
Improving Speculative Thread-Level Parallelism
Through Module Run-Length Prediction

Fredrik Warg and Per Stenström
Department of Computer Engineering
Chalmers University of Technology

fwarg,persg@ce.chalmers.se

Abstract

Exploiting speculative thread-level parallelism across
modules, e.g., methods, procedures, or functions, have
shown promise. However, misspeculations and task cre-
ation overhead are known to adversely impact the speedup
if too many small modules are executed speculatively. Our
approach to reduce the impact of these overheads is to dis-
able speculation on modules with a run-length below a cer-
tain threshold.

We first confirm that if speculation is disabled on mod-
ules with an execution time – or run-length – shorter than
a threshold comparable to the overheads, we obtain nearly
as high speedup as if the overhead was zero. For example,
if the overhead is 200 cycles and the run-length threshold
is 500 cycles, six out of the nine applications we ran en-
joyed nearly as high speedup as were the overhead zero.
We then propose a mechanism by which the run-length can
be predicted at run-time based on previous invocations of
the module. This simple predictor achieves an accuracy be-
tween 83% and 99%. Finally, our run-length predictor is
shown to improve the efficiency of module-level speculation
by preventing modules with short run-lengths from occupy-
ing precious processing resources.

1 Introduction

Speculative thread-level parallelism (STLP) is an at-
tempt to extract parallelism at a coarser level than
instruction-level parallelism, by automatically splitting up
programs into threads that are executed in parallel on multi-
ple processor cores. With this approach, threads do not need
to be provably data independent; instead, the STLP machine
will check for dependences at run-time, and if necessary
roll back and re-execute threads when data dependence vi-
olations occur. Several implementation proposals for STLP
machines exist, often in the form of chip-multiprocessors
[3, 6, 8, 10, 13, 15, 16].

To get good utilization of an STLP machine, however,

we need methods for efficiently determining when and how
to create new threads. One approach is to use procedure,
function or method calls (collectively refer to as modules in
this paper) as the point to spawn threads [2, 6, 7, 11, 12].
At a module invocation, a new thread that continues exe-
cution after the call instruction is created; the old thread
executes the module and then terminates. The advantage of
module-level parallelism is straight-forward identification
of threads and avoidance of the control-dependency prob-
lem that plague e.g. exploitation of loop-level parallelism.
Our focus is to explore the feasibility of speculative module-
level parallelism in the context of chip-multiprocessors with
hardware STLP support.

In a previous study [17] we found that while programs
from SPECint95 and SPEC JVM98 can enjoy a speedup
ranging from two to six on an eight-processor CMP; achiev-
ing this speedup is mainly limited by the overhead associ-
ated with thread management and misspeculations.

Thread creation/termination, roll-backs, and context
switches are all associated with significant overhead. If the
overhead is significant in comparison with the module exe-
cution time – or run-length – the contribution to the overall
speedup is small. Hammond et al. [6] found threads of
size 300-3000 instructions suitable if overheads are in the
range 10-100 cycles. Consequently, using the run-length of
a module as a key criterion for selecting which modules to
speculate on appears to be a promising way to reduce thread
management overhead. The potential of this technique is
explored in this paper.

We first investigate how much speedup we can gain if we
only speculate on modules with a run-length greater than a
certain threshold. Based on nine Java and SPECint95 ap-
plications, it is possible to eliminate most of the impact of
overhead in the range of 100-500 cycles on speedup by only
speculating on modules whose run-length is above a certain
threshold, typically around 500, assuming perfect a priori
knowledge of the run-length.

We then introduce the design of a module run-length pre-
dictor that, based on the previous run-length of the mod-

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

ule, will predict if future invocations of the module will ex-
ceed the threshold or not. This predictor is shown to behave
very close to the off-line omniscient predictor with a predic-
tion accuracy between 83% and 99%. We demonstrate that
such a predictor can wipe out almost all of the impact of
thread-management overhead on the overall speedup of the
applications on an 8-way chip-multiprocessor with support
for STLP. As opposed to related off-line techniques such
as compiler inlining, our method can be used for run-time
speculative parallelization of sequential binaries.

