
 1

Distributed Geo-rectification of
Satellite Images using Grid Computing

Y.M. Teo*, S.C. Tay**, and J.P. Gozali*

*Department of Computer Science
**Centre for Remote Imaging, Sensing and Processing

National University of Singapore
3 Science Drive 2
Singapore 117543

email: teoym@comp.nus.edu.sg

Abstract
Grid computing seeks to aggregate computing resources within an enterprise
and leverage on resources you don’t own for compute-intensive applications.
Geo-rectification is a process for correcting spatial location and orientation of a
satellite image. This paper focuses on the parallelization of the compute-
intensive satellite image geo-rectification problem on a cluster grid. We discuss
our approach to data and task partitioning, visualization technique and the
archival of data. The computational tasks include wrapping satellite positional
data to compensate the earth curvature, and consist of several steps such as
image re-sampling, resolution conversion and image matching. Experimental
results obtained using commodity PCs are discussed.

1. Introduction

Grid computing [11, 13] seeks to efficiently coordinate the sharing of geographically
distributed computing resources, thereby bringing supercomputing power to its users.
Unlike cluster computing [4, 5, 26] that is more constrained to computation on a local
area networked of processors, grid computing enables applications to utilize resources
that are spread across wide area networks. Globus [12] is a grid computing toolkit for the
deployment of grid applications and systems. Nimrod/G [1, 3] is a resource management
system for scheduling of grid applications built on top of Globus. Other grid systems such
as Condor [24] and its Globus enabled variant, Condor/G [14], enable the harnessing of
idle cycles. Grid-solvers have also been developed on these systems. In [15, 18], a web-
based problem solving environment is introduced to simplify the submission, monitoring
and steering of Master-Worker [17] based grid computing applications. In [7],
architecture for matching grid application requirements to a set of heterogeneous grid
resources is proposed. Our grid middleware, called ALiCE (Adaptive and scaLable
Internet-based Computing Engine), is a portable software technology for developing and
deploying general-purpose grid applications and systems. ALiCE aggregates and
virtualises computer resources on the Internet/intranet into one computing environment
through a platform-independent consumer-producer resource-sharing model, and

dcsteoym
Proceedings of the International Parallel & Distributed Processing Symposium, IEEE Computer Society Press, pp. x-xx, Nice, France, April 2003 (submitted).

 2

harnesses idle resources for computation to increase the usable power of existing systems
on the network.

Grid computing can be exploited for computationally intensive tasks such as protein
folding, production simulation, operation research, climate modeling, etc. This paper
discusses the application of grid computing in satellite remote sensing [6], specifically the
geo-rectification of earth images. Geo-rectification is the correction of skew caused by
the earth’s curvature in raw satellite images. It establishes the image in the correct spatial
location and orientation. Geo-rectification represents the projective transformation of a
tilted photograph (model) to an output print assumed to be tilt free (assumes the
correction is orthogonal to the surface, or a vertically corrected model). Pixels are
relocated onto a new grid by extrapolating their true location from a source map or
corrected image in which the new plane will represent a map projection system with a
defined array of coordinates [25]. Figure 1 illustrates the geo-rectification process. A
satellite image must be geo-rectified before it can be used in various geographic and
scientific applications [22].

Figure 1: Geo-rectification of Satellite Image

Several projects have attempted to speed up remote sensing processes using parallel and
distributed computing techniques. An ATM based wide area network is used in [18, 19]
and a Beowulf cluster [27] is used in [30]. The challenge of using grid computing
techniques for geo-rectification of satellite image data includes the partitioning of tasks
and data, visualization methods for displaying of results and the final archival of data on
secure storage. Partitioning of tasks and data is crucial since grid resources are usually
heterogeneous in nature.

The rest of the paper is as follows. In section 2, we introduce ALiCE, our prototype Java-
based grid computing system. In section 3, we discuss the geo-rectification process.
Section 4 describes the distributed geo-rectification method on a grid computing system.
In section 5 we present an analysis of the experiments conducted, and section 6 contains
the concluding remarks.

