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Abstract 
Grid computing seeks to aggregate computing resources within an enterprise 
and leverage on resources you don’t own for compute-intensive applications. 
Geo-rectification is a process for correcting spatial location and orientation of a 
satellite image. This paper focuses on the parallelization of the compute-
intensive satellite image geo-rectification problem on a cluster grid. We discuss 
our approach to data and task partitioning, visualization technique and the 
archival of data. The computational tasks include wrapping satellite positional 
data to compensate the earth curvature, and consist of several steps such as 
image re-sampling, resolution conversion and image matching.  Experimental 
results obtained using commodity PCs are discussed. 
 

1. Introduction 

Grid computing [11, 13] seeks to efficiently coordinate the sharing of geographically 
distributed computing resources, thereby bringing supercomputing power to its users. 
Unlike cluster computing [4, 5, 26] that is more constrained to computation on a local 
area networked of processors, grid computing enables applications to utilize resources 
that are spread across wide area networks.  Globus [12] is a grid computing toolkit for the 
deployment of grid applications and systems.  Nimrod/G [1, 3] is a resource management 
system for scheduling of grid applications built on top of Globus. Other grid systems such 
as Condor [24] and its Globus enabled variant, Condor/G [14], enable the harnessing of 
idle cycles.  Grid-solvers have also been developed on these systems.  In [15, 18], a web-
based problem solving environment is introduced to simplify the submission, monitoring 
and steering of Master-Worker [17] based grid computing applications.  In [7], 
architecture for matching grid application requirements to a set of heterogeneous grid 
resources is proposed. Our grid middleware, called ALiCE (Adaptive and scaLable 
Internet-based Computing Engine), is a portable software technology for developing and 
deploying general-purpose grid applications and systems. ALiCE aggregates and 
virtualises computer resources on the Internet/intranet into one computing environment 
through a platform-independent consumer-producer resource-sharing model, and 
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harnesses idle resources for computation to increase the usable power of existing systems 
on the network.  
 
Grid computing can be exploited for computationally intensive tasks such as protein 
folding, production simulation, operation research, climate modeling, etc.  This paper 
discusses the application of grid computing in satellite remote sensing [6], specifically the 
geo-rectification of earth images.  Geo-rectification is the correction of skew caused by 
the earth’s curvature in raw satellite images.  It establishes the image in the correct spatial 
location and orientation. Geo-rectification represents the projective transformation of a 
tilted photograph (model) to an output print assumed to be tilt free (assumes the 
correction is orthogonal to the surface, or a vertically corrected model). Pixels are 
relocated onto a new grid by extrapolating their true location from a source map or 
corrected image in which the new plane will represent a map projection system with a 
defined array of coordinates [25].  Figure 1 illustrates the geo-rectification process. A 
satellite image must be geo-rectified before it can be used in various geographic and 
scientific applications [22]. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1:  Geo-rectification of Satellite Image 
 
Several projects have attempted to speed up remote sensing processes using parallel and 
distributed computing techniques. An ATM based wide area network is used in [18, 19] 
and a Beowulf cluster [27] is used in [30]. The challenge of using grid computing 
techniques for geo-rectification of satellite image data includes the partitioning of tasks 
and data, visualization methods for displaying of results and the final archival of data on 
secure storage.  Partitioning of tasks and data is crucial since grid resources are usually 
heterogeneous in nature. 
 
The rest of the paper is as follows.  In section 2, we introduce ALiCE, our prototype Java-
based grid computing system.  In section 3, we discuss the geo-rectification process.  
Section 4 describes the distributed geo-rectification method on a grid computing system.  
In section 5 we present an analysis of the experiments conducted, and section 6 contains 
the concluding remarks. 

Original Image                                Image after Geo-rectification 
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2. ALiCE Grid Computing 

ALiCE, developed at the National University of Singapore, is a Java-based grid 
computing middleware that supports the development and execution of generic Grid 
applications over a geographically distributed, heterogeneous collection of resources.  
The ALiCE middleware is written in Java and uses Sun Microsystems’ Jini [29] and 
JavaSpaces [28] technologies for resource discovery and communication. Jini provides an 
adaptive network architecture that is scalable, evolvable and flexible suitable for a 
dynamic distributed computing environment.  JavaSpaces is a tuplespace-based [10] 
object repository.  ALiCE objects such as computation tasks, data, code and results are 
stored in JavaSpaces.  As shown in Figure 2, ALiCE consumer-producer architecture 
consists of three entities: consumers, a resource broker, and producers.  Grid applications 
are launched through a consumer GUI for execution at producers that share its compute 
cycles through the resource broker.  The resource broker manages application execution 
and resource management. 
 