Finally, we apply our run-length predictor to machines
with a limited number of simultaneous speculative states (or
maximum number of live threads). Two benchmarks ben-
efit much from the run-length predictor, which reduces the
number of threads created.

In Section 2 we explain the execution model for module-
level parallelism, and present our simulation environment.
Then, in Section 3, we look at module run-length thresholds
and their impact on overhead penalty. Section 4 introduces
the run-length predictor, and in Section 5 its performance is
compared to that of a perfect predictor. Section 6 discusses
the problem with speculative state, and finally, we conclude
the paper in Section 7.

2 Experimental Methodology

In this section, we begin by briefly explaining the ba-
sic execution model behind speculative module-level paral-
lelism. Then, we describe our simulation environment, and
present the benchmarks we have used.

2.1 Execution Model

In speculative module-level parallelism, module calls are
the points where new threads are potentially spawned. At a
call instruction, a new thread will execute the code after the
call, the module continuation, while the old thread executes
the called module. In order to respect sequential seman-
tics and correctly perform the data dependence checking,
we need to keep track of the sequential order of all threads.
A new thread will be more speculative than its parent, and
retain the speculative order of the parent with respect to all
other threads.

A graphical representation of new threads being created
is shown in Figure 1. To the left in the figure is a C program
with function calls, and to the right a call tree representa-
tion of the same code run with the module continuations as
separate threads.

Data dependences between threads can cause specula-
tion to fail. A flow dependency occurs when a less specu-
lative thread computes a value used by a more speculative
thread. If the less speculative thread writes the value before
the more speculative reads it, the correct value can be for-
warded, but otherwise the more speculative thread will have
already used an incorrect value. If that happens, the STLP

 ...
 ...

}

int f1() {

 ret a;

Execution
time

Head (non−speculative) thread

 ...

 ...

 ...
 ...
 ...
 ...

 a=f1();

 f2();

Return value

Speculative
threads

main() f1()f2()

 ...
f2() {

}

}

main () {

Modules Threads

Figure 1. Execution model. New speculative
threads are spawned for module continua-
tions.

system restores the execution to a safe state, which includes
rolling back execution of the violating thread and squashing
any thread started after the roll-back point. Most proposed
systems solve this by storing speculative values either in the
cache system or in special (hardware- or software-managed)
buffers. The speculative state can then be committed when
the thread it belongs to is the head (non-speculative) thread,
or flushed if a violation occurs.

2.2 Simulated STLP Machine

Since this study focuses on the impact of thread man-
agement overhead on the inherent module-level parallelism,
the philosophy behind our machine model is to only fac-
tor in such overheads and disregard others, for example in-
efficiences in the memory system. We consider an STLP
machine with eight processors as our results in [17] in-
dicated that eight processors are enough to exploit almost
all module-level parallelism in our benchmark applications.
Additionally, we have also made the following machine
model assumptions:

� All communication between threads as well as mem-
ory accesses only takes one cycle and the processor
cores issue one instruction per cycle in order.

� Fixed-length overhead is imposed on thread-starts,
roll-backs and context switches; in the simulations we
use values between 100 and 500 cycles.

� Threads can be preempted. If a new thread is less spec-
ulative than an already running thread and there are no
free processors, the running thread will be preempted
and resume at a later time. The intuition is that flow de-
pendences are more likely to be resolved with forward-
ing if less speculative threads are favored over more
speculative ones.

� A thread can roll back to the very instruction that
caused the dependency (perfect rollback); we do not
have to re-execute the whole thread. Threads started

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

Table 1. Benchmark applications.
Name Origin Description #Instructions #Modules Avg. instr./mod. #Modules

(dynamic) (dynamic) (dynamic) (static)
gcc SPECint95 GNU C Compiler 2.5.3 13M 54.5k 237 525
compress SPECint95 Unix compress 1.4M 21k 67 8
db SPEC JVM98 Simple database 13M 4.9k 2644 52
deltablue Sun Labs Constraint solver 2.6M 12.5k 208 76
go SPECint95 Plays the game of Go 1.4M 1.1k 1190 105
idea jBYTEmark En/decryption 35.7M 12k 2966 16
jess SPEC JVM98 Expert system 16.3M 25.8k 633 484
m88ksim SPECint95 A chip simulator 2.2M 0.5k 4767 34
neuralnet jBYTEmark Neural network 4.2M 2.6k 1626 26

by the violating thread after the rollback are always
squashed, however.

