
An Associative Static and Dynamic Convex Hull Algorithm

Maher M. Atwah
Computer Science Department

Hiram College
Hiram, OH 44234

atwahmm@hiram.edu

Johnnie W. Baker
Computer Science Department

Kent State University
Kent, OH 44242

jbaker@mcs.kent.edu

Abstract

This paper presents a new static and dynamic recursive
parallel algorithm for the convex hull problem. This al-
gorithm is a parallel adaptation of the Graham Scan and
Quick Hull algorithms. The computational model selected
for this algorithm is the associative computing model (ASC)
which supports massive parallelism through the use of data
parallelism and constant time associative search and max-
imum functions. Also, ASC can be supported on exist-
ing SIMD computers. The static algorithm requiresO(n)
space,O(log n) average case running time, andO(n) worst
case running time. IfO(log n) ISs are used the, static algo-
rithm should have an average running time ofO(log log n).

1. Introduction

The convex hull of a finite set of a setS of n planar
points is an important geometric concept. It can be defined
as the smallest convex polygon for which each point inS is
either on the boundary of the convex polygon or in its inte-
rior. We assume that no two points inS have the samex or
y coordinates and that no three points inS lie on the same
straight line as these assumptions make the algorithm eas-
ier to describe. However, the algorithm given in this paper
can be easily modified to eliminate the necessity of these
assumptions. The convex hull plays a central role in the
field of computational geometry. This geometric concept
finds practical applications in many areas including pat-
tern recognition, image processing, engineering, computer
graphics, design automation, and operations research.

Section 2 describes the associative model. Section 3
gives an associative parallel adaptation of the Graham Scan
and Quick Hull algorithms. In Section 4, an associative dy-
namic parallel adaptation of the QuickGraham algorithm is
presented.

2 The Associative Model of Computation

The associative computing model (ASC) is an exten-
sion of the general associative processing techniques devel-
oped for the associative STARAN SIMD computer in the
1970’s for massively parallel computation. As our algo-
rithm will demonstrate, ASC provides an efficient computa-
tional model for algorithms requiring massive parallelism.
Details of how this model can be implemented on certain
SIMD computers are given in [9]. Also, a high level lan-
guage based on ASC detailed in [9] has been installed on
the STARAN, ASPRO, WaveTracer, and Connection Ma-
chine CM-2.

A brief summary of the features of the ASC model is pre-
sented here. Additional information and properties of this
model may be found in [8, 3]. ASC consists of an array
of cells, each containing a processor and its local memory.
Cell memory holds variables used for data-parallel opera-
tions. These cells are connected by bus to the instruction
stream (IS) which stores a copy of the program being exe-
cuted and broadcasts program instructions to all active cells.
The general ASC model described in [8] allows multiple in-
struction streams (MASC). It is convenient to assume that
variables and constants that need to be globally available
to all cells are stored in the memory of theIS and may
be broadcast to all active cells. TheIS also has the abil-
ity to read and store a value from a specific cell. TheIS
variables are called sequential or global variables and PE
or cell variables are called parallel variables. In addition to
data-parallel execution, the ASC model supports constant
time functions for associative searching and selection, logi-
cal operations, and maximum and minimum. Constant time
searching permits the simultaneous examination of all ac-
tive cells and the identification of all those that meet the
search criteria. These identified cells are called responders
and become the new set of active cells. By altering the cri-
teria, different cells become responders. TheIS has the
ability to detect the presence of responders in unit time. It
is also possible to access each active cell sequentially and

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

to return to the set of cells which were active preceding the
search or to activate all cells. The maximum or minimum
value of a parallel variable (or the cell address containing
that value) can be computed for all active cells in constant
time. The cells may be connected by means of an intercon-
nection network.

