
1

The Power of SIMDs vs. MIMDs in Real-time Scheduling

Mingxian Jin, Johnnie W. Baker, and Will C. Meilander
Department of Computer Science

Kent State University, Kent, Ohio 44242-0001
Phone: 330-672-2430 Fax: (330) 672-7824

{mjin, jbaker, willcm}@cs.kent.edu

Abstract

SIMDs and MIMDs are the most important
categories of computer systems for parallel computing in
Flynn’s classification scheme. Due to their higher
flexibility in allowing processors to execute independently
and their ability to use off-the-shelf microprocessors, the
MIMD systems are generally favored and considered to
be more powerful. In comparison, the SIMD systems are
considered outdated. However, we observe that many
intrinsic weaknesses of the MIMD systems are not fully
recognized until they are compared while solving real-
time scheduling problems. The SIMD systems have
inherent advantages that MIMDs lack. In this paper, we
compare SIMDs and MIMDs in real-time scheduling, e.g.,
scheduling for air traffic control. Two abstract parallel
computation models, the ASC and BSP models that
represent SIMDs and MIMDs respectively, are used in
our discussion and analysis. We argue that the common
belief that MIMDs have greater power than SIMDs is
false. Our research shows that SIMDs are not outdated,
as they offer tractable solutions for problems considered
intractable with MIMDs. Rather, SIMDs are more
efficient and powerful in some important application
fields. They deserve more attention and considerations
than they currently receive.

1. Introduction

Flynn's taxonomy of parallel computers, based on the
numbers of instruction streams and data streams, has been
widely used in the research literature of parallel
processing since it appeared in 1972 [6]. SIMDs and
MIMDs are the most important categories in Flynn’s
classification of computer. Most early parallel computers
had a SIMD-style design. They had a central controller
that broadcasts commands to multiple processing
elements. The commands are executed synchronously on
the set of processors. On the other hand, with the MIMD
architectures, each of processors executes programs at
their own pace. Processors exchange information using

shared memory or messages passing. Due to their high
flexibility in using off-the-shelf micro-processors, MIMD
computers are considered cheaper to build and more
modern architecturally than SIMD computers. They
dominate today’s market and SIMD computers have all
but vanished. Many people in the field are pessimistic
about the future of SIMD computers [1,5,13,14].

However, as we investigated real-time scheduling
problems, in particular for some problems in air traffic
control, we observed that claims that MIMDs are more
powerful than SIMDs are false. For many real-time
scheduling problems, efficient polynomial time SIMD
solutions can be obtained, while it appears impossible to
obtain a polynomial time MIMD solution. This suggests
that SIMDs are not outdated since MIMDs have inherent
weaknesses such as synchronization costs,
communication limitations, mutual exclusion to access
shared resources, serializability, data concurrency, etc.
which do not occur with SIMDs. The impact of all these
problems was not fully recognized until MIMDs were
used to try to solve real-time problems where these
weaknesses become critical. In this paper, we will
compare SIMDs and MIMDs for real-time problems. An
example is given of a problem with a polynomial time
solution using a SIMD but for which there is no
polynomial time solution using MIMDs. (In this paper,
we assume P!NP; hence, no NP-complete problem has a
polynomial time solution.) We will discuss the currently
accepted superior power of asynchronous models, based
on a sequence of simulations connecting the ASC and
BSP models. We will discuss the theoretical and practical
reasons for NP-hardness when MIMDs are used to solve
real-time scheduling problems.

This paper is organized as follows. Section 2
introduces real-time scheduling terms and the parallel
models BSP and ASC used here for MIMD and SIMD,
respectively. Section 3 presents a real-time scheduling
example that is fundamental to this paper. Section 4
combines existing simulations and one new simulation to
produce a simulation between the BSP and ASC models
in order to better compare these models. Section 5
describes advantages of SIMDs over MIMDs in real-time

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

2

scheduling. Section 6 analyzes the reasons that prohibit an
efficient MIMD solution. Section 7 is the conclusion.

2. Real-time scheduling and parallel models

2.1. Real-time scheduling

Real-time scheduling differs from classic scheduling
in that tasks must meet specified timing requirements. A
real-time system executes tasks to ensure not only their
logical correctness but also their temporal correctness. If
the timing deadlines are not met, the system fails, no
matter how accurately the tasks are executed.

