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Abstract

Power management has become popular in mobile com-
puting as well as in server farms. Although a lot of work has
been done to manage the energy consumption on uniproces-
sor real-time systems, there is less work done on their multi-
computer counterparts. For a set of real-time tasks with
precedence constraints executing on a distributed system,
we propose new static and dynamic power management
schemes. Assuming a given static schedule generated from
any list scheduling heuristic algorithm, our static power
management scheme uses the static slack (if any) based on
the degree of parallelism in the schedule. To consider the
run-time behavior of tasks, an on-line dynamic power man-
agement technique is proposed to further explore the idle
periods of processors. By comparing our static technique
with the simple static power management, where the static
slack is distributed to the schedule proportionally, we find
that our static scheme can save an average of 10% more en-
ergy. When combined with dynamic schemes, our schemes
significantly improve energy savings.

1 Introduction

Energy aware computing has recently become popular
not only for mobile computing systems to lengthen battery
life but also in large systems consisting of multiple pro-
cessing units to reduce energy consumption and associated
cooling cost. Since processors consume a large percent-
age of energy in computer systems, especially in embedded
systems, much work has been done on managing energy
consumption for processors. Based on the dynamic voltage
scaling (DVS) technique, energy management schemes in
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uniprocessor real-time systems have been extensively ex-
plored. Fewer works, however, have focused on energy
management for parallel and distributed real-time systems.

For shared memory systems, we have recently proposed
some power management schemes for real-time applica-
tions based on global scheduling techniques [27, 28]. In
this paper, we address energy management for distributed
real-time systems, where the communication time is signif-
icant and tasks may have precedence constraints. We start
by taking a schedule that is generated from some schedul-
ing discipline, such as list scheduling, and then apply two
techniques to enhance the power management of the sys-
tem. The mapping of tasks to processors and static schedul-
ing algorithm used in this work is taken from [21]. First,
we propose a new static power management scheme based
on the degree of parallelism in the schedule. Then, to fur-
ther explore the task’s run time behavior, we propose two
dynamic techniques,greedyandgap-filling to use the pro-
cessor idle periods to execute tasks at reduced speeds for
more energy savings. Our algorithms manage slack that is
dynamically created to slow down scheduled tasks as well
as to change the order in which tasks were originally sched-
uled.

The paper is organized in the following way. The re-
lated work is addressed in Section 2. The application, power
and system models are described in Section 3. Static power
management scheme is addressed in Section 4. Section 5
discusses the dynamic power management scheme and sim-
ulation results are shown and analyzed in Section 6. Finally
Section 7 concludes this paper.

2 Related Work

Many hardware and software techniques have been pro-
posed to reduce the energy consumption of such systems,
such as shutting down unused components and low energy
circuit designs. With CMOS technology, processor’s power
is dominated by dynamic power dissipation which is de-



termined by processor supply voltage and clock frequency
[4, 6]. By reducing processor clock frequency and supply
voltage, we can reduce energy consumption at the cost of
performance of processors. Processors with the ability of
dynamic voltage scaling (DVS) are currently commercially
available [11, 10]. There is an interesting trade-off between
the energy consumption and performance of processors, es-
pecially for real-time systems in which high performance is
sometimes necessary in order to meet the timing constraints.

For uniprocessor systems, Weiser et al. first discussed
the problem of scheduling tasks to reduce the energy con-
sumption of processors [23]. Yao et al. described an off-line
scheduling algorithm for independent tasks running with
variable speed, assuming worst-case execution time [25].
Based on dynamic voltage scaling (DVS) technique, Mossé
et al. proposed and analyzed several schemes to dynami-
cally adjust processor speed with slack reclamation [18]. In
[22], Shin et al. set the processor’s speed at branches ac-
cording to the ratio of the longest path to the taken paths
from the branch statement to the end of the program. Kumar
et al. predict the execution time of tasks based on the statis-
tics gathered about execution time of previous instances of
the same task [13]. The best scheme is an adaptive one that
takes an aggressive approach while providing safeguards
that avoid violation of the application deadlines [2, 17].