� The speculation system can resolve anti- and output-
dependences as well as handle forwarding of values.

� We use perfect value prediction, and realistic value
prediction models. With perfect value prediction we
assume all dependences are resolved and no roll-backs
are necessary. The realistic model uses simple stride
prediction for return values and no prediction at all for
memory references. Unless otherwise stated, results
are for the realistic model.

Commit and dependence checking can be done with
none or very low overhead, therefore we do not model any
overhead for these events. Commit might take a little time,
but is in any event less crucial than the three mentioned
above, since it only happens once per thread, at commit
time, and will not be affected by roll-backs or squashes.

2.3 Simulation Setup

Our simulation results are produced with a trace-driven
simulator used in a previous study [17]. The programs are
first run sequentially on the system-level instruction set sim-
ulator Simics [9]. In the generated trace, all events such as
module invocations, returns, and loads and stores are an-
notated with a time-stamp generated by the virtual timer.
The STLP machine model is then driven by the trace and
when an event is encountered, the STLP machine creates
new threads, does dependence checking, roll-back etc ac-
cording to the execution model in the previous section.

The benchmarks were compiled with GCC 2.95.2 with
full optimizations, and run on Linux. The whole system
runs on top of Simics, which does call-backs to our trace-
generator when encountering one of the events mentioned
above. This way we will not introduce any overhead in the
simulated application. Simics simulates a single-issue in-
order SPARC v8. The memory system is perfect (one-cycle
access).

Using a realistic (out-of-order) processor core, memory
hierarchy, and communication mechanisms would intro-

duce a number of additional effects, like inter-thread com-
munication latencies, bus contention, speculative state man-
agement, memory-access latencies etc. While it eventually
is important to study their impact, we opted for studying the
impact of thread management in isolation and not factoring
in these effects.

2.4 Benchmarks

We have used nine benchmarks, four from SPECint95,
two from SPECjvm98, two from jBYTEmark, and one con-
straint solver written at Sun. The choice was made for the
sake of comparison; many of these programs have been
used in related studies [7, 11, 12] and are also the same pro-
grams used in our own previous study on module-level par-
allelism [17]. We only consider integer programs that have
been shown hard to parallelize with static methods such as
parallelizing compilers.

Table 1 summarizes the benchmark applications.

3 Potential of Run-Length Thresholds

In order to demonstrate the impact of thread manage-
ment overheads on the potential speedup of speculative
module-level parallelism, we ran simulations with thread-
start, roll-back, and context-switch overheads. In Hydra [6],
speculation events are handled by a speculation coprocessor
where control routines of typically 50-100 instructions are
executed for each event. While these overheads are useful
as reference points, it is unclear how many cycles of over-
head we will see in future STLP machine implementations.
Therefore, we use overheads ranging between zero and 500
cycles per event in order to study the sensitivity of the over-
head impact on speculative module-level parallelism.

In Figure 2 the speedup of our nine applications for dif-
ferent overheads is shown. The upper graph shows sim-
ulations with the perfect value prediction model, and the
lower graph with realistic value prediction. As expected,
for overheads of 100 cycles, the speedup is already severely
hampered, especially under the realistic model where roll-
backs and thread restarts kick in. Moreover, with a 500-

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

||0

|

1

|

2

|

3

|

4

|

5

|

6

|

7

|

8

 Overhead

 S
p

ee
d

u
p

gcc compress db dblue go idea jess m88ksim neuralnet

0 100
200

500
0 100

200
500

0 100
200

500
0 100

200
500

0 100
200

500
0 100

200
500

0 100
200

500
0 100

200
500

0 100
200

500

||0

|

1

|

2

|

3

|

4

|

5

|

6

|

7

|

8

 Overhead

 S
p

ee
d

u
p

gcc compress db dblue go idea jess m88ksim neuralnet

0 100
200

500
0 100

200
500

0 100
200

500
0 100

200
500

0 100
200

500
0 100

200
500

0 100
200

500
0 100

200
500

0 100
200

500

Figure 2. Speedup with thread-management overhead 0-500. The graphs show results with perfect
(upper) and realistic (lower) value prediction models.

cycle overhead, speedup is more than halved for most ap-
plications. M88ksim is less affected by roll-backs, and thus
experiences less events causing overhead. Compress, on the
other hand, which largely consists of very small modules,
already suffers from a slowdown at 100-cycle overheads.