 
 

Figure 2: ALiCE Consumer-Producer Grid 

 
ALiCE supports job parallelism to maximize throughput and object (task) parallelism to 
maximize performance. To exploit object parallelism, ALiCE Object-based Programming 
Template (AOPT) hides the complexities of parallel programming. The four main 
components of AOPT are shown in Table 1. 
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Template Function 
TaskGenerator x Allows application to be invoked at the resource broker by invocation of 

the user’s main method. 
x Provides methods for user applications to use to send tasks to ALiCE 
x Hides dynamic code linking mechanisms. 

ResultCollector x Allows application to be invoked at the Consumer node, waiting for 
results to be returned from the Resource Broker. 

x Provides methods for user applications to retrieve the results from Result 
Listener object residing in the consumer node. 

Task x Allows the producer nodes to return a Result object to the Resource 
Broker upon completing the execution. 

x Allows the user to specify what functions to execute at the producer 
nodes. 

Result x Provides an interface for producer to instantiate and returns any evaluated 
or intermediate data. 

x Allows user to store the result of execution. 

Table 1: ALiCE Programming Template 

 
 
ALiCE uses the TaskGenerator-ResultCollector execution model as shown in Figure 3. 
When an ALiCE application is launched, its Java Archive (JAR) file containing the 
classes that implement the template is sent to the resource broker. The TaskGenerator at 
the Resource Broker initiates the application and produces a pool of tasks.  These tasks 
are distributed for execution at Producers.  Producers return result objects to the Resource 
Broker.  To support visualization of data, the Result Collector is started at the consumer 
when the application is submitted. During the execution of the application, the 
ResultCollector at the Consumer received result objects for visualization from the 
Resource Broker.  Alternatively, results are collected by the resource broker and returned 
to the consumer as a file.  
 
We have developed several applications using ALiCE. These applications include the 
distributed Mandelbrot Set Generator, computational genomics applications such as 
protein alignment and sequence comparator, distributed equation solver, DES key search, 
N-body simulation, satellite image processing for red tide monitoring, etc. 
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Figure 3: ALiCE Execution Model 
 
 
3. Sequential Geo-rectification 
 
Figure 4 shows the seven main steps in the geo-rectification of satellite images. A geo-
rectification process starts with the setting up of geometric parameters and processing 
parameters. Geometric parameters supply the sun and view zenith angles on the ellipsoid 
relative to a normal to that surface, as well as azimuth angles relative to local North.  
Processing parameters provide information about the area of interest, the level of detail, 
and the type of spectral band. 
 
 

 
 
 
 
 
 
\ 
 
 
 
 
 

Figure 4: Sequential Geo-rectification Process 
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The next step is the selection of Ground Control Points (GCPs).  These points are specific 
pixels in an image from which the output map coordinates are known. GCPs consist of 
two pairs of coordinates. The source coordinates refers to the coordinates in the image 
being rectified, while the destination or known reference coordinates are the coordinates 
of the reference image to which the source image is being registered. After identifying 
several well-distributed GCP pairs, the coordinate information is processed to determine 
the transformation equations to apply.  The transformation maps the original (row and 
column) image coordinates onto their new ground coordinates. 
 
After coordinate transformation, a procedure called re-sampling is used to determine the 
digital values to place in the new pixel locations of the corrected output image. The re-
sampling process calculates the new pixel values from the original digital pixel values in 
the uncorrected image [8, 9, 23]. Three common methods for re-sampling are nearest 
neighbor, bilinear interpolation, and cubic convolution.  
 
Following image re-sampling is the image generation step where contrast enhancement is 
applied. Contrast enhancement involves changing the original values so that more of the 
available range is used, thereby increasing the contrast between targets and their 
backgrounds. By manipulating the range of digital values in an image, graphically 
represented by its histogram in Figure 5, we can apply various enhancements to the data. 
 
 
 

 

 

Figure 5: An Image and its Brightness Histogram 
 

 
Next, grid lines and land boundaries are added to provide ground features and annotations 
to the image. This allows the clear demarcation of land and sea bodies as well as for 
marking out different land areas.  In addition, the overlaying of boundaries allows areas 
that are not of interest to be masked out, thus focusing the attention to selected areas [2]. 
The addition of such lines enables the measurement of distance of an observed 
phenomenon from a fixed locale. An example of this application is the measurement of 
oil spills [25] and their distance from neighboring countries. 
 
The last step of the geo-rectification process is the finalization of the geo-rectified image 
to permanent storage.  In the Portable PixMap (PPM) format, an image is represented in 
terms of color values but exclude representation for various geophysical phenomena. 
When information of geophysical phenomena needs to be stored, the Hierarchical Data 
Format (HDF) format is used. 
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4. Distributed Geo-rectification using ALiCE Grid 
 
Repetitive steps in the geo-rectification process can be executed simultaneously, thereby 
reducing the total execution time. ALiCE facilitates the parallel execution of the 
applications on a pool of networked computing resources.  
 