When considering limited voltage/speed levels in
uniprocessor systems, Chandrakasan et al. have shown that,
for periodic tasks, a few voltage/speed levels are suffi-
cient to achieve almost the same energy savings as infinite
voltage/speed levels [5]. Pillai et al. also proposed a set
of scheduling algorithms (static and dynamic) for periodic
tasks based on EDF/RM scheduling policy [19]. AbouG-
hazaleh et al. have studied the effect of voltage/speed ad-
justment overhead on choosing the granularity of inserting
power management points in a program [1].

For periodic task graphs and aperiodic tasks in dis-
tributed systems, with a given static schedule for periodic
tasks and hard aperiodic tasks, Luo et al. proposed a static
optimization algorithm by shifting the static schedule to re-
distribute the static slack according to the average slack
ratio on each processor element [15]. They improved the
static optimization by using critical path analysis and task
execution order refinement to get the maximal static slow
down factor for each task [16]. For a fixed task set and pre-
dictable execution times, static power management (SPM)
can be accomplished by deciding beforehand the best volt-
age/speed for each processor [8]. When there are depen-
dence constraints between tasks, for a given task assign-
ment, Gruian et al. proposed a priority based energy sen-
sitive list scheduling heuristic to determine the amount of
time allocated to each task, considering energy consump-
tion and critical path timing requirement in the priority
function [9]. For SOCs (system-on-chip) with two pro-

cessors running at two different fixed voltage levels, Yang
et al. proposed a two-phase scheduling scheme that min-
imizes the energy consumption while meeting the timing
constraints by choosing different scheduling options deter-
mined at compile time [24]. In [26], Zhang et al. proposed a
priority based task mapping and scheduling for a fixed task
graph and formulated the voltage scaling problem as an in-
teger programming (IP) problem.

3 Models

In this section, we briefly discuss the application, system
and power models that we have used in our work.

Application Model A task τi is represented by a tuple
(c′i, a

′
i), wherec′i and a′i are the worst and average case

number of cycles needed to executeτi. The precedence
constraints and communication cost between tasks within
an application are represented by a directed acyclic graph,
G(V, E), where vertices represent tasks and edges repre-
sent dependencies between tasks. There is an edgee ::
vi → vj ⊆ E if vi is an immediate predecessor ofvj ,
which means thatvj depends onvi. In other words,vj is
ready to begin execution only aftervi finishes execution.
The weight associated with each edge represents the com-
munication cost when communicating tasks are scheduled
on two different processors. We assume that the communi-
cation cost is zero if the communicating tasks are scheduled
on the same processor.

To simplify the presentation, we consider frame based
applications [14], that is, the applications consist of a set of
tasks which have a common deadline. This model is realis-
tic if we consider that each task graph has been assigned a
certain amount of time to execute. It can be easily achieved
with real-time operating systems that provide temporal pro-
tection, such as LinuxRK [20].

Power and System Model We assume that processor
power consumption is dominated by dynamic power dis-
sipationPd, which is given by:Pd = Cef ×V 2

dd×f , where
Cef is the effective switch capacitance,Vdd is the supply
voltage andf is the processor clock frequency. Processor
speed, represented byf , is almost linearly related to the

supply voltage:f = k× (Vdd−Vt)
2

Vdd
, wherek is constant and

Vt is the threshold voltage [4, 6]. The energy consumed by a
specific taskτi can be given asEi = Cef ×V 2

dd× c′i, where
c′i is the number of cycles needed to executeτi. When we
decrease processor speed, we also reduce the supply volt-
age. This reduces processor power consumption cubically
with f and reduces task’s energy consumption quadratically
at the expense of linearly decreasing speed and increasing
execution time of the task. From now on, we refer tospeed



adjustmentas both changing the processor supply voltage
and frequency. We assume thatc′i and a′i do not change
with different processor speeds. We defineci andai as the
worst case and average case execution time of taskτi for
a specific processor, running at maximal processor speed

fmax, that is,ci = c′i
fmax

andai = a′i
fmax

. We also assume
that idle processor consumes 15% of the maximum possi-
ble power (power consumed without any speed reduction).
We varied this value from 5% to 15% and the nature of the
graphs remained same.