In order to better amortize the overhead costs over the
useful execution, we want to avoid creating new threads
which do not contribute to the speedup or worse, tie up ma-
chine resources with little gain. We do this by applying a
threshold on the module run-length. If the run-length ex-
ceeds the threshold, a new thread is created for the module
continuation. If not, the overhead is expected to negate any
positive effect of the gain in parallelism, so the code is run
sequentially.

We define module run-length as the time between the call
and return of a module. As shown in Figure 3, this time
will include the run-time for child modules run sequentially,
but exclude run-time for child modules when new threads
are created. Overhead is not included. The module run-
length gives a measure of how much useful overlapping of
the execution a new thread is expected to yield.

Call Call

Return

Module

New thread
created

Module

Return

Module run
sequentially

run−length run−length

Figure 3. Module run-length calculation.

Since we use trace-driven simulation, we can precom-

pute the dynamic run-lengths from the execution traces and
use this a priori knowledge when applying different run-
length thresholds.

Figure 4 shows the speedup for our benchmark appli-
cations with thresholds between 0 and 10000 cycles. We
show full speedup graphs for Gcc, Go, and NeuralNet, and
abridged versions (only three thresholds) for the remaining
applications. Gcc and NeuralNet were chosen as good ex-
amples of the usefulness of module run-length thresholds,
whereas Go is included to show some unusual behavior. In
the full graphs, each line represents a different amount of
overhead. The vertical axis shows speedup and the horizon-
tal axis different thresholds. Note that the vertical scales are
different for the applications.

In the bar graph, we depict different overheads with
shaded sections. The whole bar shows speedup for
zero overhead. Then, progressively darker sections show
speedup with 100, 200, and 500 (black section) cycle over-
heads respectively. For example, speedup for compress
without a run-length threshold (or threshold=0) is: with
zero overhead 1.64, for OH=100 it is 0.47, for OH=200 only
0.21, and for OH=500 it is 0.1.

We get a speedup improvement on all applications except
Db and M88ksim. This is expected as Db and M88ksim
have a larger portion of long modules and the impact of
overhead is small. Jess and Deltablue show improvements,
and a small positive speedup; without module run-length
threshold they suffer a slowdown. Gcc shows potential with
ideal value prediction but suffers badly from misspecula-
tions, which a run-length threshold does not solve. Com-
press hardly has any parallelism with a threshold of 100
or above. The run-length predictor effectively nullifies the
overhead so that it runs at least sequentially with no over-
head. Go has a lower best threshold than the other applica-
tions. The best result is achieved for a threshold of around

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

0

1

2

3

0 100 500 1k 5k 1k
S

pe
ed

up

Run-length Threshold

gcc

OH=0
OH=100

OH=200
OH=500

0
1
2
3
4
5
6
7

0 100 500 1k 5k 1k

S
pe

ed
up

Run-length Threshold

go

OH=0
OH=100

OH=200
OH=500

0

1

2

3

4

0 100 500 1k 5k 1k

S
pe

ed
up

Run-length Threshold

neural

OH=0
OH=100

OH=200
OH=500

||0

|

1

|

2

|

3

|

4

|

5

|

6

 Run-length Threshold

 S
p

ee
d

u
p

gcc compress db dblue go idea jess m88ksim neuralnet

0 500
5k 0 500

5k 0 500
5k 0 500

5k 0 500
5k 0 500

5k 0 500
5k 0 500

5k 0 500
5k

OH = 0

OH = 100

OH = 200

OH = 500

Figure 4. Speedup with module run-length thresholds between 0 and 10000 cycles.

100; at 500 the speedup is down again due to a lack of par-
allelism.

