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Abstract
Two-level coherence predictors have shown great promise
to reduce coherence overhead in shared memory multipro-
cessors. However, to be accurate they require a memory
overhead that on e.g. a 64-processor machine can be as
high as 50%.

Based on an application case study consisting of seven
applications from SPLASH-2, a first observation made in
this paper is that memory blocks subject to coherence activ-
ities usually constitute only a small fraction (around 10%)
of the entire application footprint. Based on this, we con-
tribute with a new class of resource-efficient coherence pre-
dictors that is organized as a cache attached to each mem-
ory controller. We show that such a Coherence Predictor
Cache (CPC) can provide nearly as effective predictions as
if a predictor is associated with every memory block, but
needs only 2–7% as many predictors.

1 Introduction
Coherence activities in shared-memory multiprocessors

remain an increasingly important bottleneck preventing
high performance. In write-invalidate protocols, coherence
misses as well as invalidations may take hundreds of cycles.
Obviously, there has been a lot of research that targets this
performance deficiency.

Early work on reducing coherence overhead attacked
common static sharing patterns, such as migratory,
producer-consumer, and wide sharing with hardware op-
timizations [3, 5, 9, 13, 21], or with software/compiler ap-
proaches [7, 20]. Three properties limit these approaches:
(i) they target only simple and supposedly a minor part
of the possible coherence message signatures present in a
cache-coherent multiprocessor; (ii) they are static in the
sense that they are specialized for a certain coherence mes-
sage signature; and, (iii) they make the cache coherence
protocol more complex and specialized for the targeted sig-
natures.

As a remedy, Mukherjee and Hill [17] adapted the classi-
cal two-level branch prediction scheme [24] to record global
coherence events, e.g., read miss, write miss, and upgrade
requests. Based on the past sequence of such events to a
memory block, they showed that one can predict the next
event with a high accuracy. Such predictions were demon-

strated to avoid coherence overhead for common access pat-
terns such as migratory and producer-consumer sharing in
addition to wide sharing [8]. Even if Lai and Falsafi in their
VMSP proposal [11] improved on the first generation of co-
herence predictors by coding the history information more
densely, the memory overhead for a predictor of depth four
can range between 15–50% for machine sizes between 16
and 64 nodes, independent of the total memory capacity.

In this paper, we seek a more resource-efficient coher-
ence predictor infrastructure than previous memory-wide
coherence predictors. A key observation we exploit in the
paper is that coherence activities are confined to a small
fraction (typically less than 10%) of the entire data set foot-
print. Additionally, this ’coherence footprint’ typically ex-
hibits a substantial reuse making a cache that only hosts
about 5% of the entire number of blocks contained in the
data set exhibit a capacity miss ratio that is less than 7%.
We made this observation by analyzing the coherence ac-
tivity in seven applications from SPLASH-2.

The main contribution is the design and evaluation of a
new class of coherence prediction schemes called the Co-
herence Predictor Cache (CPC). This cache sits at each
memory controller in a distributed shared memory multi-
processor and dynamically associates a predictor with only
such blocks that are subject to coherence activities.

A perfect CPC should maintain predictors for all blocks
that are subject to coherence activity. Then, given that the
CPC has a total of C blocks out of M memory blocks, the
number of predictors in a memory-wide predictor is reduced
by a hardware reduction factor of M/C. Although the total
amount of memory blocks is the union between shared and
private data, we make the pessimistic assumption that M
equals the maximum of the total application footprint and
the total size of the shared data set. Unfortunately, owing to
its limited size, the CPC will suffer from predictor-entry re-
placements which reduce the number of successful predic-
tions made. Thus, there is a tradeoff between the hardware
reduction factor and the coverage, i.e., the ratio between
successful predictions in the CPC and the memory-wide
(one predictor per memory block) predictor. We explore
the design space of CPCs and conduct a detailed analysis of
how the organizational parameters affect its performance.