As defined in [19], a real-time task is an executable
entity of work that, at minimum, is characterized by a
worst-case execution time and a time constraint. A job is
defined as an instance of a task. A real-time task can be
periodic, which is activated (released) regularly at a fixed
rate (period); aperiodic, which is activated irregularly at
some unknown and possibly unbounded rate; or sporadic,
which is activated irregularly with some known bounded
rate. Typically, real-time scheduling can be static or
dynamic. For static scheduling, the scheduling algorithm
has complete knowledge a priori about all incoming tasks
and their constraints such as deadlines, computation
times, shared resource access, and future release times. In
contrast, in dynamic scheduling, the scheduling algorithm
only has knowledge about the currently active tasks, but it
does not have knowledge about future tasks prior to their
arrival. The event-driven schedule produced by a dynamic
scheduling algorithm therefore changes over time.

Real-time scheduling can be executed on a
uniprocessor or a multiprocessor. (Since a multiprocessor
is usually regarded as a parallel computer that has
multiple processors with multiple instruction streams, we
will use the words “multiprocessor” and “MIMD”
interchangeably.) It has been shown that there exist
optimal scheduling algorithms for a uniprocessor system.
An optimal scheduling algorithm is one that may fail to
meet a deadline only if no other scheduling algorithm can
meet it [20]. For example, the earliest deadline first
(EDF) algorithm is optimal for scheduling a set of
independent real-time tasks on a uniprocessor [19]. As
real-time systems become larger and tasks become more
sophisticated, real-time scheduling has become much
more dependent on parallel systems. Unfortunately, with
the multiprocessor system, optimal scheduling algorithms
have not been found for most problems. Complexity
results have established that almost all real-time
scheduling problems on multiprocessors are NP-hard
[7,19,20]. Even though there are some heuristic
scheduling algorithms for multiprocessors, they assume
restricted conditions and work only under special
circumstances (see examples in [18]).

Our studies are based mainly on typical real-time
scheduling problems, and in particular, on real-time task
scheduling for air traffic control. The tasks have a
common feature that virtually all data in the problem must
be stored in a shared database. Each task is executed on
data from the shared tables. Our observations may be
applied to a large number of other real-time systems, as
most real-time tasks conceptually involve database type
operations on data from a shared database source.

2.2. Parallel computational models

Parallel computation models range from very
abstract to very concrete. Most models (e.g., PRAM, 2D
Mesh) have two versions: a synchronous version and an
asynchronous version. An important goal of this paper is
to show that probably the most important property of a
parallel model is whether it is synchronous or
asynchronous.

Both SIMDs and MIMDs have their particular
characteristics and advantages. All processors of a SIMD
are controlled by a central unit and operate in lockstep or
synchronously. The SIMD model has advantages of being
easily programmed, cost-effective, highly scaleable, and
especially good for massive fine-grain parallelism
[13,15]. On the other hand, each of processors of a MIMD
has its own program and executes independently at its
own pace; i.e., asynchronously. The MIMD model has the
advantages of high flexibility in exploiting various forms
of parallelism, ease in using current high-speed off-the-
shelf microprocessors, and being good for coarse-grain
parallelism [1,14]. To make our comparison more clear
and specific, we use two abstract models, ASC and BSP,
which identify the essential properties we assume for
SIMDs and MIMDs, respectively.

The ASC model can be characterized as an
associative SIMD. It consists of an array of processing
elements (PEs) connected by a bus and an instruction
stream processor (IS) that broadcasts commands and data
to all of the PEs on the bus. Each PE has its own
individual memory and can perform all the usual local
operations of a sequential processor other than issuing
instructions. Additionally, each PE can only access its
own memory. Each PE can become active or inactive,
based on the result of a data test. An active PE executes
the instructions issued by the IS, while an inactive PE
listens to but does not execute the instructions. Assuming
that the word length is a constant, ASC supports several
important constant time operations, namely broadcasting,
global OR/AND, maximum/minimum, and associative
search which identifies the PEs whose data values match
the search pattern (called responders) or do not match
(called non-responders) [11]. Two parallel architectures
that fully support the ASC model (in hardware) are the
STARAN and the ASPRO [2,3]. The ASC model is a

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

3

restriction of the MASC model, a multiple SIMD model,
to one instruction stream. MASC supports both data and
control parallelism. A detailed description of MASC is
given in [16] and further information about the properties
of ASC can be inferred from [4,11].

