the name of the first control signal.
Each control signal is analogous to a command, which the datapath should
perform when that signal is 1; for example, ctl rf ld is a command to the
register file to perform a load.

datapath control indat =

let

n = 16 -- word size

k = 4 -- 2^k registers

(ctl_rf_ld, ctl_rf_alu, ctl_rf_sd,

9

ctl_alu_op, ctl_ir_ld, ctl_pc_ld,

ctl_ad_ld, ctl_ad_alu, ctl_ma_pc,

ctl_x_pc, ctl_y_ad, ctl_sto)

= control

The heart of the datapath is the set of internal registers. The register file
contains the registers visible to the machine language programmer. As explained
above, it reads out two registers in parallel, and these readouts are called a and
b. The datapath also contains an instruction register ir, a program counter pc,
and an address register ad. Each register is specified with a size parameter n

giving the word size, and has its own load control. For example, ctl pc ld is
a control signal that determines whether the program counter register will load
its input r. Note that the address register ad can load one of two values—the
indat input or the internal signal r—and a multiplexer is used to decide which,
according to the control signal ctl ad alu.

(a,b) = regfile n k ctl_rf_ld ir_d rf_sa rf_sb p

ir = reg n ctl_ir_ld indat

pc = reg n ctl_pc_ld r

ad = reg n ctl_ad_ld (wmux1 ctl_ad_alu indat r)

The ALU (arithmetic logic unit) performs operations on two operands x and
y and produces a result r. The complete ALU can perform addition, subtrac-
tion, and comparisons on two’s complement numbers. Its complete specification
(about 10 lines of Hydra) is omitted but is similar to the ripple carry adder de-
fined above.

(ovfl,r) = alu n ctl_alu_op x y

The internal signals and buses are defined next. Many of them use multiplexers
to select the value that is appropriate. For example, the first input to the ALU,
x, may be either the first register file output a or the program counter pc. The
reason for this is that the ALU is used both to add register values (for example,
while executing an instruction like ADD R1,R2,R3) and for incrementing the
pc.

x = wmux1 ctl_x_pc a pc

y = wmux1 ctl_y_ad b ad

rf_sa = wmux1 ctl_rf_sd ir_sa ir_d

rf_sb = ir_sb

p = wmux1 ctl_rf_alu indat r

ma = wmux1 ctl_ma_pc ad pc

cond = any1 a

The next set of equations simply gives names to the fields of an instruction.
These equations could be omitted, but they help make the design more readable.

ir_op = field ir 0 4

ir_d = field ir 4 4

ir_sa = field ir 8 4

ir_sb = field ir 12 4

10

Finally, the set of signals which are to be output by the datapath is specified:

in (ma,cond,a,b,ir,pc,ad,ovfl,r,x,y,p)

This is the complete datapath design; nothing has been omitted from the
full specification except for some comments.

6.2 Control Algorithm

It is best to define the control system in two stages: first as an abstract control
algorithm and then as a detailed control circuit. This helps the designer to
focus on the intended function of the control without worrying about the imple-
mentation details. Furthermore, Hydra provides tools for synthesizing a control
circuit automatically from a control algorithm. A small change in the algorithm
may result in a large change to the corresponding circuit, so it is much better
for the designer to write the algorithm and compile it into hardware

The control algorithm is written in the form of an imperative program, where
each statement generates a set of control signals that will cause the datapath
to perform the appropriate set of operations. The entire algorithm is embedded
within an infinite loop; a control algorithm must never terminate. Inside the
loop we have a sequence of statements that generate control signals which take
the datapath through the right sequence of operations needed to execute a
program. In the first state, called st instr fet, the machine is about to fetch
an instruction whose address is in the program counter and to increment the
program counter. Thus it will perform two operations concurrently :

ir := mem[pc], pc++;

Each of these two operations requires several control signals to be set. To
fetch a word of memory at the address specified by the pc and put it into the
instruction register, we need to set ctl ma pc and ctl ir ld, and three more
control signals will cause the datapath to increment the pc. Thus the complete
control statement for this state is:

st_instr_fet:

ir := mem[pc], pc++;