Based on seven applications from the SPLASH-2 suite,
the most important finding is that the CPC makes close to
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90% as many successful predictions as the memory-wide
predictor but requires between 14–47 times fewer predic-
tors as the memory-wide predictor. Thus, using a CPC may
make coherence prediction cost-effective.

The next section introduces the architectural framework.
We then study the nature of the footprint and working
sets for blocks subject to coherence activities in Section 3.
This justifies our proposed CPC infrastructure whose de-
sign principles are presented in Section 4. Section 5 eval-
uates the performance of the CPC. Finally, we conclude in
Section 6.

2 Background

2.1 Architectural Framework

Our baseline is a cache-coherent NUMA multiprocessor.
Each node contains a processor, two levels of cache, and
a memory module with a directory controller implement-
ing a straight-forward write-invalidate protocol such as the
DASH protocol [15] which works as follows.

There is a home node for each memory block in which
the corresponding physical page is mapped. The home di-
rectory keeps track of the sharing set of each of its desig-
nated memory blocks by a presence flag vector with one bit
for each node and one of two memory states, clean and dirty,
designating whether the memory copy is up-to-date or not.
The directory protocol conforms to an MSI-protocol, i.e., a
cache copy can be in the M(odified), S(hared), or I(nvalid)
state. On a read or write miss, a Read or Write message is
sent to the home, that depending on the state of the memory
copy returns an up-to-date copy from either the memory or
a remote cache. Additionally, a Write message also inval-
idates all other copies. On a local write to a block in the
Shared state, an Upgrade message is sent to home which
issues invalidations to remote copies, if any.

The baseline message predictor is the vector memory
sharing predictor (VMSP); a two-level predictor, as pro-
posed by Lai and Falsafi [11]. VMSP is a generalization of
the Cosmos predictor [17] which in turn contributed with
applying the two-level PAp branch predictor according to
Yeh and Patt [24] to coherence message prediction. In con-
trast to the prediction schemes studied in [11], we focus
only on the memory-side predictors which associates a pre-
dictor with each memory block that make predictions based
on global coherence events, i.e., Reads, Writes, and Up-
grades. Let us now review how VMSP works in detail.

Figure 1 displays the architecture of a VMSP predictor.
It consists of a message history table (MHT) that associates
a history recording of coherence messages with each mem-
ory block. The history patterns are implemented as stati-
cally allocated shift-register queues, one for every memory
block. On every access to a home memory block, the queue
is shifted and the oldest queue element is discarded, while
the new coherence message is shifted in. History informa-
tion is used to index a pattern history table (PHT), con-
taining predictions of the coherence messages following a
particular history of coherence events. As in [11], we as-
sume that the MHT is a structure with a fixed size with one
entry per memory block, whereas the PHT entries are allo-
cated dynamically when needed. The issue of deallocation
has not been addressed by previous work. The total mem-
ory overhead of the predictor is thus composed of a static
part, the MHT, and a dynamic part, the PHT.

Prediction

Message History Table

Memory
Block

Address

Pattern History Tables

Figure 1. Baseline VMSP predictor architecture.

The MHT records global coherence actions to specific
memory blocks and keeps information on the last h (history
depth) messages. A message is stored as a tuple (type, P),
where type is Read, Write, or Upgrade, and P is a vector
of reader processors or a single writer (upgrade) processor.
When the history register has been filled up, the next in-
coming message to a memory block allocates a pattern entry
which becomes the prediction the next time the same history
of messages reaches the block. If the predicted message dif-
fers from the incoming, the incoming message replaces the
prediction.

2.2 Evaluation Methodology

We model a CC-NUMA architecture consisting of 16
nodes where each node contains a processor, a two-level
cache hierarchy whose sizes are 64 kB and 1 MB, respec-
tively. The block size is 64 bytes, the L1 caches are four
way set-associative and the L2 caches are direct-mapped.
We assume that memory pages, 8 KBytes each, are allo-
cated round-robin among the nodes.