We consider a distributed system where each processing
unit has its private memory. The communication cost be-
tween processors is significant and cannot be ignored. We
assume continuous speed change for the processors in the
system. We also consider preemptive scheduling, but we
consider no migration. For simplicity, we ignore overheads
of speed adjustments and preemptions (the overhead effect
is discussed in detailed in [18, 28]).

4 Static Power Management

The mapping of tasks to processors and static scheduling
algorithm used in this work is taken from [21]. For exam-
ple, the task graph in Figure 1a has a static schedule shown
in Figure 1b, where the dotted line with an arrow represents
the communication between tasks A and C. After the static
schedule is generated, we apply our static power manage-
ment scheme, which is described below.

We say there isstatic slackin the system if an application
executes for its worst case execution time but still finishes
before its deadline.Global static slackis defined as the
difference between the length of the static schedule and the
deadline. For example, when the task graph in Figure 1a
runs on a 2-processor distributed system, the static schedule
obtained is as shown in Figure 1b with schedule length4.
In the schedule, the y-axis represents the processor speed
and the x-axis represents time. The area of the rectangle
represents the worst case number of cycles needed to be
executed by the task. Assuming that the application has a
deadline at6, the global static slack will beL0 = 6−4 = 2.
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Figure 1. An example and its static schedule

If there is some slack in the system, the system can ap-
propriately slow down the processor to save energy. We

will first discuss three static power management schemes to
allocate theglobal static slack.

4.1 Greedy Static Power Management (G-SPM)

This algorithm shifts the static schedule forward (that is,
toward the deadline) and allocates the entireglobal static
slack to the first task on each processor, if the task is not
dependent on others. By shifting all the tasks together, all
precedence and synchronization constraints are maintained.
The speed to execute the first task on each processor is
slowed down as they have more time to execute. Apply-
ing G-SPM to the example task graph in Figure 1a, both
tasks A and B will get2 units of slack and slow down pro-
portionally. The static schedule is shown in Figure 2a with
different processor speeds shown for each task.
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Figure 2. Static Power Management

4.2 Simple Static Power Management (S-SPM)

Assuming that every task in an application executes for
exactly ci units of time, the optimal static speed for a
uniprocessor system to get minimal energy consumption
can be obtained by proportionally distributing the static
slack to each task according to itsci [12]. Following the
same idea, a simple static power management (S-SPM)



scheme for multiprocessor systems was proposed by dis-
tributing global static slack over the length of a schedule
[8]. Applying S-SPM to the task graph in Figure 1a, we see
that every task will run at23fmax and the static schedule is
shown in Figure 2b.

Note that, for multiprocessor systems, S-SPM is not op-
timal in terms of energy consumption because of the differ-
ent degrees of parallelism in a schedule. For the example
in Figure 1, S-SPM consumes49E, whereE is the energy
consumed when no power management (NPM) is applied
(assuming that a processor consumes no power when it is
in idle state). Another static power management is shown
in Figure 2c. It allocates2 units of time to task A and C,
and4 units of time to task B. The energy consumption will
be 1

4E, which is less than49E. Actually, S-SPM consumes
even more energy than G-SPM, which consumes29

72E. The
reason for this is that S-SPM wastes an additional1 units
of slack by uniformly stretching the whole schedule. For a
given static mapping and schedule, we now explore the allo-
cation of global static slack (if any) in terms of minimizing
energy consumption.

4.3 Static Power Management with Parallelism
(P-SPM)

From the above discussion, we observe that S-SPM is
not optimal for parallel and distributed systems when par-
allelism varies in an application. The intuition is that more
energy savings can be obtained by giving more slack to sec-
tions with higher parallelism, thereby reducing the idle pe-
riods in the system. We propose a static power management
for parallelism (P-SPM) scheme which takes into consider-
ation the degree of parallelism when allocating global static
slack to different sections of a schedule.