Original Image Image after Geo-rectification

 3

2. ALiCE Grid Computing

ALiCE, developed at the National University of Singapore, is a Java-based grid
computing middleware that supports the development and execution of generic Grid
applications over a geographically distributed, heterogeneous collection of resources.
The ALiCE middleware is written in Java and uses Sun Microsystems’ Jini [29] and
JavaSpaces [28] technologies for resource discovery and communication. Jini provides an
adaptive network architecture that is scalable, evolvable and flexible suitable for a
dynamic distributed computing environment. JavaSpaces is a tuplespace-based [10]
object repository. ALiCE objects such as computation tasks, data, code and results are
stored in JavaSpaces. As shown in Figure 2, ALiCE consumer-producer architecture
consists of three entities: consumers, a resource broker, and producers. Grid applications
are launched through a consumer GUI for execution at producers that share its compute
cycles through the resource broker. The resource broker manages application execution
and resource management.

Figure 2: ALiCE Consumer-Producer Grid

ALiCE supports job parallelism to maximize throughput and object (task) parallelism to
maximize performance. To exploit object parallelism, ALiCE Object-based Programming
Template (AOPT) hides the complexities of parallel programming. The four main
components of AOPT are shown in Table 1.

� inter face to users
� launch point for
applicat ions
� collect ion point for results
 and v isualizat ion
� …

CCoo nn ss uu mm eeCCoo nn ss uu mm ee rr

� provide comput ing power
� executes tasks
� …

PPrr oo dd uu cc eePPrr oo dd uu cc ee rr

Internet /
Intranet

� authent icat ion
� applicat ion execut ion control
� resource managem ent

� scheduling
� load balancing

� …

RReess oo uu rr cc ee BB rr oo kk ee rr

tasks results

 4

Template Function
TaskGenerator x Allows application to be invoked at the resource broker by invocation of

the user’s main method.
x Provides methods for user applications to use to send tasks to ALiCE
x Hides dynamic code linking mechanisms.

ResultCollector x Allows application to be invoked at the Consumer node, waiting for
results to be returned from the Resource Broker.

x Provides methods for user applications to retrieve the results from Result
Listener object residing in the consumer node.

Task x Allows the producer nodes to return a Result object to the Resource
Broker upon completing the execution.

x Allows the user to specify what functions to execute at the producer
nodes.

Result x Provides an interface for producer to instantiate and returns any evaluated
or intermediate data.

x Allows user to store the result of execution.

Table 1: ALiCE Programming Template

ALiCE uses the TaskGenerator-ResultCollector execution model as shown in Figure 3.
When an ALiCE application is launched, its Java Archive (JAR) file containing the
classes that implement the template is sent to the resource broker. The TaskGenerator at
the Resource Broker initiates the application and produces a pool of tasks. These tasks
are distributed for execution at Producers. Producers return result objects to the Resource
Broker. To support visualization of data, the Result Collector is started at the consumer
when the application is submitted. During the execution of the application, the
ResultCollector at the Consumer received result objects for visualization from the
Resource Broker. Alternatively, results are collected by the resource broker and returned
to the consumer as a file.

We have developed several applications using ALiCE. These applications include the
distributed Mandelbrot Set Generator, computational genomics applications such as
protein alignment and sequence comparator, distributed equation solver, DES key search,
N-body simulation, satellite image processing for red tide monitoring, etc.

 5

Figure 3: ALiCE Execution Model

3. Sequential Geo-rectification

Figure 4 shows the seven main steps in the geo-rectification of satellite images. A geo-
rectification process starts with the setting up of geometric parameters and processing
parameters. Geometric parameters supply the sun and view zenith angles on the ellipsoid
relative to a normal to that surface, as well as azimuth angles relative to local North.
Processing parameters provide information about the area of interest, the level of detail,
and the type of spectral band.

\

Figure 4: Sequential Geo-rectification Process

results

Consumer Resource
Broker

Producer 1

Producer 2

Producer n

task

.

.

.

Visualizer

task

task

results

4. ResultCollector at the
visualizer collects
results returned by
Resource Broker

1. TaskGenerator at
Resource Broker
initiates application and
produces a pool of task
objects.

2. The TaskExecute method is
run at the Producers

3. Result objects produced
are returned to the
Resource Broker

Setup
parameters

Select
GCPs

Transform
co-ordinates

(T)

Resample
image (R)

Visualise
image (V)

Add gridlines
& boundaries

Finalise
image

 6

The next step is the selection of Ground Control Points (GCPs). These points are specific
pixels in an image from which the output map coordinates are known. GCPs consist of
two pairs of coordinates. The source coordinates refers to the coordinates in the image
being rectified, while the destination or known reference coordinates are the coordinates
of the reference image to which the source image is being registered. After identifying
several well-distributed GCP pairs, the coordinate information is processed to determine
the transformation equations to apply. The transformation maps the original (row and
column) image coordinates onto their new ground coordinates.