Overall, for six out of nine applications, the speedup at
an overhead of 200 is very close to the speedup without
overhead when a good run-length threshold is used, and
none of the programs suffer from slowdown.

4 Module Run-Length Prediction

In the previous section we saw that creating new
speculative threads only when the module run-length ex-
ceeds a threshold can help alleviate the impact of thread-
management overheads. However, the decision to create a
new thread needs to be done when the module is called, and
we cannot know the run-time until it has completed execu-
tion. To overcome this problem, we make use of a tech-
nique common in computer architecture: history-based pre-
diction. It is reasonable to assume that there is a correlation
between the run-length of one invocation of a module to the
next.

Our predictor works like this:

� Each module in the application has its own predic-
tor associated with it. The predictor uses a single bit
which designates whether run-time was above or be-
low the run-length threshold for the most recent com-
pleted execution of the module.

� The module run-length is measured every time the
module is called. When it completes (reaches return),
the measured run-length is compared to the threshold.
If it exceeds the threshold, a ’1’ is stored in the predic-
tor bit, otherwise, a ’0’ is stored.

� When execution reaches a module call, the prediction
bit is checked. If the bit is ’1’, a new thread is cre-
ated for the continuation, otherwise the module is run
sequentially.

� All prediction bits are initialized to ’1’, so on the first
invocation a new thread will always be created.

� We have assumed zero-latency for the prediction
mechanism in our simulations.

Note that the run-length is measured regardless whether
a new thread is created or not; otherwise a module that
has once been marked ’0’ would no longer be updated, and
the prediction could never change. Since the result of pre-
diction changes further down the call tree can propagate
to parent modules, it is especially important that predictor
changes can go both ways; it might take a few invocations
before the predictor reaches steady state.

The possible advantages of measuring module sizes dy-
namically instead of doing static analysis is that the length
may be hard or impossible to determine statically. In addi-
tion, a dynamic predictor can automatically adjust to hard-
ware dependent parameters such as communication and
memory latency. It is likely, however, that a combination
could be useful. For instance, very small modules whose
length can be determined statically could be removed from
being considered for speculation, in order to minimize over-
head from the run-length measurements.

In order to implement run-length prediction, methods for
measuring the run-length as well as a structure for storing
history-bits and temporary cycle counts is needed. Storage
should be shared among the processors in the CMP in order
to support preemption and shared prediction bits.

The storage could be implemented as a dedicated hard-
ware structure, or in order to avoid extra hardware, in the
memory hierarchy. As we can see in Table 1, the number of
unique modules is at most a few hundred, so the structure
need not be very large.

Most existing processors have performance counters, in-
cluding a cycle-counter, which could be used for a soft-
ware implementation of run-length prediction. Measuring

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

0

1

2

3

0 100 500 1k 5k 10k
S

pe
ed

up

Run-length Threshold

gcc

Oracle
Last-outcome

0
1
2
3
4
5
6
7

0 100 500 1k 5k 10k

S
pe

ed
up

Run-length Threshold

go

Oracle
Last-outcome

0

1

2

3

4

0 100 500 1k 5k 10k

S
pe

ed
up

Run-length Threshold

neural

Oracle
Last-outcome

||0

|

1

|

2

|

3

|

4

|

5

|

6

 Run-length Threshold

 S
p

ee
d

u
p

gcc compress db dblue go idea jess m88ksim neuralnet

94
98

99
97

83
96

98
98

93
93

94
99

97
97

89
95

95
93

0 500
5k 0 500

5k 0 500
5k 0 500

5k 0 500
5k 0 500

5k 0 500
5k 0 500

5k 0 500
5k

Figure 5. Speedup of the last-outcome run-length predictor (black bars) compared to the ideal pre-
dictor (grey bars), with 200-cycle overheads. Prediction accuracy (in %) is printed on top of the
bars.

the module run-length could be done by recording the cycle
count at the module call, and comparing it with the count
after completed execution. Care has to be taken, however,
to exclude overhead and time when the module is not run-
ning, e.g. swapped out in favor of a higher-priority thread.
Reading the performance counters will not impose much
overhead. For instance, in the AMD Athlon processors, a
single instruction will read a counter register and place the
result in a general purpose register [1]. A few additional in-
structions would be needed to store and compare instruction
counts.