We use a processor model which is single-issue and is
modeled using the Simics infrastructure [16]. Since we pri-
marily focus on reduction of coherence miss rate, such a
simple processor model is adequate. This is because under
strict memory consistency models, such as TSO [22], there
are limited opportunities to reorder memory operations as
more aggressive processor models would enable.

We use seven applications from SPLASH-2 [23] to drive
our experiments, with measurements confined to the paral-
lel section of the programs. The particular input data set
used and some relevant statistics for these applications are
displayed in Table 1.

All applications were compiled using gcc 3.0 with -O2
optimization and parallelized using a pthread implementa-
tion of the ANL macros. Solaris 8 was the operating sys-
tem used in all simulations and no distinction was made
between memory references coming from the application
or the kernel. The software interface conforms to an Ul-
traSparc II based machine from Sun Microsystems, except
for the memory system which is modeled according to the
description above.

3 Coherence Block Footprints and Locality
3.1 Memory Overhead of Coherence Predictors

The memory overhead of currently proposed correlation-
based coherence message predictors consists of a static part
associated with the message history table and a dynamic
part associated with the pattern history table. The size of
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Workload statistics (×106) Shared data set size Footprint
Application Input data #instructions #mem refs kBytes 64 B Lines 64 B lines 8 k pages

Barnes 4 k particles 8,243 2,286 24,273 388,365 43,095 1,236
Cholesky tk16.O 1,221 357 7,140 358,101 207,936 2,807
FMM 4 k particles 1,468 442 22,381 114,232 25,122 552
LU 512 x 512 matrix 1,950 504 2,185 34,957 41,448 940
Radix 64 k keys 152 49 10,946 175,140 51,741 758
Volrend head4 1,576 369 501 8,021 26,855 1,097
Water 1024 molecules 16,344 4,408 888 14,212 58,672 1,203

Table 1. Benchmarks, baseline input data set sizes, and basic statistics.

the static part is proportional to the number of memory
blocks, number of processors/nodes, and the history depth.
The number of pattern history tables is proportional to the
number of memory blocks. The size of each table depends
however on application behavior. In the following we will
focus on the static part.

The system organization has a strong influence on the
memory overhead and the key component of interest is the
number of coherent nodes involved. A coherent node is
defined as the smallest entity between which some, per-
haps unified, cache is maintained coherent; in our case, the
second-level cache in each node.

Figure 2 shows the static memory overhead of VMSP
as a function of history depth and the number of nodes.
Each curve is calculated from the formula: Overhead =
(N+2)·h

8·B · 100%, N being the number of coherent nodes,
h the history depth, and B the cache block size (64 bytes
throughout this paper). The term two in the numerator
comes from the two bits needed to store the access type
(read, write, or upgrade). The denominator is introduced
to adjust for the block size (in bytes). In their study, Lai and
Falsafi [11] found that the prediction depth has a significant
and positive impact on the accuracy of the prediction, i.e.,
the fraction of predictions that are correct. While the impact
of prediction depth is outside the scope of this paper, we see
that the memory overhead is between 15 and 50% for ma-
chines with 16–64 nodes assuming a history depth of four.
Note that this overhead does not account for the dynamic
overhead.
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Figure 2. VMSP history information memory overhead as
a function of history depth for varying number of nodes.

Even though this cost might be tolerable, it becomes a

significant part of total system cost. With a history depth
of eight, the memory overhead becomes more than 50% for
machines with 32 nodes or more. Cosmos and MSP have
a slightly smaller memory overhead, but their resulting pre-
diction accuracies become notably lower [12] due to less
efficient encoding of coherence events. Evidently, memory
overhead could be reduced if history information is only
stored for a minor part of the total memory. Or more specif-
ically, which is our hypothesis, for the memory blocks that
experience coherence misses.

3.2 Coherence Footprint and Locality

In the following experiment, we filtered out the memory
accesses that arose due to coherence misses in the second-
level cache according to the miss classification in [4]. In
Figure 3, we show a histogram of how these accesses were
distributed over the total data footprint of each application,
averaged over all nodes. On the x-axis, unique memory
addresses are sorted in decreasing order of the number of
accesses to that address. The number of coherence miss re-
quests are plotted on the y-axis.
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Figure 3. Distribution of fraction of coherence miss re-
quests across the data footprint.