We observe that the steps for transformation, re-sampling and visualization of image 
(TRV) are repeated many times for the entire image. Measurements on a single processor 
system showed that these three steps account for 60% to 90% of execution time.  Figure 6 
shows the seven steps grouped into three phases: setup, execution, and termination.  Setup 
and select correspond to the two steps in the setup phase: setting up of geo-rectification 
parameters and the selection of GCPs.  T, R and V correspond to the three steps in the 
execution phase: co-ordinate transformation, image re-sampling and visualization. Draw 
and finalize correspond to the two steps of the termination phase: drawing of boundary 
lines and the finalization of the output image. Both the setup and the termination phases 
are sequential. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6:  Three Main Phases in Geo-rectification  
 
 
Figure 7 shows a sequential and a Grid-based geo-rectification.  In Grid-based geo-
rectification, the TRV steps are executed in parallel as task objects. This application is 
amendable to geometric partitioning (single program multiple data) as it performs the 
same set of TRV operations on different sets of data.  This homogeneity can be exploited 
by executing different partitions of the image in parallel on different processors.  
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Figure 7:  Sequential versus Grid-based Geo-rectification 

 
A typical image file size is of the order of hundreds of megabytes.  To avoid having to 
send large image chunks over the network, we employ a variant of geometric partitioning 
[16, 21].   A task object contains only parameters that describe an image chunk; it does 
not contain the image chunk data.  Each partition contains only the parameters for 
calculating the matrix to map pixels from the source image to the output image.  A task 
execution produces a result object consisting of a mapping matrix for a particular image 
partition.  As shown in Figure 8, a mapping matrix for an image partition provides pixel 
locations that are used to construct the geo-rectified image.  In step 1, a mapping matrix is 
obtained from a result object.  In step 2, pixel values are read from the source image 
based on the pixel locations that are provided in the mapping matrix.  In step 3, the pixel 
values are read from the source image, and are written to the output image as the pixels 
for the geo-rectified image chunk in step 4. 
 
 

 

 
 
 
 

 

 

 

 

 

 

 

Figure 8:  Result Mapping Matrix Processing to Produce a Geo-rectified Image Partition 
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Setup and termination phases of the geo-rectification process involve interaction with the 
user; therefore, they are implemented as part of the Result Collector.  Parallel execution is 
achieved by partitioning the image data into task objects. The partitioning takes place at 
the Task Generator. Each task will apply co-ordinate transformation and image re-
sampling on the image chunk that it is assigned to.   
 
As shown in Figure 9, a TaskGenerator is sent to the Resource Broker; Task generated are 
sent to Producers; Producers execute the Task and package output in Result; Result 
objects sent back to the Resource Broker; Result objects sent to the ResultCollector on the 
Consumer; Result objects retrieved and visualized at the Consumer.  The code segments 
for Task, Task Generator and Result Collector are shown in Figure 10. 

 

 
 
 
 
 
 

 

 

 

 
 

Figure 9: Geo-rectification on ALiCE 
 

 

Figure 10: Code Segments for Task, Task Generator and Result Collector 
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  public Result execute()  { 
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public class swTaskListener extends ResultCollector { 
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  public void run() { 
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      swTask result=((swTask)swGUI.collectResult()); // collect results 
      vResults.add(result); // store result for visualization 
 
      // .. datastructure maintenance code 
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  } // end run() 
 
  // .. other methods 
  // 
}// end class 
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5.   Experiments and Analysis  

Our experiments were carried out on a low cost commodity PC cluster consisting of eight 
nodes connected using a 100 Mbps Ethernet switch.  Each node is an Intel P3-866Mhz 
with 256 MB of memory and runs RedHat Linux 7.0. The resource broker and producers 
are installed with Hotspot Server Virtual Machines and client node runs the Hotspot 
Client Virtual Machine. 
 
Two image files of varying size were used – image-file 1 (108 MB), and image-file 2 
(136 MB). Two different resolutions, 0.025 and 0.01 are used on each image-file. A 
smaller resolution means a bigger map, and thus, a bigger problem size. The elapsed time 
for each run (Tp) is defined as the total time for the generation of tasks at the resource 
broker, communication time in shipping tasks to producers and producer’s execution 
time, and the time incurred in collecting results by the resource broker. We define the 
speedup (Sp) and efficiency (Ep) using the following ratios: 
 

Sp= Ts/ Tp 
 
Ep= (Sp /p ) * 100% 

 
Table 2 shows the sequential geo-rectification execution time on an Intel P3-866MHz 
computer. Based on our partitioning strategy, the image is partitioned into tasks of 
various sizes.  For example, a task size of 1000x1000 will results in 25 tasks with an 
estimated execution time of 25 seconds per task.   Selection of task granularity and 
number of tasks are important in load balancing and scalability experiments. 
 