The BSP (Bulk-Synchronous Parallel) model was
introduced in [21] to overcome the shortcomings of the
classic PRAM model and to make a bridge between
abstract algorithms and realistic architectures for general-
purpose parallel computation. A BSP program consists of
a sequence of parallel supersteps. A superstep is a
combination of local computation steps and message
transmissions. Each superstep is followed by a global
check (barrier synchronization) to wait for all processors
to finish the current superstep before proceeding to the
next superstep.

The BSP model is an abstract MIMD model since the
processors can execute different instructions concurrently.
It is loosely synchronous at the superstep level, in contrast
to the tight synchrony in a SIMD model. The processor
interaction mechanism in the BSP model is not specific
and allows either shared variables or message passing.
BSP therefore is a reasonable model for most current
MIMD machines. Clusters and SMPs [14] are currently
two of the most popular architectural variants of MIMDs
and are captured well by the BSP model.

As stated in [22], the BSP model is expected to have
universal efficiency for general-purpose parallel
computation over special-purpose models. It is claim that
“special-purpose machines have no major advantage since
general-purpose machines can perform the same functions
as fast” and additionally can use “high-level programming
languages and transportable software”. Conceptually,
since BSP is considered to be a bridging model, an
efficient optimal BSP simulation can obtained for any
special-purpose model and used to transfer its algorithms
to cost efficient ones on a general-purpose model.

3. A real-time scheduling example

The motivation for this section is the results reported
in [12,17] on real-time scheduling for the air traffic
control (ATC) problem using an associative SIMD
computer. A polynomial time algorithm is given in [12]
for the ATC scheduling problem using the ASC model
and static scheduling. In contrast, the air traffic control
scheduling problem on a multiprocessor and many other
similar scheduling problems are either known or believed
to be NP-hard. In particular, it is shown in [7] that a set of
real-time tasks that have varied computation times or
shared resources cannot be scheduled on a multiprocessor
in polynomial time. In order to study this phenomenon in
greater detail without getting involved in the various
aspects of the ATC scheduling problem, we present a

simple real-time scheduling problem. This allows us to
compare the power of the SIMD model and the MIMD
model using real-time scheduling problems.

Consider an array A of size of n " m. Let aij denote

the element in the ith row and jth column where 1 # i # n
and 1# j # m. All values in A are updated every D time
units. The problem is to complete a set of periodic tasks
T1 , T2 ,..., Tk within a deadline D, where each Ti performs
the same (polynomial time) operation on some or all rows
of A. Such a task is a set operation and includes multiple
jobs, each of which is to perform the operation specified
by the task on the specified rows. The deadline D for
completing all tasks is the same as the period for updating
the data in the array A.

In sequential processing, the computational costs of
the tasks are C1 , C2 , ..., Ck . Each Ci is the product of the
number of the rows ri that task Ti involves and the time ci

required to perform each job (i.e., the specific operation
on each row). For example, T1 could be a task adding the
values in column 1 to column 2 for those rows with an
even row number. T2 could be a task finding all medians
of individual rows for all rows. So T1 consists of n/2 jobs

of adding ai1 to ai2 (1# i # n with i even). T2 consists of
n jobs each of which is finding the median of ai1 , ai2 , ...,

aim (1# i # n), respectively. If the time for adding two
numbers is c1 and the time for finding the median of m
elements in a row is c2 , the computation costs C1 of T1

is n/2 " c1 and C2 of T2 is n " c2 . According to
scheduling theory [19], to schedule such a set of tasks on
a uniprocessor using non-preemption, the following
condition must be met:

1
...2211 #
$$$

D

crcrcr kk (1)

In practice, n and ri could be very large compared to
D and ci. When this is the case, it could be impossible to
meet condition (1) and finish the tasks within the deadline
using a uniprocessor. Parallel processing seems to
provide the only solution.