We can see that the majority of coherence misses are
confined to a fairly small part of the entire footprint; for
all applications but FMM, 95% or more of all coherence
misses go to less than 10% of the total footprint. In fact,
for Cholesky, LU, and Volrend, only 5% of the footprint is
subject to 90% or more of all coherence misses. For FMM,
about 78% of all coherence misses target 10% of the foot-
print. Unfortunately, these numbers say nothing about the
timing of coherence misses; the temporal locality of coher-
ence accesses can be even better than suggested by Figure 3.

To understand whether coherence footprints also are sub-
ject to reuse, we implemented a cache attached to each
memory module that only caches memory blocks subject
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Application Cache entries Ratio

Barnes 512 47.4
Cholesky 512 43.7
FMM 512 13.9
LU 64 40.5
Radix 512 21.4
Volrend 64 26.2
Water 256 14.3

Table 2. Coherence block cache sizes (# of entries per
node) and their respective hardware reduction factor.

to coherence misses, referred to as coherence blocks. Such
a cache would work similar to a directory cache [6,18]. The
major difference is that only blocks that experience at least
one coherence miss over their lifetime of the application are
cached. We will later in Section 4 explain how such a selec-
tion can be implemented.

We measured the miss ratios in a four-way set-
associative coherence block cache, with (AF) and without
(NAF) restricting allocations to coherence blocks. NAF
consequently makes no distinction between memory blocks,
while AF only lets blocks that are subject to coherence
misses enter the cache. Coherence block cache sizes were
chosen to approximately keep the miss ratio below 20%,
and details on the coherence block cache sizes and the ra-
tios between cache size and the total memory requirement
of the applications are listed in Table 2. For example, a
hardware reduction ratio of 47.4 for Barnes means that the
coherence block cache covers 1

47.4 = 2.1% of the total data
set. For LU, Volrend, and Water, the default cache size of
512 entries proved to be unnecessary large, showing almost
perfect hit-ratios. The number of cache entries for these
applications were consequently reduced in order to provide
additional insights for the coherence block cache. For the
16-node systems studied, at a history depth of four and ex-
cluding the tag, each entry in the history cache consumes
73 bits = a valid bit plus four times 18 bits (16 nodes plus
two type-bits) per history entry. The simulation results are
shown in Figure 4. In the figure, NAF numbers correspond
to the left bar whereas AF numbers correspond to the right
bar, respectively, for each application. The top part of each
bar is the amount of capacity misses, while the bottom part
is the amount of cold misses, in the coherence block cache.
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Figure 4. Coherence block cache miss ratios. Left bar:
NAF. Right bar: AF

The first observation from this figure is that for some
applications, even NAF manages to capture a large part of
all blocks subject to coherence misses, with miss ratios be-
low 13% for three applications. However, four applications

Shared data set size
Application Input data kBytes 64 B Lines Ratio

Barnes 4 k particles 8,433 134,925 16.5
16 k particles 33,585 537,357 16.4
64 k particles 134,193 2,147,085 16.4

FMM 4 k particles 7,140 114,232 13.9
16 k particles 28,460 455,366 13.9
64 k particles 116,552 1,821,124 13.9

Table 3. Benchmarks, input data set sizes, and basic
statistics, for the scaling experiment. Ratio is defined in
the text.

(Cholesky, FMM, LU, and Radix) suffer from very high
miss ratios, up to 42% for Cholesky. Misses are evenly dis-
tributed between cold and capacity misses. Restricting allo-
cation in the cache to coherence blocks (AF), the capacity
miss ratio drops dramatically for all applications, yielding
miss ratios well below 10%. For two out of seven applica-
tions, the capacity miss ratio drops with an order of magni-
tude compared to NAF.