Since there might be a significant amount of time be-
tween the prediction and corresponding update, it is not
certain that a lookup will return the result of the last in-
vocation of the module; rather, it will be the latest that has
finished. In addition, updates might not come in sequential
order. However, as we will see in the next section, the accu-
racy of this simple predictor is very good for the thresholds
of interest. In summary, we note that the design space of
implementation of such predictors is large, but it is outside
the scope of this paper to study their tradeoffs.

5 Experimental Results

Figure 5 shows a comparison between the speedup using
oracle-determined run-lengths according to Section 3, and
the last-outcome predictor described in Section 4. In the
full graphs, speedup using oracle run-lengths are shown as
solid lines, and speedup for the predicted lengths are shown
as dotted lines. In the bar chart, grey bars are for oracle
results, and black bars prediction results. Prediction accu-
racy is printed above the bars. Only results for overheads
of 200 cycles are shown; results for 100 and 500 cycles are
similar in behavior, but the differences smaller and larger in

magnitude, respectively.

Overall, we can see that the predictor manages to obtain
virtually the same speedup as the oracle prediction scheme,
with a prediction accuracy typically above 90%. For Go,
the last-outcome predictor is much better than the oracle-
determined length for a threshold of 5000+. This is because
the oracle at the same time disables more modules than the
predictor (decreasing parallel coverage), and suffers from
an increased number of misspeculations. In this particu-
lar case, the imperfection of the last-outcome predictor was
beneficial! However, it occurs for a threshold higher than
the best. If the predictor happens to fail on threads which
are above the best threshold but below the chosen one, it is
reasonable that the speedup is better for the predictor than
the oracle.

Table 2. Speedup improvement.
App. Best Improvement Improvement
name threshold oh=100 oh=200
gcc 1k 3% 39%
compress 500+ 117% 380%
db - 0% 0%
dblue 500 8% 34%
go 100 14% 18%
idea 500+ 23% 50%
jess 100 4% 7%
m88ksim 100 1.0% 1.6%
neural 1k 17% 46%

Table 2 lists the best found thresholds for all applica-
tions at 100 and 200 cycle overheads. The improvement in
speedup with the best found threshold is compared to run-

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

ning the programs without module run-length prediction.
Note that the improvement for Compress is moot for rea-
sons discussed earlier. The two applications marked ’500+’
showed a similar speedup for thresholds above 500 and up
to 10000, which is the highest threshold we have used.

In summary, the speedup results at best threshold us-
ing the run-length predictor is typically within two percent
of the results of an oracle. In addition, with overheads of
200 cycles, six of the nine benchmarks show a speedup im-
provement, which is between 7-50% compared to running
all modules speculatively.

6 Systems with Limited Live Threads

We have seen that module run-length prediction is useful
for preventing the creation of speculative threads that will
not contribute to speedup. In this section, we show that the
same technique can be beneficial for speculation systems
where the number of live threads is limited.

As mentioned in Section 2.1, an STLP machine must
store speculative values from all threads that have not yet
committed. The need to handle speculative state is per-
haps the main reason why proposed STLP processors allow
only a low number of threads in the system. Implementing
efficient speculation mechanisms with a larger number of
threads than processors is a tricky problem. In addition to
the storage problem, threads that are not running must take
part in dependence checking, value forwarding, and might
need to roll back. The non-committed threads, which we
refer to as live threads, that exist must be visible to the spec-
ulation system even when they are not running on a proces-
sor. There must be support for at least one live thread per
processor, where the running thread stores its speculative
values.

There are two reasons why allowing more live threads
than processors are important. The first reason is that we
might want to preempt a running thread in order to run a
new less speculative thread. The other, and even more im-
portant reason, is that module-level threads are of highly
varying length, and therefore load-imbalance is a big prob-
lem. If we allow only one live thread per processor, any
thread that finishes will tie up a processor until it becomes
the head thread and can commit.