Test Data file = s2000144031151.l2 (108,316,813 bytes) 
Resolution     = 0.01 

 
No. of 
tasks 

Task Size Execution Time 
(sec) 

Execution Time 
per task (sec) 

5 2000x2000 654.4 130.9 
25 1000x1000 636.1 25.4 
60 1000x400 609.1 10.2 
132 400x400 608.7 4.6 
253 400x200 648.8 2.7 
506 200x200 836.9 1.7 

 

Table 2: Image-File 1 – Sequential Time versus Number of Tasks 

 
Table 3 shows the performance for varying number of tasks and producers.  The 
execution time increases when the number of tasks is decreased due to insufficient 
number of tasks to keep all the producers occupied.  ALiCE uses eager task- scheduling.  
In addition, a task buffer at each producer masked the round trip time overhead in task 
scheduling. 
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Test Data Task Size 
No. 
of 

Tasks 

Sequential 
Time, Ts 

(sec) 

No. of 
Producers 

Execution 
Time, Tp 

(sec) 

Speedup, 
(Sp) 

Efficiency  
(Ep) 

2 56.1 1.9 94.8 
4 42.2 2.5 63.0 

 
400x400 

 
25 

 
106.4 

6 40.2 2.7 44.2 
2 61.8 1.6 82.1 
4 47.7 2.1 53.2 

 
 

Image-file 1  
(108 MB) 

Resolution: 
0.025 

 
400x200 

 
45 

 
101.5 

6 32.0 3.2 52.9 
2 421.3 1.5 75.5 
4 252.8 2.5 63.0 

 
1000x1000 

 
25 

 
636.1 

6 198.1 3.2 53.5 
2 308.4 1.99 98.8 
4 176.0 3.5 86.5 

 
 

Image-file 1 
(108MB) 

Resolution 
0.01 

 
1000x400 

 
60 

 
609.1 

 6 128.6 3.7 78.8 
2 79.3 1.8 88.5 
4 59.2 2.4 59.5 

 
1000x400 

 

 
12 

 

 
140.7 

 6 42.2 3.3 55.5 
2 64.9 1.9 96.0 
4 52.9 2.4 58.8 

 
 

Image-file 2  
(136 MB) 

Resolution: 
0.025 

 
400x400 

 

 
30 

 

 
124.4 

 6 50.8 2.5 40.8 
 

Table 3: Varying Number of Tasks and Number of Producers 
 
The experiments above show the distributed processing of one satellite image on a grid of 
processors.  Typically, each satellite transmits about ten satellite images to a ground 
station per visit.  A ground station receives images for up to ten satellites per day.  To 
process all the images received in a day, multiple satellite images can be distributed over 
the ALiCE grid to exploit job-level parallelism.   
 
To further demonstrate the capability of the grid on low cost commodity processors, we 
conducted an experiment using a 50MB image file partitioned into thirty tasks. Using 
eight slow Pentium II (400MHz) PCs connected via 10Mbps Ethernet, an execution time 
of 0.8 minute was recorded versus the original application written in C/C++ that took 13.1 
minutes on a Sun UltraSPARC machine. 
 

6.   Conclusions  

As many real-world applications for computing have high demand for processing powers, 
it is critical to have a platform that readily supply such computing powers with the ease of 
use.  Grid computing, by pooling un-used CPU cycles together, has good potential in 
meeting the needs of high performance computing.  We have implemented a grid-based 
geo-rectification system using our Java-based Grid computing system ALiCE (Advanced 
and scaLable Internet-based Computing Engine).  We focus on the parallelization of the 
problem and its mapping onto a grid system.   In the area of exploiting parallelization, we 
have already observed the percolation of parallelization techniques to the processor level, 
with superscalar pipelining processors, symmetric multi-processor (SMP) systems and 
recently, symmetric multi-threading (SMT) processors pushing the envelope of 
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performance even further.  We see great gains in studying how parallelization at various 
hardware and software levels can be used for maximization of performance. More 
importantly, grid computing can readily bring high performance computing to its users by 
harnessing idle compute cycles from existing IT infrastructure without additional costly 
hardware investment.   
 
Ongoing work on system problem includes the scalability of ALiCE on wide-area 
network, load balancing algorithm with quality of service, and cluster-based resource 
broker with data server to support datagrid applications.  In the area of grid programming 
problem, we are developing grid programming model and environment to support 
computational genomics.  
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