We also compared a fully associative coherence block
cache to the baseline four-way set-associative cache. For
two of the applications with the highest amount of remain-
ing capacity misses; Barnes and FMM, the miss ratio was
further reduced by 27% and 11%, respectively. For Wa-
ter, 90% of the capacity misses were removed, reducing the
miss ratio with 87%. Higher associativity is clearly desir-
able for the coherence block cache, which as with processor
caches can be traded off for a smaller cache size.

While our analysis suggests that a coherence block cache
whose size is typically a small fraction of the data set suf-
fices, it is important to understand whether this also holds
for larger data sets. To answer that question, we scaled up
the application data sets and the coherence block caches by
the same amount for Barnes and FMM. We have not af-
forded to do these scaling experiments for the other owing
to the very time consuming simulations.

The three data set sizes and corresponding coherence
cache sizes, denoted small, medium, and large, correspond
to a sixteen-fold increase of the default sizes. The respec-
tive cache sizes are 512, 2k, and 8k entries per node. See
Table 3 for details on data set sizes. The rightmost column
in Table 3, Ratio, denoting the hardware reduction factor,
lists the size ratio between the shared data set and the co-
herence block cache. Note that the difference for Barnes
between these numbers compared to the ratios in Table 1,
arises because of the need to limit simulation time for the
larger system sizes. As the allocated memory of Barnes in-
creases with the number of time steps, the ratio in Table 3
is smaller than in Table 1.

We measured the capacity and cold miss rates by assum-
ing a perfect address filter by preloading ’infinitely’ large
L2 caches. Figure 5 shows the distribution of coherence
block cache hits and misses as we scale the data set and
cache size. The leftmost bar correspond to the default data
set and cache size. The data clearly shows that the rela-
tive amount of capacity misses in the coherence block cache
stay constant as the system is scaled up. The fluctuations of
the capacity miss fraction is less than 0.1%. Even for the
difficult applications Barnes and FMM, with many capacity
misses in the coherence block cache compared to other ap-
plications, this gives evidence that as the data set is scaled
up, the coherence block cache will perform equally well as
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for smaller systems.
In this experiment, we have assumed that a user would

like to run as big data sets as the memory permits. In
practice, this is only feasible if the computational com-
plexity grows as O(N ) with the data set size (N ). As
shown in [19], the computational complexity in many sci-
entific/engineering often grows faster, which suggests that
it is not feasible to assume memory-constrained scaling. As
a result, we would expect that the hardware-reduction factor
is higher in practice than what our data suggests.

4 Coherence Predictor Cache

We now introduce a novel class of coherence message
predictors that are based on the observations in the previous
section. In essence, the coherence predictor cache (or CPC
for short) consists of a number of coherence predictors that
are associated with coherence blocks in a dynamic fashion
according to the cache mapping function. Under the intu-
ition that the capacity miss rate is low, this structure will
generate nearly as many successful predictions as associat-
ing a coherence predictor with each memory block. A CPC
is associated with each memory controller and is accessed
in parallel with retrieving directory information. Thus, it
should not affect the access time.

The CPC, whose organization is shown in Figure 6, con-
sists of two main components: the history cache with con-
trollers and the pattern memory.

Predicted
Pattern

Address
Filter

Pattern
Address

Translation

Tag HistoryV

Hit?

(Tag, History)

Pattern Address

Address +
Status

Message +
Originator

History Cache

Pattern Memory

History Update

Lookup +

Tag

Figure 6. Coherence Predictor Cache architecture.

4.1 CPC Algorithm Overview

The basic operation of the CPC is the following. It inter-
cepts all incoming memory access messages and filters out
messages of importance; in our case coherence messages,
i.e., Reads, Writes, and Upgrades. It then does a tag lookup
in the history cache. If a match is found (the valid-bit is set
and the tags match), two cases are possible:

1. All slots in the matched history entry are filled up. The
history is retrieved and will be presented to the pattern
address translation mechanism to be discussed below.

2. The history entry contains empty slots. The current
message is inserted in the history after which there is
no further action.