3 Static QuickGraham Algorithm

An associative version of Graham Scan [5] and Quick-
Hull [10] algorithm is presented next. One of the goals for
Graham’s algorithm [5] set forth by Preparta and Shamos
[10] is to have an algorithm that runs on a parallel envi-
ronment that allows the data to be split, preferably recur-
sively, into smaller subproblems. This algorithm attempts to
achieve this goal. This algorithm was inspired by the Quick-
hull algorithm [10] and by our Associative Graham Scan [1]
and Associative QuickHull [2] algorithms. The algorithm
is recursive and uses a divide-and-conquer approach. The
original problem is divided into two subproblems, each sub-
problem is solved recursively, and the solutions are merged
to produce the overall solution.

Given a set ofS points, a partition is formed by the line
segmentwe , wherew is the leftmost point in the set (i.e.
one with the minimumx-coordinate) ande is the rightmost
point (i.e. one with the maximumx-coordinate). The set
PA consists of the planar points that are on or abovewe
while the setPB consists of the points belowwe. The al-
gorithm finds the convex hullCH(PA) of points inPA, the
convex hullCH(PB) of points inPB, and concatenates the
two solutions. Since the algorithm to determineCH(PA)
is similar to the one forCH(PB), we discuss only the first.

To determine theCH(PA), first all points that are on or
belowwe are deleted. Then a pointr ∈ PA is found such
thatr has the maximumy-coordinate among all the pointsp
with p ∈ PA. The usual assumption that no two points have
the samex or y coordinates, can be dropped in this algo-
rithm by selecting the point whosex-coordinate is maximal.
Pointr is a candidate to be a vertex ofCH(PA). While it
is likely thatr is a convex hull vertex, it will be eliminated
at a later stage if not. The technique used to eliminater if
it isn’t in CH(PA) is the Graham Scan technique for elim-
inating on of three points, which was also used in the As-
sociative Graham Scan algorithm [1]. The next step is to
divide the problem of findingCH(PA) into the two follow-
ing subproblems: (1) Delete all points that are on or below
re and findCH(PR) of PR, wherePR is the set of points
in PA abovere, and (2) Delete all points that are on or be-
low wr and findCH(PL) of PL, wherePL is the set of
points abovewr. The solutions to the subproblems of find-
ing CH(PR) andCH(PL) are found and joined to produce
CH(PA). This is a new sequential algorithm for the convex
hull. While not all details are specified in the proceeding

discussion, the remaining details can be deduced from the
parallel version of this algorithm given in Figure1.

The QuickGraham technique replaces the problem
of computing CH(S) with the problem of computing
CH(S1) andCH(S2) whereS1 andS2 are disjoint subsets
of S. Moreover, two sequences of convex hull points given
by CH(S1) andCH(S2) can be joined to produce the se-
quence of convex hull points required forCH(S). Now if
each ofS1 andS2 has cardinality at most equal to a constant
fraction of the cardinality ofS and this holds at each level of
recursion then using the same analysis as QuickHull, it can
be shown that QuickGraham hasO(n log n) average case
running time. However, like the Jarvis March and Quick-
Hull, the worst-case situation results inO(n2) time com-
plexity. The QuickGraham Algorithm offers the feature of
being conducive to a parallel adaptation due to its divide-
and-conquer nature, but unfortunately does not use balanc-
ing division of a problem into equal-size subproblems so
that worst-case complexity ofO(n2) can arise.

A recursive parallel adaptation of the sequential Quick-
Graham is presented in Figure 1. LetS be a set ofn planar
points that are stored in the local memory of the PEs with at
most one point per PE. Each point has its two coordinates
stored in the PE variablesx andy. Also, each PE has a
variable calleddelete. The rest of the variables are those of
the IS. These include an edge list Q which is used to store
either the left or right point of the potential edge and the
endpoints of potential edges of the convex hull as they are
located. The list is maintained as a queue and is read from
the top while new items are inserted at the bottom of the list.

Let e be the extreme point ofS with the largestx co-
ordinate. Also, letw be the extreme point ofS with the
smallestx coordinate. The first part of the algorithm finds
all the convex hull points abovewe from w to e. The sec-
ond part finds the convex hull points belowwe from w to
e. Since the second part can be accomplished by a simple
modification to the first part, it is omitted.