{ctl_ma_pc, ctl_ir_ld, ctl_x_pc,

ctl_alu=alu_inc, ctl_pc_ld}

The control algorithm then performs a case dispatch using the operation code
field of the instruction register. Within the case expression is a group of control
statements for each instruction in the processor’s instruction set. The full algo-
rithm is more than a page long; to give the flavour, only the Load instruction’s
control is shown in detail. It executes in three clock cycles. In the first cycle
(state st load0) the machine fetches the second word of the instruction and
places it in the address register ad; the pc is incremented in parallel. Next,
state st load1 computes the effective address by using the ALU to add the in-
dex register to ad, and the last state, st load2, fetches a word from memory at
the effective address and places it in the destination register within the register
file.

11

st_load0:

ad := mem[pc], pc++;

{ctl_ma_pc, ctl_ad_ld,

ctl_alu_abcd=1100,

ctl_x_pc, ctl_pc_ld}

st_load1:

ad := reg[ir_sa] + ad

{set ctl_y_ad, set ctl_ad_ld,

ctl_alu_abcd=0000}

st_load2:

reg[ir_d] := mem[ad]

{ctl_rf_ld}

6.3 Control Circuit

There are many ways to derive a control circuit from a control algorithm. Hydra
supports several automatic control circuit synthesis algorithms [8]; a particularly
simple one, called the delay element method, will be used here.

The control circuit has three inputs: a system reset signal, the contents
of the instruction register and the condition bit (produced by the datapath).
It outputs a word representing the control state, and a number of individual
control signals. The circuit contains a flip flop corresponding to each state in
the control algorithm. For example, if the algorithm is in state st instr fet

then the flip flop with that name contains 1, and all the other state flip flops
contain 0. The input to each state flip flop is connected to the previous state
flip flop, so that a unique 1 value, meaning “I am in this state”, moves through
the state flip flops exactly as the locus of execution moves through the control
algorithm. A demultiplexer is used in the st dispatch state to determine which
state to enter next. If the opcode in the instruction register is i, then bit i of p
will be 1, and the control circuit enters the first state for that instruction.

st_instr_fet = dff start

st_dispatch = dff st_instr_fet

p = demux4w ir_op st_dispatch

...

-- Load has opcode 1

st_load0 = dff (p!!1)

st_load1 = dff st_load0

st_load2 = dff st_load1

The control signals are generated by the logical or of the states in which
that signal should be set. For example, the signal ctl rf ld, which causes the
register file to load a value into one of the indexable registers, needs to be set
when the processor is in any one of eight states:

ctl_rf_ld = orw

[st_load2, st_ldval1,

...,

st_cmpgt]

12

6.4 Simulation of the System

Simple circuits can be simulated in Hydra simply by applying the circuit directly
to input signal values. For complex circuits, however, the large number of
individual signals would make the input difficult to provide and the output
difficult to decipher.

To address these problems, Hydra provides a set of tools for defining simu-

lation drivers. These are functions that take inputs in a convenient form (e.g.
decimal or hexadecimal numbers) and generate the corresponding circuit input
signals, and similarly format the circuit outputs in order to make them readable.
One advantage of basing a hardware description language on a full-scale pro-
gramming language is that all the usual programming techniques are available
for writing simulation drivers. The simulation drivers are merely an interface
between the circuit behaviour functions and the user, but the actual simulation
is performed by the stream recursion equations.

For the CPU design described above, the simulation driver performs some
additional services: it takes the machine language program to be executed,
generates the control signals needed to load it into memory via direct memory
access I/O (DMA), it starts the machine, and it formats the various control and
datapath outputs.

7 Related Work

Most CHDLs are based on existing programming languages. This enables large
portions of standard language and compiler techniques to be reused, while still
allowing for adaptations to the domain of hardware design. However, it is gener-
ally necessary to extend the underlying language, since some features needed to
describe hardware cannot be expressed in typical imperative languages. VHDL
[24, 28], currently the most widely used hardware description language in in-
dustry, is based on the Ada programming language. VHDL is highly expressive,
although it is relatively difficult to reason about VHDL circuit specifications.