After coordinate transformation, a procedure called re-sampling is used to determine the
digital values to place in the new pixel locations of the corrected output image. The re-
sampling process calculates the new pixel values from the original digital pixel values in
the uncorrected image [8, 9, 23]. Three common methods for re-sampling are nearest
neighbor, bilinear interpolation, and cubic convolution.

Following image re-sampling is the image generation step where contrast enhancement is
applied. Contrast enhancement involves changing the original values so that more of the
available range is used, thereby increasing the contrast between targets and their
backgrounds. By manipulating the range of digital values in an image, graphically
represented by its histogram in Figure 5, we can apply various enhancements to the data.

Figure 5: An Image and its Brightness Histogram

Next, grid lines and land boundaries are added to provide ground features and annotations
to the image. This allows the clear demarcation of land and sea bodies as well as for
marking out different land areas. In addition, the overlaying of boundaries allows areas
that are not of interest to be masked out, thus focusing the attention to selected areas [2].
The addition of such lines enables the measurement of distance of an observed
phenomenon from a fixed locale. An example of this application is the measurement of
oil spills [25] and their distance from neighboring countries.

The last step of the geo-rectification process is the finalization of the geo-rectified image
to permanent storage. In the Portable PixMap (PPM) format, an image is represented in
terms of color values but exclude representation for various geophysical phenomena.
When information of geophysical phenomena needs to be stored, the Hierarchical Data
Format (HDF) format is used.

 7

4. Distributed Geo-rectification using ALiCE Grid

Repetitive steps in the geo-rectification process can be executed simultaneously, thereby
reducing the total execution time. ALiCE facilitates the parallel execution of the
applications on a pool of networked computing resources.

We observe that the steps for transformation, re-sampling and visualization of image
(TRV) are repeated many times for the entire image. Measurements on a single processor
system showed that these three steps account for 60% to 90% of execution time. Figure 6
shows the seven steps grouped into three phases: setup, execution, and termination. Setup
and select correspond to the two steps in the setup phase: setting up of geo-rectification
parameters and the selection of GCPs. T, R and V correspond to the three steps in the
execution phase: co-ordinate transformation, image re-sampling and visualization. Draw
and finalize correspond to the two steps of the termination phase: drawing of boundary
lines and the finalization of the output image. Both the setup and the termination phases
are sequential.

Figure 6: Three Main Phases in Geo-rectification

Figure 7 shows a sequential and a Grid-based geo-rectification. In Grid-based geo-
rectification, the TRV steps are executed in parallel as task objects. This application is
amendable to geometric partitioning (single program multiple data) as it performs the
same set of TRV operations on different sets of data. This homogeneity can be exploited
by executing different partitions of the image in parallel on different processors.

SETUP TERMINATION EXECUTION

Setup
parameters

Select
GCPs

Transform
co-ordinates

(T)

Resample
image (R)

Visualise
image (V)

Add gridlines &
boundaries

Finalise
image

 8

Figure 7: Sequential versus Grid-based Geo-rectification

A typical image file size is of the order of hundreds of megabytes. To avoid having to
send large image chunks over the network, we employ a variant of geometric partitioning
[16, 21]. A task object contains only parameters that describe an image chunk; it does
not contain the image chunk data. Each partition contains only the parameters for
calculating the matrix to map pixels from the source image to the output image. A task
execution produces a result object consisting of a mapping matrix for a particular image
partition. As shown in Figure 8, a mapping matrix for an image partition provides pixel
locations that are used to construct the geo-rectified image. In step 1, a mapping matrix is
obtained from a result object. In step 2, pixel values are read from the source image
based on the pixel locations that are provided in the mapping matrix. In step 3, the pixel
values are read from the source image, and are written to the output image as the pixels
for the geo-rectified image chunk in step 4.

Figure 8: Result Mapping Matrix Processing to Produce a Geo-rectified Image Partition

Setup Select Draw Finalize

R T V

R T V

R T V

…

Consumer

Producer 1

Producer 2

…

Producer n

Producer 3

R T V

Setup Select Draw Finalize R T V R T V R T V R T V … Sequential

Mapping Matrix

422 423 424 425 427

Result
Output Image

Source Image … 5.2

5.1 4.9 5.0 5.2 5.4 …
427 426 425 424 423 422 Element Location … …

227 425 424 423 422

Final Values

5.2 5.1 4.9 5.0 5.4

5.2

5.1 4.9 5.0 5.4

n

o

p

q

 9

Setup and termination phases of the geo-rectification process involve interaction with the
user; therefore, they are implemented as part of the Result Collector. Parallel execution is
achieved by partitioning the image data into task objects. The partitioning takes place at
the Task Generator. Each task will apply co-ordinate transformation and image re-
sampling on the image chunk that it is assigned to.