If every point selected by each pass through the WHILE
loop were a point on the convex hull, an identical analysis to
the Associative QuickHull could be used. While this point
may fail to be in the convex hull, it is fairly unlikely this
will happen very often. Therefore, for the average case, it
is expected that this algorithm will haveO(log n) running
time andO(n log n) cost. For the same reason given for the
Associative QuickHull, its worst case running time isO(n)
and cost isO(n2).

Since this algorithm is recursive, it can also be solved
using multiple ISs. As with the Associative QuickHull, it is
expected that ifO(log n) ISs are a available then this algo-
rithm should have an average running time ofO(log log n)
and an average cost ofO(n log log n). In the worst case, its
running time isO(n) and its cost isO(n2).

2

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

Associative QuickGraham Algorithm

Input: A setS, of points given as(x, y) coordinates.
output: A linked list L, of the vertices of the convex hull.

1. All PEs are used to computemax andmin, the max-
imum and minimum value of thex-coordinate ofS ,
respectively.

2. Restrict the PEs to the one that satisfiesx = xmin.
This PE storesw.

3. Restrict the PEs to the one that satisfiesx = xmax.
This PE storese.

4. The IS placesw andwe into FIFO listQ.

5. The IS addsw ande to L and a forward pointer from
w to e.

6. WhileQ contains unprocessed edges

(a) Readl and mq from top of list Q and mark it
”processed”

(b) Restrict the active PEs to those whose pointp has
it’s x-coordinate is between thex-coordinates of
m andq. Each active PE setsdelete = true if p
lies belowmq.

(c) Restrict the active PEs to those abovemq. If no
active PEs remain, skip steps 6.d - 6.f.

(d) All active PEs are used to locate the pointp in the
active PEs whosey-coordinate has the maximum
value. This PE storesr. If r is already inL, skip
steps 6.d - 6.f.

(e) The IS places three edges and three points at bot-
tom of Q

i. q andmr

ii. m andrq

iii. If l 6= m and l 6= q then if l.x < r.x then
placem andlr else placeq andrl.

(f) The IS perform the following:

i. Deletes the forward pointer fromm to q.

ii. Adds r to L

iii. Adds a forward pointer fromm to r and an-
other forward pointer fromr to q.

7. Activate all PEs that containdelete = false. These
PEs hold the vertices of the convex hull.

Figure 1. Associative QuickGraham

4 Dynamic QuickGraham Algorithm

In this section we introduce a dynamic convex hull algo-
rithm. This algorithm is based on parallel adaptation of the
static QuickGraham algorithm (Figure 1).

This problem can be stated as follows: Given a num-
ber of points that are moving in Euclidean space, we want
to maintain for this set of points the convex hull. Each of
the convex hull algorithms we have examined thus requires
all of the data points to be present before any processing
begins. In many geometric applications, particularly those
that run in real-time, this condition cannot be met and some
computation must be done as the points are being received.
In other words, we call an algorithm that cannot look ahead
at its input off-line, while one that operates on all the data
collectively is called on-line.

A dynamic convex hull is needed [12], when a popu-
lation is to be estimated using statistics [6, 7], or simulat-
ing chemical reactions. In addition, a dynamic algorithm is
needed in applications such as graphics, air traffic control,
and robotics.

To obtain dynamic algorithm for convex hull, we must
make substantial modification to the static algorithms pre-
sented [2]. We first state the requirements for a dynamic
algorithm. Following Chazelle [4], we need to support four
operations:

1. Insert a pointM .

2. Delete a pointM .

3. Report all the vertices of the convex hull in some rea-
sonable order.

4. Determine whether an arbitrary pointM lies inside or
outside the convex hull.

Note that in operation 1 the pointM can be either a new
point or a point that is already in the structure. Also, the
operation ”delete pointM ” always refers to a vertex of the
convex hull.