Garzaran et al. [4] present a taxonomy of methods for
buffering speculative memory state, and analyzes the ben-
efits and tradeoffs for different proposed methods. Many
proposed single-chip machines, can only handle a single
speculative version per processor [5, 10, 13, 16]. Hydra [6]
stores state in dedicated buffers and could be extended to
support more threads than processors, but the paper shows
only one buffer per processor. One design from Steffan and
Mowry [14] makes it possible for each processor to handle
multiple threads with a specific hardware structure (specu-
lative context) for each thread. However, none of the ex-

isting methods will scale to handle a large number of live
threads due to the need for substantial additional hardware
structures for each thread.

We will assume that thread preemption is possible and
run simulations with support for both infinite and a limited
maximum number of live threads in order to see the impact
of this parameter.

As before, when a call instruction is encountered and a
free speculative context is available, a new thread will be
spawned. A running thread will be preempted if the new
is less speculative, since completing the least speculative
threads as soon as possible will allow them to commit and
free up space for new threads. When the live thread limit
has been reached, and a new call is encountered, our pol-
icy is to start the new thread and squash the currently most
speculative one.

Simulations were run without thread-management over-
heads and with oracle run-length prediction, in order to iso-
late the effect of limiting live threads.

0
2
4
6

0 100 500 1000 5k 1k

S
pe

ed
up

Run-length Threshold

go

8
16

256

1024
Infinite

0

2

4

0 100 500 1000 5k 1k

S
pe

ed
up

Run-length Threshold

m88ksim

8
16

256

1024
Infinite

Figure 6. Benefit of run-length thresholds
with limited live threads.

For some of the programs, when the maximum num-
ber of live threads is low, speedup suffers significantly –
we cannot keep all finished and preempted threads in the
system until they can commit. The programs that benefit
are Go and M88ksim (shown in Figure 6); the others are
not affected much, since misspeculations is the major prob-
lem. As the module run-length threshold is increased, fewer
threads are created, and not as many speculative memory
states need to be kept in the system. Consequently, the prob-
lem with limited live thread support is less significant. With
better value prediction or in programs with fewer misspec-
ulations, this technique could be more important; in simula-
tions with perfect value prediction, we have seen that seven
of the applications benefit from run-length thresholds when
the number of live threads are limited.

The best threshold may be different from what is re-
ported in the previous section. For example, Go with a
maximum of 8 or 16 threads performs best at a threshold
of 500-1000, compared to the best threshold of 100 found
in Section 5. The combined effect of live thread limit and
overheads should be considered when choosing threshold
for such a system.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

7 Conclusions

We have presented a new technique for reducing the
impact of thread-management overhead in speculative
module-level parallelism. We use the module run-length
to determine if a new thread is to be created for the call
continuation. If the run-length exceeds a certain run-length
threshold, we create the new thread; otherwise we run the
code sequentially. Empirically, we have found that 500 cy-
cles is a good threshold for overheads in the range 100-200
cycles.

Module run-lengths are not known until the module has
completed execution, but the decision to speculate must be
made when the module is called. We have solved this with a
module run-length predictor, which stores whether the run-
length was above or below the threshold. The most recent
result is used as a prediction for the next invocation of the
same module.

The last-outcome predictor is shown to have a very good
accuracy, between 83% and 99% compared to an oracle.
In addition, six of the nine benchmarks show a speedup
improvement when using run-length prediction. For over-
heads of 200 cycles, the improvements range from 7% to
50% compared to running all modules speculatively.

Acknowledgments

This research has been supported by the Swedish Foun-
dation for Strategic Research under the PAMP program.
The authors would like to thank Peter Rundberg and Jim
Nilsson of Chalmers University of Technology, as well as
the anonymous reviewers, for comments on earlier drafts of
this paper which greatly enhanced the final version.

References

[1] AMD Inc. AMD Athlon Processor x86 Code Optimization
Guide, pages 235–242. AMD Inc., 2002.

[2] M. K. Chen and K. Olukotun. Exploiting method-level par-
allelism in single-threaded Java programs. In Proceedings
of the 1998 International Conference on Parallel Architec-
tures and Compilation Techniques (PACT ’98), pages 176–
184. IEEE Computer Society, Oct. 1998.