On the other hand, if there is a miss in the history cache,
another entry is replaced and the valid bit in the history
cache of the new entry is set. The history entry is again
implemented as a shift register. Using the outcome of the
pattern address translation, a prediction of the next coher-
ence message, if available, is retrieved.

We now discuss how the various mechanisms involved
can support various prediction scenarios and describe in de-
tail the design choices of the implementation that we later
evaluate.

4.2 Implementation

The CPC contains three hardware blocks: the address fil-
ter, the lookup and history update, and the pattern address
translation mechanism. Below, we describe these mecha-
nisms in more detail.
Address Filter. The address filter limits the interference
between the memory access messages entering the CPC.
One way to implement an address filter that filters out co-
herence block is to associate with each memory block a last-
writer identifier. A block is deemed a coherence block if on
a cache miss, the reader does not match the last writer. An-
other alternative is to use hardware counters. Such counters
can easily be extended with a capability to count, e.g., co-
herence misses for memory blocks. This information can
be used by the operating system to guide the allocations in
the cache, by for instance tagging a page.

We experiment with an address filter that works in a sim-
ilar fashion to the last-writer scheme proposed above, with
the exception that it uses the coherence miss classification
in [4] to tag a memory block as a coherence block. It is only
coherence blocks that can be associated with predictors in
the CPC. In the measurements in later sections, we make a
comparison between using this scheme to a CPC without an
address filter.
Lookup and History Update. The tag produced by the
address filter is fed into the lookup mechanism which, de-
pending on the contents of the history cache and the value
of the valid-bit (V), reports a “hit” or “miss” to the pattern
address translation. In any case, the history information for
a block, if present, is updated with the incoming (message
type, originator) tuple. Originator is normally a processor
identifier, but can in the general case be, e.g., the node iden-
tifier, assuming multiple processors per node.

The associativity of the history cache can, of course,
range from direct-mapped to fully associative and an inter-
esting issue for associative coherence predictor cache is to
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consider replacement policies that include run-time infor-
mation such as recorded prediction accuracy, length of his-
tory recording, number of prediction patterns allocated, etc.
In this paper, however, we consider an LRU replacement
algorithm and a four-way set-associative history cache.
Pattern Address Translation. As patterns are not stored
for all tag/history combinations, a pattern address transla-
tion is needed to correctly find the corresponding prediction
pattern in the pattern memory.

In the evaluation, we assume a pattern address translation
mechanism which is built on a hash structure, where the
history information is stored as compact as possible, i.e.,
with the least amount of bits. Each entry in the hash table
is dynamically allocated and contains a copy of the history
information index and a prediction. Pattern entries are never
deallocated, not even at CPC replacements. The handling of
dynamic memory overhead is a topic for future research.

5 Effectiveness of CPC
This section will present three important results for the

CPC: (i) how the prediction accuracy is preserved; (ii) how
the amount of predictions can be maintained; and finally
(iii) some performance aspects.

5.1 Prediction Accuracy

For the CPC to be successful, it should conserve the pre-
diction accuracies obtained with a predictor spanning the
whole memory. We therefore investigated the prediction ac-
curacies obtained with a CPC and compared those with the
accuracies of a global VMSP predictor which associates a
predictor with each memory block. We focus on the accu-
racy in predicting that a write or upgrade request is followed
by read request, called read accuracy. This is an interest-
ing metric in that it tells us the precision by which it can be
predicted that the next access is a coherence miss.

The results of this investigation are shown in Figure 7,
for a history depth of one (left) and four (right), respec-
tively. For each application, four bars corresponding to
different predictor organizations are displayed: global pre-
dictor (Global) and CPC, with (AF) and without (NAF)
an address filter. A comparison between Global-AF and
Global-NAF shows almost no difference in accuracy num-
bers, while the total number of predictions for Global-AF is
slightly lower than for Global-NAF because the tagging of
a memory block inhibits one prediction per memory block.
Refer to Table 2 for information on CPC sizes and corre-
sponding hardware reduction factors.