If we do not need to support deletions, it is quite easy to
make our algorithms dynamic since we can continue to dis-
card points which are not extreme points of the hull. How-
ever, if points are to be deleted, it is possible that some non-
hull points will later become extreme points of the hull, and
in this case we can no longer eliminate any points entirely.
With a dynamic algorithm, the number of processors needed
is determined by the maximum size ofP , whereP is the
number of processors available. In the discussion that fol-
lows, we useN to indicate the largest number of points that
will be in P at any given time. Since our algorithm is using
one point per processorN will be equal toP .

This algorithm considers only the upper convex hull; the
lower hull is the same as the upper hull with minor modi-
fications. We have to note that when a point is marked for

3

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

deletion its value is still stored in that PE and it can be re-
trieved by marking that PE not deleted.

Let S be the current set ofn planar point that are stored
in the local memory of the PEs with at most one point per
PE. Each pointp has its two coordinatesx andy stored in
the PE variables. Lete be the extreme point ofS with the
largestx coordinate. Also, letw be the extreme point ofS
with the smallestx coordinate.

A minimum of three points is needed for the algorithm
to work. As the first point or points initially are entered they
are stored one per processor in the array, the static algorithm
given in [2] is used to compute the upper hull. When a
point is deleted, its value is simply replaced bynull in its
own processor. New points being entered are assigned to a
processor with anull value. As long as the total number of
points does not exceedN , there will be no overflow.

After that, whenever a pointsM is inserted intoP the
following steps takes place:

1. If M is belowwe then mark it for deletion.

2. If there is a pointp equal toM then replaceM by null .

3. If step 1 & 2 fails then

(a) Find the greatest lower bound point (call itglb)
and the lowest upper bound point (call itlub)
from the set of the current convex hull points.

(b) If M is belowglb, lub then mark this point for
deletion.

(c) Else

i. Activate all PE such that thex-coordinate is
less than thex-coordinate ofM .

ii. For each active PE, assignarea = area of
trianglewpM wherep is point(x, y) held in
that PE.

iii. Restrict the active PEs to the one storing the
maximum area. This PE is calledL and
markedextreme.

iv. All the PEs that are belowLM are marked
for deletion.

v. Activate all PE such that thex-coordinate is
greater than thex-coordinate ofM .

vi. For each active PE, assignarea = area of
triangleMpe wherep is point(x, y) held in
that PE.

vii. Restrict the active PEs to the one storing the
maximum area. This PE is calledG and
markedextreme.

viii. All the PEs that are belowMG are marked
for deletion.

Note that the greatest lower bound point for a pointM
is a convex hull point with itsx coordinate value is smaller
than thex coordinate ofM but larger that all thex coordi-
nate values of all the convex hull points that are to the left
of M see Figure 2). Also, the lowest upper bound point for
a pointM is a convex hull point with itsx coordinate value
is larger than thex coordinate ofM but smaller that all the
x coordinate values of all the convex hull points that are to
the right ofM see Figure 2).

w

M

glb
lub

L
G

e

Figure 2. Dynamic Convex Hull: After insert-
ing a point M .

Figure 2 gives an example of inserting a pointM . The
dotted lines represent the old part of the convex hull and the
solid lines represent the new hull afterM has been inserted.
Notice thatglb andlub points are marked for deletion since
they fall belowLM andMG, respectively.

All the above steps require constant time. So, inserting a
point to the upper convex hull costO(1) time.

Point queries are very simple with this scheme and it is
performed as follows:

1. If M is belowwe then it is outside the upper hull

2. Else

(a) Find the greatest lower bound point (call itglb)
and the lowest upper bound point (call itlub)
from the set of the current convex hull points.

(b) If M is belowglb, lub then it is inside the up-
per convex hull, otherwise it is outside the upper
convex hull.

4

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

As point insertion, point query costO(1).
Deleting a point is different than inserting a point since,

if points are deleted, it is possible that some non-hull points
will later become extreme points of the hull. So, if there is a
request to delete a pointM from S the following steps take
place (M is a vertex of the convex hull):

1. ReplaceM by null .

2. Find the greatest lower bound point (call itglb) from
the set of the current convex hull points.

3. Activate all the PE such that thex-coordinate is greater
than thex-coordinate ofglb.

4. If any one of these PEs was marked for deletion then
mark it not deleted.

5. Run the static algorithm Figure 1 on the set of active
PEs to recompute the upper hull.

All the steps costO(1) except step 5, which in the worst
case will costO(h), where h is the current number of the
vertices of the convex hull.