[3] L. Codrescu and D. S. Wills. Architecture of the atlas chip-
multiprocessor: Dynamically parallelizing irregular appli-
cations. In Proceedings of the 1999 International Confer-
ence on Computer Design (ICCD ’99), pages 428–435. IEEE
Computer Society, Oct. 1999.

[4] M. Garzaran, M. Prvulovic, J. Llaberia, V. Vinals, L. Rauch-
werger, and J. Torrellas. Tradeoffs in buffering memory
state for thread-level speculation in multiprocessors. In Pro-
ceedings of the Ninth International Symposium on High-
Performance Computer Architecture (HPCA ’03). IEEE
Computer Society, Feb. 2003.

[5] S. Gopal, T. Vijaykumar, J. Smith, and G. Sohi. Specula-
tive versioning cache. In Proceedings of the Fourth Interna-
tional Symposium on High-Performance Computer Architec-

ture (HPCA ’98), pages 195–206. IEEE Computer Society,
Feb. 1998.

[6] L. Hammond, M. Willey, and K. Olukotun. Data specula-
tion support for a chip multiprocessor. In Proceedings of the
Eighth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-
VIII ’98), pages 58–69. ACM Press, Oct. 1998.

[7] S. Hu, R. Bhargava, and L. K. John. The role of return
value prediction in exploiting speculative method-level paral-
lelism. Technical Report TR-020822-02, University of Texas
at Austin, Aug. 2002.

[8] V. Krishnan and J. Torrellas. A chip-multiprocessor architec-
ture with speculative multithreading. IEEE Transactions on
Computers, 48(9):866–880, 1999.

[9] P. S. Magnusson, F. Larsson, A. Moestedt, B. Werner,
F. Dahlgren, M. Karlsson, F. Lundholm, J. Nilsson, P. Sten-
ström, and H. Grahn. SimICS/sun4m: A virtual workstation.
In Proceedings of the USENIX 1998 Annual Technical Con-
ference, pages 119–130. USENIX Association, June 1998.

[10] P. Marcuello and A. Gonzalez. Clustered speculative mul-
tithreaded processors. In Proceedings of the 1999 Interna-
tional Conference on Supercomputing (ICS ’99), pages 365–
372. ACM Press, June 1999.

[11] P. Marcuello and A. Gonzalez. A quantitative assessment of
thread-level speculation techniques. In Proceedings of the
14th International Conference on Parallel and Distributed
Processing Symposium (IPDPS ’00), pages 595–604. IEEE
Computer Society, May 2000.

[12] J. T. Oplinger, D. L. Heine, and M. S. Lam. In search of
speculative thread-level parallelism. In Proceedings of the
1999 International Conference on Parallel Architectures and
Compilation Techniques (PACT ’99), pages 303–313. IEEE
Computer Society, Oct. 1999.

[13] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multi-
scalar processors. In Proceedings of the 22nd Annual Inter-
national Symposium on Computer Architecture (ISCA ’95),
pages 414–425. ACM Press, June 1995.

[14] J. G. Steffan, C. B. Colohan, and T. C. Mowry. Architectural
support for thread-level data speculation. Technical Report
CMU-CS-97-188, Carnegie Mellon University, Nov. 1997.

[15] J. G. Steffan and T. C. Mowry. The potential for using
thread-level data speculation to facilitate automatic paral-
lelization. In Proceedings of the Fourth International Sym-
posium on High-Performance Computer Architecture (HPCA
’98), pages 2–13. IEEE Computer Society, Feb. 1998.

[16] J.-Y. Tsai and P.-C. Yew. The superthreaded architecture:
Thread pipelining with run-time data dependence checking
and control speculation. In Proceedings of the 1996 Confer-
ence on Parallel Architectures and Compilation Techniques
(PACT ’96), pages 35–46. IEEE Computer Society, Oct.
1996.

[17] F. Warg and P. Stenström. Limits on speculative module-
level parallelism in imperative and object-oriented programs
on CMP platforms. In International Conference on Parallel
Architectures and Compilation Techniques (PACT ’01), pages
221–230. IEEE Computer Society, Sept. 2001.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