Due to the obvious data-intensive nature of this
computation, a SIMD can be significantly more efficient
than a MIMD when the array size is large. With the
massive parallelism supported by SIMDs, we may have
thousands of PEs available with each row residing in one
PE. Since the same operation is performed on all the
involved rows, we process all the rows simultaneously.
When using ASC for this example, all jobs for each of the
k tasks are processed in parallel, no matter how many
rows are involved. Therefore, condition (1) now reduces
to the following:

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

4

11 #
%
&

D

c
k

i
i

(2)

Compared with (1), condition (2) is much easier to
satisfy. In fact, problems similar to this example occur in
the air traffic control problem frequently and can be
solved efficiently on the ASC model [12,17].

Next, we consider solving this problem with a
MIMD. Unfortunately, since all tasks have varied
computation times, there is no known polynomial
algorithm using a multiprocessor to schedule this set of
tasks. This is shown in the following theorem of Gary

and Johnson [7]. Let T be a set of tasks, m'Z+ (the set of
positive integers), length l(t)'Z+ for each t'T, and a
deadline D' Z+ . The problem of whether there is an m-
processor schedule for T that meets the overall deadline D
is NP-complete for m (2, assuming not all tasks have the
same length. (Here, m-processor means a MIMD with m
processors). This theorem applies directly to our example.

The example presented in this section is more
difficult than would be the case if all the tasks were
independent and did not share resources. Since all tasks
share the same data source (a data file or a database), the
scheduling problem for this set of tasks with the added
requirement that is performed on a multiprocessor is NP-
hard. Either varied task computation times or resource
sharing causes this scheduling problem to be NP-hard on
a multiprocessor, as shown in [7,19,20].

4. Advantages of associative SIMDs

The ASC model (or an associative SIMD) has certain
features that make it possible to efficiently solve real-time
problems such as the air traffic control. These features can
be used by associative SIMD systems to solve other
similar real-time scheduling problems since they can
share the same features that we discuss below.
a) Eliminate the expensive synchronization costs in

MIMDs
It has been generally believed that an asynchronous

MIMD model is more powerful than a synchronous SIMD
model because MIMDs have the flexibility to allow every
processor to compute at its full speed and without waiting
for others to proceed. This seems to imply that, if a
problem can be solved efficiently in a synchronous
model, then it should be possible to efficiently execute the
same algorithm in an otherwise identical asynchronous
model. However, our example shows that this is not true,
at least for real-time scheduling problems.
Synchronization costs are extremely expensive and can
cause significant time delays.
b) Locate data by content rather than by address

Since data is accessed by content rather than address,
sorting and indexing are normally eliminated in ASC
algorithms. The complexity of the software is
significantly reduced and the real-time deadline is much
more easily met with SIMD algorithms than with MIMD
algorithms. Normally, with large MIMD software systems
and even for some MIMD algorithms, a considerable
amount of time is used for sorting and indexing the data.
c) Use wide memory bandwidth to access a large amount

of data simultaneously
The traditional memory access bottleneck does not

exist in the associative SIMDs. Since all data are stored in
the local memory of individual PEs, data is loaded into
the PEs in parallel for computations. A data item can be
broadcast to one or more PEs in one step. This is in stark
contrast to the shared-memory MIMD systems that have
to distribute shared data to each of the processors. A
SIMD also eliminates the network congestion prevalent in
distributed memory MIMD systems due to the continual
massive data movement required to update local copies of
shared data in different processors or to provide needed
data to the different processors. While it might appear that
the same cost would be incurred in the moving data to
different PEs in the ASC model, this is not true.
Normally, most of the data needed by different processors
is broadcast by the IS to all processors. Additionally, if a
massive data relocation is required (e.g., in a sort or FFT
algorithm), then the synchronous interconnection
network, such as 2D mesh, of the associative SIMD
would be used. Unlike the “store and forward” types
algorithms for asynchronous networks, the algorithm for
this data relocation will move the data using a fixed,
worst case number of synchronous data movements that
avoids congestion and has predictable time requirements.
Moreover, on most ASC applications, the use of the
interconnection network is minimal or non-existent. The
usual use of sorting to keep the data organized and easily
accessible, and make items easy to locate is unnecessary
in ASC, since desired data are normally located using a
content-addressable associative search and then broadcast
to all PEs that need the data.
d) Use massive parallelism for intensive data-parallel

computations
SIMDs support massive parallelism and data-

parallelism more efficiently than MIMDs. In SIMDs, the
broadcast feature minimizes (and often eliminates) any
data movement between PEs, which are handled using
network or shared memory in MIMDs. Typically, any
large data relocations that occur in SIMDs are
programmed to move synchronously, avoiding the
problems associated with procedures such as store-and-
forward, pipelines, etc.