As shown in Figure 9, a TaskGenerator is sent to the Resource Broker; Task generated are
sent to Producers; Producers execute the Task and package output in Result; Result
objects sent back to the Resource Broker; Result objects sent to the ResultCollector on the
Consumer; Result objects retrieved and visualized at the Consumer. The code segments
for Task, Task Generator and Result Collector are shown in Figure 10.

Figure 9: Geo-rectification on ALiCE

Figure 10: Code Segments for Task, Task Generator and Result Collector

public class swTask implements Task {

 public Result execute() {
 // .. initialize data structures

 for (int j=0;j<chunkHeight;j++) {
 for (int i=0;i<chunkWidth;i++) {
 /* perform coordinate

 transformation
 & image resampling */
 }
 return result;
 }
 }// end execute()

// .. other methods
//

}// end class

public class swGenerator extends TaskGenerator {

 public void generateTasks() {
 // ... initialize variables

 for (int h=0;h<cHeight;h++) {
 for (int w=0;w<cWidth;w++) {
 swTask _swTask=new swTask(); // create task
 process(_swTask); // send task to Res. Broker
 taskGenerated++;
 }
 }
 } // end generateTask()

// .. other methods
//

} // end class

public class swTaskListener extends ResultCollector {

 // .. initialize data structure

 public void run() {
 while (resultsCollected<resultsExpected) {
 swTask result=((swTask)swGUI.collectResult()); // collect results
 vResults.add(result); // store result for visualization

 // .. datastructure maintenance code
 }
 } // end run()

 // .. other methods
 //
}// end class

…

Return results to RB

Resource Broker

Producer

Data I/O

TaskGenerator Result

Distributed Computing

Object/Meta-Object

Visualization

Consumer

TaskGenerator

 Task

ResultCollector

ResultManager

Task

…

 Producer

Result

Task

Task

Geo-rectification application

X

Y

Task.execute()
Z

[

\

]

 10

5. Experiments and Analysis

Our experiments were carried out on a low cost commodity PC cluster consisting of eight
nodes connected using a 100 Mbps Ethernet switch. Each node is an Intel P3-866Mhz
with 256 MB of memory and runs RedHat Linux 7.0. The resource broker and producers
are installed with Hotspot Server Virtual Machines and client node runs the Hotspot
Client Virtual Machine.

Two image files of varying size were used – image-file 1 (108 MB), and image-file 2
(136 MB). Two different resolutions, 0.025 and 0.01 are used on each image-file. A
smaller resolution means a bigger map, and thus, a bigger problem size. The elapsed time
for each run (Tp) is defined as the total time for the generation of tasks at the resource
broker, communication time in shipping tasks to producers and producer’s execution
time, and the time incurred in collecting results by the resource broker. We define the
speedup (Sp) and efficiency (Ep) using the following ratios:

Sp= Ts/ Tp

Ep= (Sp /p) * 100%

Table 2 shows the sequential geo-rectification execution time on an Intel P3-866MHz
computer. Based on our partitioning strategy, the image is partitioned into tasks of
various sizes. For example, a task size of 1000x1000 will results in 25 tasks with an
estimated execution time of 25 seconds per task. Selection of task granularity and
number of tasks are important in load balancing and scalability experiments.

Test Data file = s2000144031151.l2 (108,316,813 bytes)
Resolution = 0.01

No. of
tasks

Task Size Execution Time
(sec)

Execution Time
per task (sec)

5 2000x2000 654.4 130.9
25 1000x1000 636.1 25.4
60 1000x400 609.1 10.2
132 400x400 608.7 4.6
253 400x200 648.8 2.7
506 200x200 836.9 1.7

Table 2: Image-File 1 – Sequential Time versus Number of Tasks

Table 3 shows the performance for varying number of tasks and producers. The
execution time increases when the number of tasks is decreased due to insufficient
number of tasks to keep all the producers occupied. ALiCE uses eager task- scheduling.
In addition, a task buffer at each producer masked the round trip time overhead in task
scheduling.