Overall, Figure 7 indicates that the CPC does not have a
significant impact on the accuracy of the predictions. An-
other observation is that the address filter does not have any
significant influence on the prediction accuracy; neither for
the global predictor nor for the CPC. Comparing the pre-
diction accuracies for Barnes to those reported in [11], the
significantly lower numbers presented in this paper, as ex-
plained in Section 2.1, arise because this paper only con-
siders predictors at the memory and not at the processor
caches. Another effect is that CPC-NAF actually exhibits
slightly higher accuracies than Global-NAF, attributed to
the fact that the conflicts in the CPC have a tendency to fa-
vor stable blocks with good locality, resulting in fewer, but
more accurate, predictions. All in all, both the CPC and the
address filter are robust techniques that essentially retain a
high read accuracy.

Some anomalies can be noted for Cholesky though, and
to a lesser degree for some other applications. Looking at
the read accuracy and a history depth of one, the global
predictor without an address filter actually has the lowest
accuracy of all configurations. A plausible explanation to
this, is that because the total amount of L2 cache misses for
Cholesky to a large extent consists of cold misses, both in
relative and absolute numbers. These L2 cold misses tend to
cause a global predictor to produce poor predictions, while
instead the CPC experiences cold misses, which do not pro-
duce a prediction at all. Support for this explanation can be
found in Figure 4, where Cholesky without an address filter
has not only a very high capacity miss ratio, but also a high
cold miss ratio. In Section 5.2 below, it will become clear
that without an address filter (NAF), the global predictor in-
deed produces significantly more predictions than the CPC.
However, this is a transient condition, completely removed
with the address filter, with a small impact on prediction
accuracy.

5.2 Prediction Yield and Coverage

The most important metric for the CPC is perhaps not the
resulting accuracy for the performed predictions, but rather
the accuracy in combination with how many predictions that
are actually lost due to CPC misses. We define the yield
for a CPC as the ratio of the number of successfully pre-
dicted reads for the CPC to the number of successfully pre-
dicted reads for the memory-wide predictor. We also define
coverage as the ratio between successful predictions in the
CPC and the memory-wide predictor, including write and
upgrade predictions. The left diagram in Figure 8 lists the
yield for the applications, with and without the address filter
and for history depths one and four, while the right diagram
shows the corresponding coverage.

Looking at the yield at a history depth of one, all appli-
cations except Radix have a yield above 80%. At a his-
tory depth of four however, the trend is that yield is re-
duced, most notably for Barnes. We conjecture that this
is attributable to that we use LRU in the CPC, in combina-
tion with the relatively large number of remaining capacity
misses for these applications. As LRU is unaware of both
the length of recorded history for an entry, and the status of
any stored prediction information, this replacement mecha-
nism does not necessarily make the optimal choice of which
block to evict from the CPC. Higher associativity helps to
some extent, but the replacement strategy could probably be
improved if taking these factors into account.

Interestingly, AF always outperforms NAF for both
depth one and depth four, diminishing the effect of poor re-
placement decisions by reducing the pollution in the CPC.

The obvious exception in terms of yield is Radix, signif-
icantly worse than other applications. To understand the
poor yield numbers of Radix, we need to investigate the
stream of accesses that enters the CPC. In Figure 9, the dis-
tribution of post-L2 accesses are listed, divided into the cat-
egories Reads, Writes, and Upgrades. The diagram gives
that Radix has much fewer upgrades and a significantly
higher fraction of write misses than the other applications,
in agreement with previous results [23] showing that Radix
communicates values to other nodes through writes, rather
than with reads. The many global write actions pollute the
CPC, and although the prediction accuracy is maintained,
read predictions are traded for write predictions, not affect-
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Figure 7. Read accuracy for the CPC with a history depth of one (left) and four (right).
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Figure 8. CPC yield (left) and coverage (right).

ing the coherence miss reduction. A possible remedy for
this would be to narrow the definition of coherence blocks
to blocks that experience a write followed by a read miss
from another node. Maybe even restrict history information
to only reads and upgrades. The conclusion is that the yield
of the CPC seems to be sensitive to workloads with many
write misses.