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

5

5. Simulations between BSP and ASC

Asynchronous parallel models have continued to gain
status over the years and an asynchronous model is now
commonly regarded to be more powerful than the resulting
model when restricted to being synchronous. For example,
in Flynn’s classification scheme, MIMDs are generally
regarded as the most general and powerful, as indicated by
the following statement: “Theoretically, any parallel
algorithm can be executed efficiently on the MIMD
model” [1]. The abstract BSP model is a reasonable model
for most current MIMD architectures including SMPs and
clusters, which are the two most common MIMD
architectures in today’s market. In this section, we consider
a simulation between the BSP and ASC models to further
analyze the power of MIMDs. Our investigation shows that
the claim that BSP is a “bridging model” for all parallel
computation does not seem to be justified for the
associative SIMD computer (or the ASC model).

Theoretically, not only is simulation between parallel
models an efficient way to transfer algorithms from one
model to another model, but also a good method to
examine the comparative power of the models. If one
model can simulate a second model efficiently, any
algorithm on the simulated (second) model can be
transferred to an algorithm on the simulating model using
the simulation algorithm. The running time of a transferred
algorithm is bounded by the product of the algorithm time
on the simulated model and the simulation time.

We next recall a series of previously established
simulations from BSP to PRAM, and then from PRAM to
ASC. We use M(p) to denote a model M with p processors.
) BSP ! Asynchronous PRAM.

It is shown in [22] that there are simulations between
BSP and PRAM either with exclusive memory access
(EPRAM) or with concurrent memory access (CPRAM).
The simulations have expected optimal efficiency. When a
simulation has optimal efficiency, execution of an
algorithm on the simulated model or through the
simulation of the algorithm on the simulating model will
result in the asymptotically same amount of work. If the
simulation is randomized, the efficiency is said to be
expected efficiency. Giving a good randomization function,
Valiant [22] has proven that BSP(p) can simulate a
EPRAM(v) with expected optimal efficiency if v (plog p.
A BSP(p) can simulate a CPRAM(v) with expected

optimal efficiency if v (p1+* (* is a positive constant).
Clearly, any polynomial algorithm running on
asynchronous PRAM can be transferred to BSP in
expected polynomial time.
) Asynchronous PRAM ! synchronous PRAM

The PRAM model referred in [22] is assumed to be
an asynchronous PRAM, in which each processor executes
its own program. It supports the power of asynchronous

MIMD machines. Asynchronous PRAM variants have
been studied by many researchers in the past (see [1,8]).
The best known is Gibbons’ asynchronous PRAM [8].
Gibbons has shown that a time t algorithm on EPRAM(p)
can be simulated by an asynchronous PRAM(p/B) running
in time O(Bt), where B is the time required to synchronize
all the processors used in the algorithm and is a function of
the number of the processors. Usually B(p)# p and mostly
B(p) = O(log p). This simulation is a work-preserve
simulation, which means that the amount of work through
the simulation remains asymptotically the same. We
notice that the costs assigned to the operations for this
asynchronous PRAM model do not seem to allow the
exorbitant costs resulting from synchronization, shared
memory contention, etc., which have been observed in real
time scheduling with MIMDs. These observations raise
some questions concerning the validity of the costs
assigned to this model.
) EPRAM ! CPRAM

It has been long known that an EPRAM(p) can
simulate any variant of a CRCW PRAM(p) or CPRAM(p)
in O(log p) [9]. The simulation is either randomized or
deterministic.
) CPRAM ! ASC

A CRCW PRAM(p) or CPRAM(p) can
deterministically simulate ASC(p) in O(log p). This is
because a processor of a synchronous PRAM can simulate
each of the PEs of ASC. One of the PRAM processors
also plays the role of the IS. It can be shown that the upper
bound for the constant time operations of ASC (e.g.,
broadcast and reduction operations) in PRAM is O(log p).