 11

Test Data Task Size
No.
of

Tasks

Sequential
Time, Ts

(sec)

No. of
Producers

Execution
Time, Tp

(sec)

Speedup,
(Sp)

Efficiency
(Ep)

2 56.1 1.9 94.8
4 42.2 2.5 63.0

400x400

25

106.4

6 40.2 2.7 44.2
2 61.8 1.6 82.1
4 47.7 2.1 53.2

Image-file 1
(108 MB)

Resolution:
0.025

400x200

45

101.5

6 32.0 3.2 52.9
2 421.3 1.5 75.5
4 252.8 2.5 63.0

1000x1000

25

636.1

6 198.1 3.2 53.5
2 308.4 1.99 98.8
4 176.0 3.5 86.5

Image-file 1
(108MB)

Resolution
0.01

1000x400

60

609.1

 6 128.6 3.7 78.8
2 79.3 1.8 88.5
4 59.2 2.4 59.5

1000x400

12

140.7

 6 42.2 3.3 55.5
2 64.9 1.9 96.0
4 52.9 2.4 58.8

Image-file 2
(136 MB)

Resolution:
0.025

400x400

30

124.4

 6 50.8 2.5 40.8

Table 3: Varying Number of Tasks and Number of Producers

The experiments above show the distributed processing of one satellite image on a grid of
processors. Typically, each satellite transmits about ten satellite images to a ground
station per visit. A ground station receives images for up to ten satellites per day. To
process all the images received in a day, multiple satellite images can be distributed over
the ALiCE grid to exploit job-level parallelism.

To further demonstrate the capability of the grid on low cost commodity processors, we
conducted an experiment using a 50MB image file partitioned into thirty tasks. Using
eight slow Pentium II (400MHz) PCs connected via 10Mbps Ethernet, an execution time
of 0.8 minute was recorded versus the original application written in C/C++ that took 13.1
minutes on a Sun UltraSPARC machine.

6. Conclusions

As many real-world applications for computing have high demand for processing powers,
it is critical to have a platform that readily supply such computing powers with the ease of
use. Grid computing, by pooling un-used CPU cycles together, has good potential in
meeting the needs of high performance computing. We have implemented a grid-based
geo-rectification system using our Java-based Grid computing system ALiCE (Advanced
and scaLable Internet-based Computing Engine). We focus on the parallelization of the
problem and its mapping onto a grid system. In the area of exploiting parallelization, we
have already observed the percolation of parallelization techniques to the processor level,
with superscalar pipelining processors, symmetric multi-processor (SMP) systems and
recently, symmetric multi-threading (SMT) processors pushing the envelope of

 12

performance even further. We see great gains in studying how parallelization at various
hardware and software levels can be used for maximization of performance. More
importantly, grid computing can readily bring high performance computing to its users by
harnessing idle compute cycles from existing IT infrastructure without additional costly
hardware investment.

Ongoing work on system problem includes the scalability of ALiCE on wide-area
network, load balancing algorithm with quality of service, and cluster-based resource
broker with data server to support datagrid applications. In the area of grid programming
problem, we are developing grid programming model and environment to support
computational genomics.

Acknowledgement
We thank S.C. Low for implementing the first version of this platform and his valuable
contribution to the project.

References

1. Abramson D., Giddy J., and Kotler L., High Performance Parametric Modeling with
Nimrod/G: Killer Application for the Global Grid?, Proceedings of the 14th
International Parallel and Distributed Processing Symposium (IPDPS) 2000 ,
Mexico, IEEE CS Press, USA, 2000.

2. Bugayevskiy L.M., and Snyder J.P., Map Projections: A Reference Manual, Taylor
and Francis, London, United Kingdom, 1995.

3. Buyya R., Abramson D., and Giddy J., Nimrod/G: An Architecture for a Resource
Management and Scheduling System in a Global Computational Grid, Proceedings of
the 4th International Conference and Exhibition on High-Performance computing in
the Asia-Pacific Region (HPCASIA’2000), China, IEEE CS Press, USA, 2000.

4. Buyya R., High Performance Cluster Computing: Programming and Applications
Vol.2, Prentice Hall PTR, New Jersey, USA, 1999.

5. Buyya R., High Performance Cluster Computing: System and Architectures Vol.1,
Prentice Hall PTR, New Jersey, USA, 1999.