Nonetheless, relating the yield numbers to Table 2 im-
plies that a potentially very high coherence miss reduction
is achieved with CPC sizes that only cover a fraction of the
total memory of the machine.
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Figure 9. Post-L2 traffic, divided into reads, writes, and
upgrades

Turning to coverage (right diagram of Figure 8), the most
important result is that a coverage of more than 87% is
achieved when using the address filter, for all applications
except Barnes at a depth of four. As a longer history is ex-
pected to require a block to stay for a longer period of time
in the CPC to start producing predictions, a corresponding
reduction in both yield and coverage is noted for a history
depth of four compared to a history depth of one. For a
history depth of one, coverage is above 89% for all applica-
tions.

For Cholesky and a history depth of one without an ad-
dress filter (NAF-1), we again see the effect of many CPC

cold misses. Even though the CPC upholds the prediction
accuracy of a memory-wide predictor, the dramatic drop in
the number of upgrade predictions lower the coverage. The
same effect is not seen for the yield since that metric does
not include upgrade predictions. Overall, NAF-4 has prob-
lems keeping up with the memory-wide predictor in terms
of number of predictions, resulting in very low coverage.
With the address filter however, coverage is above 70% for
all applications, and above 87% for all applications except
one. This coverage is achieved with hardware reduction fac-
tor of more than 14 for all applications, as shown in Table 2.

As noted in Section 3.2, the associativity of the CPC can
affect its miss ratio considerably. The resulting increase
in yield and coverage for Water, for which 90% of the ca-
pacity misses were removed by going from a four-way set-
associative to a fully associative CPC at a history depth of
four, was 15% and 14%, respectively. No change in pre-
diction accuracy was noted. The associativity of the CPC is
clearly important, but plays a minor role in determining the
important metrics of yield and coverage.

Next, we will discuss the bottom line performance po-
tential of the CPC compared to a memory-wide predictor.

5.3 Performance Potential

We now study the potential reduction of coherence
misses for a memory-wide prediction scheme and the CPC.
To obtain an upper-bound for both schemes, we assume that
if a read is correctly predicted, it will remove one coherence
miss. While difficult to achieve in practice, it assumes that
the last write self-invalidate [12, 14] and ship the block to
the reader through data forwarding. [1, 2, 10, 12] that per-
forms a timely delivery of data to the consumers. Under
these assumptions, the coherence miss reduction using the
CPC for a history depth of four is shown in Figure 10. The
diagram displays four bars for each application: the aver-
age coherence miss reduction in the second-level processor
caches for a global predictor with and without an address
filter (Global-AF/NAF), for comparison, and the coherence
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miss reduction for the CPC with and without an address fil-
ter (CPC-AF/NAF).
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Figure 10. Average coherence miss reduction in second-
level caches for a history depth of four.

It should be noted that these numbers are obtained over
the entire run of the applications, including cold start ef-
fects, which make them a bit pessimistic. Nevertheless, co-
herence miss reductions in the range 9–42% are achieved
for CPC-AF, which is within 8% of the memory-wide pre-
dictor for all applications, while only using 2–7% of the
amount prediction hardware.

6 Concluding Remarks
We introduced a new class of coherence predictors – co-

herence predictor caches – that are capable of implementing
a wide range of prediction mechanisms. We have shown
that by considering cache sizes that are typically only 2–
7% of the entire shared data sets, we are able to demon-
strate prediction accuracies that are virtually equivalent to
memory-wide predictors at a coverage of 87% for six out
of seven applications. Finally, we demonstrated that with
such a prediction infrastructure, one can potentially remove
as much as 20% of the coherence misses, with at most an
8% difference compared to a memory-wide predictor. For
Water, about 42% of the coherence misses can be removed
with a cache of only 5% the size of the total data set. This
study makes an important step towards predictors that can
be implemented with an affordable cost.
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