4.3.1 P-SPM for 2-processor systems

For applications running on a 2-processor system, the de-
gree of parallelism (DP) in a static schedule will range from
0 to 2 (when communication cost is significant, part of the
schedule may be used only for communication with zero
parallelism; see time 2-3 in Figure 3).

The static schedule will first be partitioned according to
parallelism. For the example in Figure 1, the first time unit
has parallelism of2, the second and fourth time units have
parallelism of1, and the third time unit has parallelism of
0. We defineTij as the length of thejth section of a sched-
ule with parallelism ofi, and define the total length with
parallelism ofi in a schedule asTi =

∑
j Tij . The static

schedule for the example will be partitioned as in Figure 3.
Here, we haveT0 = 1, T1 = 2 andT2 = 1.

In general, suppose that an application runs on a 2-
processor system with global static slack ofL0 and the par-
titioned static schedule has specificT0, T1 andT2. Assume
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Figure 3. Parallelism in the schedule

that the amount of static slack allocated toTi is denoted by
li (i = 0, 1, 2), the total energy consumptionE in the worst
case after allocating the global static slackL0 will be:

E =
∑

Ei (1)

=
∑

(Cef × i× f3
i × (Ti + li)) (2)

= Cef ×
∑

(i× (
Ti

Ti + li
× fmax)3 × (Ti + li))(3)

= Cef × f3
max ×

∑(
i× T 3

i

(Ti + li)2

)
(4)

whereCef is the effective switch capacitance andfi is the
speed for sections with parallelismi. For simplicity, the
idle state is assumed to consume no energy. To optimally
allocateL0, we need to minimizeE subject to:

l0 + l1 + l2 ≤ L0

0 ≤ li ≤ L0; i = 0, 1, 2

Usingl0 = L0 − l1 − l2 in Equation (4), and setting∂E
∂l1

=
∂E
∂l2

= 0, we can get the following optimal solutions:

l0 = 0;

l1 =
T1 × (L0 − (21/3 − 1)× T2)

T1 + 21/3 × T2
;

l2 =
T2 × (21/3 × L0 + (21/3 − 1)× T1)

T1 + 21/3 × T2
;

where0 ≤ l1, l2 ≤ L0.
From the solutions, ifL0 ≤ (21/3 − 1)T2 then l1 = 0

(since there is a constraint thatli ≥ 0) andl2 = L0, that is,
all the global static slack will be allocated to the sections of
schedule with parallelism2. For the example in Figure 1,
there will bel0 = 0, l1 = 1.0676 andl2 = 0.9324, the min-
imal energy consumption is0.3464E. Compared with the
energy consumption when using S-SPM49E = 0.4444E,
an additional 22% energy is saved by P-SPM. Note that, P-
SPM consumes more energy than the static schedule in Fig-
ure 2c, which is only0.25E. The reason is that the sched-
ule in Figure 2c claim the gap in the middle of the schedule
while P-SPM does not.



Algorithm 1 P-SPM Algorithm

Partition static schedule and generateTi =
∑

Tij ;
Divide L0 into L0

δL intervals, each of lengthδL;
while there is still slackδL do

AllocateδL to Ti such as to maximize
∆Ei = Cef × i× f3

i × Ti×δL×(2×Ti+δL)
(Ti+δL)2 ;

Updatefi = fi × Ti

Ti+δL andTi = Ti + δL.
end while
For all i, allocateli to Tij with lij = li × Tij

Ti
;

For every taskτi, gather it allotted timeti, and determine
the speedfi = ci

ti
;

4.3.2 P-SPM for N-processor systems

The above idea can be easily extended to N-processor sys-
tems. Assuming that there areN processors in a system, the
degree of parallelism (DP) in a static schedule will range
from 0 to N . Suppose that a schedule section withDP = i
has total length ofTi (which may consist of several sub-
sectionsTij , j = 1, . . . , ui, whereui is the total number of
sub-sections with parallelismi) and the global static slack in
the system isL0. The amount of slack allocated toTi is li.
The total energy consumptionE after allocatingL0 would
be the same as shown in Equation (1). Herei = 0, . . . , N .