There has been widespread interest in hardware description languages based
on mathematical models of circuits. Most of the resulting languages are based
on relations, functions, or logic.

Ruby [15] is a language for specifying and reasoning about hardware, using
a relational calculus to model circuit behaviour. The use of relations rather
than functions to model circuits simplifies certain kinds of formal reasoning,
and Ruby has been used extensively for circuit derivation and correctness proof
[14]. Ruby requires all circuits to be specified using geometric combinators, and
does not allow circuit topologies to be specified abstractly using named signals.
Hydra offers both forms of specification [20, 22].

Several hardware description languages have been based on functional pro-
gramming languages. Lustre [2] is a general stream processing language intended
for specifying concurrent systems with synchronous communications, including
hardware, and it also offers support for formal reasoning about circuits [26].
Lava [6, 4] is similar to Hydra, and also provides alternative circuit semantics
via overloading. The main difference is that Lava introduces “observable shar-
ing” for netlist generation [5]. Observable sharing was used in Hydra’87 [19],
but was replaced in Hydra’92 [21] by a different method that does not interfere

13

with formal reasoning about circuits. Hawk [9] is another hardware description
language based on Haskell. Hawk is similar to Hydra, also using stream simula-
tion and type classes for multiple circuit semantics, but the emphasis has been
on verifying hardware design at the register transfer level or higher [17, 7].

Mathematical logic, in particular higher order logic [10], has been used ex-
tensively to prove theorems about circuit behaviour [18, 1, 16]. The emphasis in
this work is on the theorem proving, rather than on circuit design methodology,
simulation, and other aspects of design.

8 Conclusion

Hydra is a hardware description language for designing synchronous digital cir-
cuits. It uses mathematical functions to model components and circuits, and
provides alternative semantics to describe both the behaviour and the structure
of a circuit using just one specification. This avoids potential errors caused by
inconsistencies between the behaviour and structure of a circuit design.

Circuit specifications in Hydra are inherently concurrent. This helps in rea-
soning about timing of events in a circuit, and it is also useful for developing
parallel circuit simulation algorithms.

Hydra supports a systematic methodology for practical circuit design, from
the level of transistors up to complete systems. Its functional style of speci-
fication and powerful abstraction mechanisms allow the precise and complete
specifications of large scale circuits using relatively small definitions. This paper
briefly describes a RISC processor design; the complete specification is about
200 lines of Hydra code.

Acknowledgement. This is a revised version of a paper that appeared in
Proc. 16th Int. Parallel & Distributed Processing Symposium, PDSECA Work-

shop. I would like to thank the anonymous referees for several useful suggestions.

References

[1] A. Camilleri, M. Gordon, and T. Melham. Hardware verification using higher-
order logic. In D. Borrione, editor, From HDL Descriptions to Guaranteed Correct
Circuit Designs: Proceedings of the IFIP WG 10.2 Working Conference, Greno-
ble, September 1986, pages 43–67. North-Holland, 1987.

[2] P. Caspi, N Halbwachs, D. Pilaud, and J. Plaice. LUSTRE: A declarative lan-
guage for programming synchronous systems. In 14th Symposium on Principles
of Programming Languages (POPL’87). ACM, 1987.

[3] Zhou Chaochen and C. A. R. Hoare. A model for synchronous switching circuits
and its theory of correctness. In G. Jones and M. Sheeran, editors, Designing
Correct Circuits, pages 196–211. Springer-Verlag, 1991. DCC Workshop, Oxford
1990.

[4] Koen Claessen. Embedded Languages for Describing and Verifying Hardware.
PhD thesis, Chalmers University of Technology, April 2001.

[5] Koen Claessen and David Sands. Observable sharing for functional circuit de-
scription. In Asian Computing Science Conference. ACM SIGPLAN, 1999.

14

[6] Koen Claessen and Mary Sheeran. A Tutorial on Lava: A Hardware Descrip-
tion and Verification System. Chalmers University of Technology, April 2000.
www.cs.chalmers.se/∼koen/Lava.