Combining the above sequence of simulations, we
obtain a polynomial time simulation of ASC by BSP with
a high probabilistic expectation. Therefore, this
simulation provides a polynomial time transformation of
ASC algorithms to BSP algorithms with a high
probabilistic expectation. Theoretically, this should also
be applicable to a real-time scheduling algorithm.
Considering the fact that the BSP model has been claimed
to be a bridging model, it should be able to execute any
real-time scheduling algorithm implemented on ASC
efficiently. However, from our analysis of the real-time
scheduling example in Section 3, this is not true, at least,
using worst case timings. The fact that there can be no
polynomial time worst-case BSP simulation of ASC is
surprising, in view of the existence of a polynomial
simulation of ASC by BSP. This suggests the possible
need for a closer reexamination of each of the links in the
preceding sequence of simulations. Average case timings
are not applicable for mission critical real-time scheduling
problems with hard deadlines. It appears questionable to
determine the power of a model using only average case
or randomized analysis. In this sense, the power of
SIMDs has been significantly underestimated.

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

6

6. Difficulty of an efficient MIMD solution

 In this section, we consider why solving a real-time
scheduling problem using a MIMD is usually NP-hard,
thus showing why a polynomial time solution for many
real-time scheduling problems using a MIMD is
intractable.

Given a relatively small environment with a small
data size, real-time scheduling is solvable on a
uniprocessor. Some optimal scheduling algorithms such
as the EDF algorithm have been developed. Whether a
set of real-time tasks is schedulable or not can be
predicted using a uniprocessor. However, a real-time
scheduling problem may become NP-hard when one of
the following conditions is added: multiprocessors, shared
resources, non-preemption, varied release times,
precedence constraints, etc. [7,20].

We now discuss why some difficulties occur
whenever a MIMD system is used for scheduling
problems. This will lead to intractability of most
scheduling problems requiring a solution using a MIMD.
) Multiprocessors

When multiprocessors are used, tasks must be
partitioned and assigned to individual processors. Since
the PARTITION problem of a finite set is a basic NP-
complete problem, so is the problem of assigning a set of
real-time tasks with deadlines to a multiprocessor (The
detailed proof can be found in [7]). MIMDs have
multiple instruction streams; therefore, tasks must be
partitioned to allow concurrent executions. Consequently,
most scheduling problems for multiprocessors are NP-
hard [20].

On the other hand, even though SIMDs also have
multiple processing elements, they all execute using a
single instruction stream, and task partitioning is
unnecessary. When ASC is applied to schedule a set of
real-time tasks, for example in air traffic control, it can
simply make use of a static sequential scheduling
algorithm due to its single instruction stream. Based on
the worst-case time of each task, the algorithm reserves a
time slice for each task. Each task may consist of a
multiplicity of jobs that execute the same instruction on a
set of data. Thus, a statically designed scheduling
algorithm can be developed on ASC to accommodate one
or many jobs within a task. Moreover, the task takes
polynomial time.
) Shared resources

Shared resources usually cause NP-hardness in real-
time scheduling problems [7,20]. In some real-time
systems, for example air traffic control, a real-time
database is required as a common resource accessible by
all tasks. Generally, resource sharing can be realized by
mutual exclusion constraints. Unfortunately, there is no
optimal solution for scheduling a set of real-time tasks

with mutual exclusion constraints because mutually
exclusive scheduling blocks have different computational
times that cause NP-hardness in the same way as shown
earlier using the partition problem [20].

In particular, MIMDs either with shared memory
(e.g., SMPs) or distributed memory (e.g., clusters) cannot
efficiently handle mutual exclusion for shared resources.
Additionally, SMPs suffer from limited bus bandwidth for
transmission of data between the shared memory and
individual processors. SMPs have to handle memory and
cache coherency to maintain data consistency. Clusters
also develop significant costs for data transmission as
well as for management of data coherence. However,
because of its single instruction stream, the ASC model
can avoid accessing shared resources. This fact eliminates
the need for mutual exclusive access to shared resources.
When data is stored in the ASC memory, simultaneous
access is possible since each PE is only accessing its
private memory, thus effectively avoiding the shared
resource problem.
) Non-preemption