Reporting all the vertices of the convex hull in clock-
wise (or counterclockwise) order costO(h), where h is the
current number of the vertices of the convex hull. Point re-
porting has the same cost as sorting. First, we activate all
the PEs that are markedextreme. Then, we pick the point
that contain the smallestx-coordinate and so on until all the
extreme points are reported.

This algorithm cannot freely mix insertions and deletions
with queries and reports. Queries and report requests cannot
be entered after a series of insertions and deletions until the
new hull has been completely calculated, and all queries and
reports must be completed before a batch of insertions and
deletions can be entered.

5 Conclusion

A parallel static and dynamic convex hull algorithm de-
signed for the associative computing model is presented in
this paper. This static algorithm is similar to the QuickHull
algorithm except or algorithm is simpler and doesn’t require
a complex and expensive merge step. In the dynamic algo-
rithm, point insertion and query takesO(1) time and point
deletion and reporting takeO(h) time, whereh is the num-
ber of the vertices of the convex hull. In the worst case,h
equalsn and time reporting and deletion isO(n). One ad-
vantage of this algorithm is that it did not require the use
of network operations, which are known to be much slower
than local operations [11].

References

[1] M.M. Atwah, J.W. Baker, and S.G. Akl. An Asso-
ciative Implementation of Grahams Convex Hull Al-
gorithm. Proc. of the Seventh IASTED International
Conference on Parallel and Distributed Computing
and Systems,pages 273-276, Washington D.C., Oc-
tober 1995.

[2] M.M. Atwah, J.W. Baker, and S.G. Akl. An Associa-
tive Implementation of Classical Convex Hull Algo-
rithms.Proceedings of Eighth IASTED International
Conference on Parallel and Distributed Computing
and Systems,pages 435-438, Chicago, IL, October
1996.

[3] J. Baker and M. Jin. Simulation of Enhanced Meshes
with MASC, a MSIMD Model.Proc. of the 11th Inter-
national Conference on Parallel and Distributed Com-
puting Systems, pages 511-516, November 1999.

[4] B. Chazelle, Computational Geometry on a Systolic
Chip, IEEE Trans. Comp., C-33(9), 1984, 774-785.

[5] R.L. Graham. An Efficient Algorithm for determining
the Convex Hull of a Finite Planar Set.Information
Processing Letters, vol. 1, pages 73-82, 1972.

[6] R. A. Jarvis, On the Identification of the Convex Hull
of a Finite Set of Points in the Plane,Information Pro-
cessing Letters, 2, 1973, 18-21.

[7] M. H. Overmars and J. Van Leeuwen, Dynamically
maintaining configurations in the plane,Proc. 12th
Annual SIGACT Symp., Los Angeles, CA. May 1980.

[8] J. Potter, J. Baker, A. Bansal, S. Scott, C. Leangsuk-
sun and C. Asthagiri. ASC: An associative comput-
ing paradigm.IEEE Computers, Vol. 27(11), pp 19-
25, November 1994.

[9] J. Potter.Associative Computing: A Programming
Paradigm for Massively Parallel Computers.Plenum
Publishing, New York. 1992.

[10] F.P. Preparata and M.I. Shamos.Computational Ge-
ometry: An Introduction.Springer-Verlag. Second
Edition. New York. 1985.

[11] J. H. Reif, Editor, Asynchronous PRAM Algorithms,
Synthesis of Parallel Algorithms, 22, 957-997, Morgan
Kaufman Publishing, San Mateo, CA 1993.

[12] M. I. Shamos, Computational Geometry, Ph.D. disser-
tation, Yale University, 1978.

5

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

	IPDPS 2002
	Return to Main Menu