6. Campbell J.B., Introduction to Remote Sensing 2nd ed., Guildford Press, New York,
USA, 1996.

7. Czajkowski K., Foster I., and Kesselman C., Resource coallocation in computational
grids. Proceedings of the 8th IEEE International Symposium on High Performance
Distributed Computing (HDPC-8), 1999.

8. ERDAS, ERDAS Field Guide, 4th Ed., ERDAS Inc. Atlanta, USA, 1997.
9. ESRI, Fifteenth Annual ESRI User Conference Proceedings 1995, 1995.
10. Fenwick J.B., Jr. and Pollock L.K., Issues and experiences in implementing a

distributed tuplespace. Technical Report TR 9706, University of Delaware, 1996.
11. Foster I., and Kesselman C., editors. The Grid: Blueprint for a Future Computing

Infrastructure. Morgan Kaufmann Publishers, 1999.
12. Foster I., and Kesselman C., Globus: A Metacomputing Infrastructure Toolkit,

Proceedings of the Workshop on Environments and Tools for Parallel Scientific
Computing, SIAM, Lyon, France, 1996.

 13

13. Foster I., Kesselman C., and Tuecke S., The Anatomy of the Grid: Enabling Scalable
Virtual Organizations, International Journal on Supercomputing Applications 2001,
2001.

14. Frey J., Tannenbaum T., Livny M., Foster I., Tuecke S., Condor-G: A Computation
Management Agent for Multi-Institutional Grids, Proceedings of the 10th
International Symposium on High Performance Distributed Computing (HPDC-10),
IEEE Press, 2001.

15. Good M., and Goux J.P., iMW : A web-based problem solving environment for Grid
computing applications. Technical report, Department of Electrical and Computer
Engineering, Northwestern University, 2000.

16. Goodrich M.T., Geometric Partitioning Made Easier, Even in Parallel, Proceedings of
the 9th ACM Symposium on Computational Geometry, 1993.

17. Goux J.P., Kulkani S., Linderoth J., and Yoder M., An enabling framework for
master-worker applications on the computational grid., Proceedings of 9th IEEE
International Symposium on High Performance Distributed Computing (HDPC-9),
2000.

18. Hawick K.A., and James H.A., A Web-based Interface for On-Demand Processing of
Satellite Imagery Archives. Proceedings of the Australian Computer Science
Conference (ACSC) ’98, Perth, Australia, 1998.

19. Hawick K.A., and James H.A., Distributed High-Performance Computation for
Remote Sensing, Proceedings of Supercomputing ’97, San Jose, USA, 1997.

20. Heng W.A. and Lim H., Oceanic phenomena observed in satellite data collected at
CRISP, Oceanology International ’97 Pacific Rim, 1997.

21. Hu Y.C., Teng S.H., and Johnsson S.L., A Data-Parallel Implementation of the
Geometric Partitioning Algorithm, Proceedings of the 8th SIAM Conference on
Parallel Processing for Scientific Computing, Minneapolis, USA, 1997.

22. Jenson J.R., Introductory Digital Image Processing: A Remote Sensing Perspective.
Prentice Hall,, New Jersey, USA, 1986.

23. Lillisand T.M., and Kiefer R.W., Remote Sensing and Image Interpretation
3rd ed., John Wiley and Sons Inc, 1994.

24. Litzkow M.J., Livny M., and Mutka M.W., Condor -- A Hunter of Idle Workstations.
Proceedings of the 8th International Conference on Distributed Computing Systems,
1988.

25. Lu J., Lim H., Liew S.C., Bao M., and Kwoh L.K., Ocean oil pollution mapping with
satellite imagery in Southeast Asia (2000). 28th International Symposium on Remote
Sensing of Environment, Cape Town, South Africa, 2000.

26. Pfister G.F., In Search of Clusters, Prentice Hall PTR, New Jersey, USA, 1998.
27. Sterling T.L., Salmon J., Backer D.J., and Savarese D.F., How to Build a Beowulf: A

Guide to the Implementation and Application of PC Clusters 2nd Printing, MIT Press,
Cambridge, Massachusetts, USA, 1999.

28. Sun Microsystems. JavaSpace Specification, March 1998.
29. Waldo J., The Jini Architecture for Network-centric Computing. Communications of

the ACM, pages 76--82, July 1999.
30. Yang C.T., Using a Beowulf Cluster for a Remote Sensing Application, Proceedings

of the Asian Conference on Remote Sensing (ACRS) 2001, Singapore, 2001.