Although non-preemptive scheduling is easier to
implement and a lower overhead is incurred, an efficient
non-preemptive scheduling algorithm on MIMD systems
is almost impossible [7,20]. Most scheduling algorithms
on multiprocessors use preemption [18,19,20]. However,
when preemption on MIMDs is allowed, one must
consider the difficulty of predicting overhead,
asynchronous execution of tasks distributed on different
processors, synchronization of task execution after
preemption, etc. Preemption may also worsen task
migration and load balance among processors commonly
existing in MIMD systems. Inclusion of these difficulties
will substantially increase the complexity of a solution to
the scheduling problem.
) Varied release times

If all tasks have the same release time, feasibility of a
scheduling algorithm can be evaluated in polynomial
time. If tasks have varied release times, the scheduling
problem becomes NP-hard [7]. In the MIMD
environment, there is no global clock to provide an
accurate time stamp and measure elapsed time. If each
processor operates independent, it is impractical to
continuously synchronize all task executions after every
step (or after every few steps). In addition, unpredictable
communication delays may also make task time stamps
inconsistent. Therefore, the inherent asynchronous nature
of MIMDs is unlikely to accurately maintain the same
timetable for a set of real-time tasks even though they
have the same release time. In contrast, in a SIMD, all
processors run synchronously. They have absolute time
stamps by sharing a global clock. If release times are
given, they will remain unchanged.

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

7

) Precedence constraints
The existence of precedence constraints is another

reason for NP-hardness in real-time scheduling.
Compared to SIMDs, MIMDs have a small number of
processors. Precedence constraints may require waiting
for higher priority tasks or preemption of lower priority
tasks. When tasks have to meet a certain order of
execution, MIMDs have to handle problems such as idle
processor time, expensive overhead, task migration, load
balancing, communication delays, etc. The scheduling
problem becomes intractable in most cases[7]. In contrast
with MIMDs, the ASC schedules real-time tasks for air
traffic control statically [12,17]. It takes advantage of its
synchronous data parallel capabilities and uses predefined
precedence to assure enough time to complete worst-case
time tasks. It statically maintains the order of task
execution.

Based on the inherent weakness of MIMDs, most
real-time scheduling problems become intractable when
the requirement that they be solved on a multiprocessor is
added. On the other hand, our example shows if this
problem is altered to permit an associative SIMD
solution, it may be tractable.

7. Conclusions

 In this paper, we have shown that that the common
belief that MIMDs (or the abstract BSP model) are more
powerful than SIMDs (or the associative ASC model) is
unjustified and ignores the many intrinsic weaknesses of
MIMDs. In particular, an example is given of a problem
that can be solved in polynomial time on an associative
SIMD, but cannot be solved in polynomial time on a
MIMD. These problems with MIMDs were not fully
recognized until their ability to solve real-time scheduling
problems were considered. MIMDs have repeatedly
failed to meet the Federal Aviation Administration air
traffic control requirements. One notable example is the
ten-year effort to develop the Automated Air Traffic
Control System (AAS). The AAS program was canceled
in June 1994 after expenditure of several billion dollars
[17]. On the other hand, the ability of associative SIMDs
to successfully handle the air traffic control problem have
been demonstrated [12,17].

The BSP model was initially proposed for general-
purpose parallel computation and was intended to provide
a common and efficient model for all parallel systems,
However, as we have observed, BSP models SIMDs
poorly and is likely to create algorithms run very
inefficiently on a SIMD.

Our research has shown that SIMDs are not outdated,
as many professionals in parallel computation currently
believe. They are efficient and powerful enough to
provide efficient solutions to problems that are considered

intractable for MIMD systems. Moreover, considering
the SIMD's advantages of simple programming styles and
simple hardware implementations, it obviously deserves
more attention and utilization if we want to solve today's
real-time problems.