The problem of finding an optimal allocation ofL0 to Ti

in terms of energy consumption will be to findl0, . . . , lN so
as to

minimize(E)

subject to:
li ≥ 0∑
li ≤ L0

wherei = 0, . . . , N . The constraints put limitations on how
to allocate global static slack.

Solving the above problem is similar to solving the
constrained optimization problem presented in [3]. The
P-SPM scheme in Algorithm 1 approximates the solution,
wherefi is the speed of sectionTi and initiallyfi = fmax.

First, the algorithm partitions the static schedule into sec-
tions according to parallelism andTi is generated. The slack
L0 is divided intoδL segments and there will beL0

δL such
segments. Then, the algorithm will allocate oneδL to some
Ti in each iteration of thewhile-loop. In each iteration,δL
is allocated to schedule sections withDP = i such that
energy reduction∆Ei is maximized.

∆Ei = Ei − E′
i

= Cef × i× (f3
i × Ti − (

Ti

Ti + δL
× fi)3 × (Ti + δL))

= Cef × i× f3
i ×

Ti × δL× (2× Ti + δL)
(Ti + δL)2

whereEi andE′
i are the energy consumptions for sections

with parallelismi before and after gettingδL, respectively.
In general1, the smallerδL is, the more accurate the solu-
tion is. But the more allocation steps there are, the more
time consuming the algorithm is. After allocating eachδL
segment,li will be re-distributed toTij . Finally, each task
will gather all slack allocated to it and a single static speed
for the task is computed.

Due to synchronization of tasks and parallelism of an ap-
plication, gaps may exist in the middle of a static schedule.
After distributing global static slack, gaps in the middle of
the schedule can be further explored. Finding an optimal
usage of such gaps seems to be a non-trivial problem. One
simple scheme is to stretch tasks adjacent to the gap when
such stretching does not affect the application timing con-
straints.

From the above discussion, we can notice that even P-
SPM is not optimal. Since dynamic power management is
needed to save more energy by taking advantage of tasks’
actual run-time behavior (which varies significantly [7]), we
explore dynamic power management schemes next.

5 Dynamic Power Management

Dynamic slackis generated when tasks of the applica-
tion execute less than their worst case execution time. Dy-
namic power management is applied in addition to static
power management and used to reclaim dynamic slack. We
use two techniques to reclaim dynamic slack. The first is
greedy, that is, all available slack on one processor is given
to thenext expectedtask running on that processor. If the ex-
pected task is not ready when the previous task finishes ex-
ecution, the processor will enter the idle state if no preemp-
tion is allowed. The second technique,gap filling, is used
when preemption is allowed. Instead of putting a processor
to the idle state if there is some slack and thenext expected
task is not ready, the gap filling technique will fetch the first
future ready task in the local queue.This gap is added to the
allotted time of this future task to allow it to execute at a
reduced speed. The execution of theout-of-ordertask will
be preempted by thenext expectedtask when it receives all
its data and is ready.

The dynamic power management algorithm is illustrated
in Algorithm 2. After the schedule is generated and static
power management is applied, each processor will execute
tasks from its local queue until the queue is empty. We use
the functionsleep()to put a processor to sleep and assume
it will wake up when the head of the queue is ready or a new
frame will begin. If the task executed is an out-of-order task
fetched bygap filling(), it will be preempted when the head
task of the queue is ready.

1In Section 6.2, we discuss this issue in details.



Algorithm 2 DPM - Main Algorithm
while local queue is not emptydo

if (next expected taskτk is ready)then
Reclaim dynamic slack (if any) and executeτk with
reduced speed;

else if (τk is not ready) AND (future taskτj is ready
in local queue)then

Gapfilling(τj);
else

Sleep();
end if

end while

When preemptive scheduling is used in the on-line
phase, more complex book-keeping is needed to keep track
of how much work is left for each task. Luckily, many real-
time operating systems have this feature, facilitating imple-
mentation. However, although we have not evaluated it,
it is possible to apply a technique similar togap filling in
non-preemptive systems. This would necessitate delaying
all scheduled tasks for the duration of the out-of-order task
execution. Obviously, this can only be done after checking
precedence and synchronization constraints.