[7] Byron Cook, John Launchbury, and John Matthews. Specifying superscalar mi-
croprocessors in Hawk. In Formal Techniques for Hardware and Hardware-like
Systems, 1998.

[8] M. D. Edwards. Automatic Logic Synthesis Techniques for Digital Systems.
MacMillan, 1992.

[9] John Launchbury et. al. Hawk, 1998. www.cse.ogi.edu/PacSoft/Projects

/Hawk/.

[10] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A theorem
proving environment for higher order logic. Cambridge University Press, 1993.

[11] John B. Gosling. Simulation in the Design of Digital Electronic Systems. Cam-
bridge University Press, 1993.

[12] L. J. Herbert. Integrated Circuit Engineering: Establishing a Foundation. Oxford
University Press, 1996.

[13] Steven D. Johnson. Synthesis of Digital Designs from Recursion Equations. MIT
Press, 1984. The ACM Distinguished Dissertation Series.

[14] G. Jones and M. Sheeran. Designing arithmetic circuits by refinement in Ruby.
In Proc. Second Int. Conf. on Mathematics of Program Construction, LNCS.
Springer, 1992.

[15] Geraint Jones and Mary Sheeran. Circuit design in Ruby. In J. Staunstrup,
editor, Formal Methods in VLSI Design, chapter 1, pages 13–70. North-Holland,
1990. IFIP WG 10.5 Lecture Notes.

[16] R. B. Jones, J. W. O’Leary, C.-J. H. Seger, M. D. Aagaard, and T. F. Melham.
Practical formal verification in microprocessor design. IEEE Design and Test of
Computers, 18(4):16–25, July/August 2001.

[17] John Matthews, Byron Cook, and John Launchbury. Microprocessor specification
in Hawk. In Proceedings ICCL’98. IEEE Press, 1998.

[18] T. Melham. Higher Order Logic and Hardware Verification, volume 31 of Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press, 1993.

[19] John O’Donnell. Hardware description with recursion equations. In Proceedings
of the IFIP 8th International Symposium on Computer Hardware Description
Languages and their Applications, pages 363–382, Amsterdam, April 1987. North-
Holland.

[20] John O’Donnell. Hydra: hardware description in a functional language using
recursion equations and high order combining forms. In G. J. Milne, editor, The
Fusion of Hardware Design and Verification, pages 309–328, Amsterdam, 1988.
North-Holland.

[21] John O’Donnell. Generating netlists from executable circuit specifications in a
pure functional language. In Functional Programming, Glasgow 1992, Workshops
in Computing, pages 178–194. Springer-Verlag, 1992.

[22] John O’Donnell. From transistors to computer architecture: Teaching functional
circuit specification in Hydra. In FPLE’95: Symposium on Functional Program-
ming Languages in Education, volume 1022 of LNCS, pages 195–214. Springer-
Verlag, 1995.

[23] John O’Donnell and Gudula Rünger. Derivation of a logarithmic time carry
lookahead addition circuit. Journal of Functional Programming, 14(6):697–713,
2004.

15

[24] Douglas Perry. VHDL. McGraw-Hill Inc., 1991.

[25] Simon Peyton Jones. Haskell 87 language and libraries: the revised report. Jour-
nal of Functional Programming, 13(1), Jan. 2003.

[26] Ghislaine Thuau and Daniel Pilaud. Using the declarative language LUSTRE
for circuit verification. In G. Jones and M. Sheeran, editors, Designing Correct
Circuits, pages 313–331. Springer-Verlag, 1991. DCC Workshop, Oxford 1990.

[27] P. W. Trinder, K. Hammond, H. W. Loidl, and S. L. Peyton Jones. Algorithm +
strategy = parallelism. Journal of Functional Programming, 8(1):23–60, January
1998.

[28] Sudhakar Yalamanchili. Introductory VHDL: From Simulation to Synthesis. Pren-
tice Hall, 2001.

16

	citation_temp.pdf
	http://eprints.gla.ac.uk/3461/