References

[1] Selim G. Akl, The Design and Analysis of Parallel
Algorithms, Prentice Hall, New Jersey, 1989

[2] K. Batcher, STARAN Parallel Processor System Hardware,
Proc. Of the 1974 National Computer Conference (1974),
pp. 405-410

[3] Loral Defense Systems-Akron, ASPRO-VME Hardware
and Architecture, June, 1992

[4] J. W. Baker and M. Jin, "Simulation of Enhanced Meshes
with MASC, a MSIMD Model", in Proc. of the 11th
International Conference on Parallel and Distributed
Computing Systems, pages 511-516, November 1999
(Unofficial version: http://vlsi.mcs.kent.edu/~parallel/
papers/ baker99b.pdf)

[5] T. Blank, J. Nickolls, "A Grimm Collection of MIMD Fairy
Tales", Proc. of the 4th Symp. on the Frontiers of Massively
Parallel Computation, pp. 448-457, 1992

[6] M. Flynn, "Some computer organizations and their
effectiveness." IEEE Transactions on Computers, pp. 948-
960, Sep., 1972

[7] M. R. Garey and D. S. Johnson, Computers and
Intractability: a Guide to the Theory of NP-completeness,
W.H. Freeman, New York, 1979, pp.65, pp. 238-240

[8] P.B. Gibbons, “A More Practical PRAM Model”, Proc. of
1st ACM Symp. on Parallel Algorithms and Architectures,
pp.158-168, June 1989

[9] T. Harris, “A Survey of PRAM Simulation Techniques”,
ACM Computing Surveys, Vol. 26, No. 2, June 1994, pp.
187-206

[10] K. Jeffay, D. F. Stanat, and C. U. Martel, “On Non-
Preemptive Scheduling of Periodic and Sporadic Tasks”,
Proc. of the 12th IEEE Real-Time Systems Symposium, San
Antonio, TX, December 1991, pp. 129-139

[11] M. Jin, J. Baker, and K. Batcher, "Timings of Associative
Operations on the MASC model", Proc. of the Workshop in
Massively Parallel Processing of IPDPS ’01, San
Francisco, CA, April, 2001 (Unofficial version:
http://vlsi.mcs.kent.edu/~parallel/papers/jin01.pdf)

[12] W. C. Meilander, J. W. Baker, and J. L. Potter,
"Predictability for Real-time Command and Control", Proc.
of the Workshop in Massively Parallel Processing of
IPDPS ’01, San Francisco, CA, April, 2001 (Unofficial
version: http://vlsi.mcs.kent.edu/~parallel/papers/
meilander01.pdf)

[13] B. Parhami, “SIMD Machines: Do They Have a Significant
Future?” Report on a Panel Discussion at The 5th

Symposium on the Frontier of Massively Parallel
Computation, McLean, LA, Feb., 1995

[14] Gregory F. Pfister, In Search of Clusters, 2nd Edition,
Prentice Hall, New Jersey, 1998

[15] J. L. Potter, Associative Computing: A Programming
Paradigm for Massively Parallel Computers, New York;
Plenum Press, 1992

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

8

[16] J. L. Potter, J. W. Baker, S. Scott, A. Bansal, C.
Leangsuksun, C. Asthagiri, "ASC: An Associative-
Computing Paradigm", Computer, 27(11), 19-25, 1994

[17] L. Qian, Complexity Analysis of an Air Traffic Control
System Using an Associative Processor, Master's Thesis,
Kent State University, 1997

[18] K. Ramamritham, J. A. Stankovic, and W. Zhao,
“Distributed Scheduling of Tasks with Deadlines and
Resource Requiremnets.” IEEE Trans. On Computers, Vol.
38, No. 8, August 1989, pp.1110-1123

[19] J. A. Stankovic, M. Spuri, K. Ramamritham and G. C.
Buttazzo, Deadline Scheduling for Real-time Systems,
Kluwer Academic Publishers, 1998

[20] J. A. Stankovic, M. Spuri, M. Di Natale, and G. Buttazzo,
“Implications of Classical Scheduling Results for Real-time
Systems”, IEEE Computer, June, 1995

[21] L. G. Valiant, A Bridging Model for Parallel Computation,
Communication Of ACM, Vol. 33, No. 8, 1990, pp. 103-
111

[22] L. G. Valiant, General Purpose Parallel Architectures, J.
van Leeuwen ed., Handbook of Theoretical Computer
Science, Vol. A, The MIT Press/Elsevier, New York, 1990,
pp. 943-971

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

	IPDPS 2002
	Return to Main Menu