6 Evaluation and Analysis

6.1 Simulation Methodology

In this section, we describe the simulation experi-
ments. We perform experiments on randomly generated
task graphs with7, 50 and90 nodes. Since the nature of
the results are more or less the same, we only show the re-
sults for a 50-node graph.

Theci and the communication times are randomly gen-
erated. Theci of tasks are varied from 2 to 10 units and
communication times are varied from 1 to 4 units. We run
100 executions on the same task set to get statistically sig-
nificant results. To get the actual execution time of the task,
we define a parameterαi for each task which is the ratio of
actual to worst case execution time. We define a globalα
and get the values ofαi from a discretized normal distribu-
tion with averageα and standard deviation0.48 · (1− α) if
α > 0.5 and0.48 ·α if α ≤ 0.5 (the0.48 value comes from
discretizing the values of the normal distribution).

We compare the energy consumed by all the schemes
with the one consumed by no power management (NPM).
To summarize, we consider the following schemes:

G-SPM: greedy static power management;
S-SPM: simple static power management;
P-SPM: Static Power Management for parallelism;
DPM-G: G-SPM + dynamic power management;

DPM-S: S-SPM + dynamic power management;
DPM-P: P-SPM + dynamic power management;

The algorithms DPM-G, DPM-S, DPM-P are executed
first using only dynamic greedy technique and then us-
ing gap filling technique on top of it. We use the term
DPM GAPFILL ON and DPMGAPFILL OFF to distin-
guish between the two techniques in the graphs.

6.2 Sensitivity Analysis
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Figure 4. Sensitivity Analysis for a randomly gen-
erated 50 node graph

Sensitivity analysis is done offline to find out the opti-
mal value ofδL unit for P-SPM. Intuitively a smaller value
of δL will lead to better results due to the fine granularity
of slack distribution. However, smallδL values may signifi-
cantly increase the cost of the algorithm. We plot the energy



consumption values obtained for varyingδL on 4 and 8 pro-
cessors and the graphs obtained are as shown in Figure 4a
and Figure 4b. However, the graphs indicate that as we de-
crease the granularity ofδL, the energy consumption does
not decrease strictly.

The fact that energy does not decrease uniformly with
reducingδL can be explained by taking the structure of
the task graph and the nature of algorithm into account. If
we change the total number ofδL units fromx to x + 1,
the distribution of the slack units may result in speeds that
give higher energy consumption in case ofx + 1 δL units.
The reason is that slack units are distributed toLi intervals
which may give a totally different time allocation to tasks.

To choose the best value ofδL, we do the sensitivity
analysis by running the algorithms for different values of
δL = L0/K by changingK from 1 to 100 as shown in
Figure 4. From the figures, we can see that, whenL0

δL =
K ≥ 50, the energy consumption difference is within 2%.
For the following experiments (Figure 6 and 7), we do the
same experiment and choose the smallestKmin, such that,
when L0

δL ≥ Kmin, the energy consumption error is within
2%.

6.3 Performance Comparison

We start by comparing the energy consumed by our new
scheme P-SPM with S-SPM, NPM and SHIFT (the scheme
proposed by Luo et. al in [15]). Although this scheme was
designed for better service of sporadic tasks, when there is
no sporadic task it is used for power management. First,
we fix the number of processors to 4 and show the energy
normalized to NPM as a function of the laxity in the sys-
tem (Figure 5a). In these graphs, laxity is a factor that is
multiplied by the static schedule span to yield the dead-
line. That is,D = laxity × static schedule span. In
some sense, it gives the inverse of the load imposed on the
system. As we can see from the graph in Figure 5a, the
P-SPM scheme performs best in terms of energy savings.
On increasing the number of processors to 8, (Figure 5b)
P-SPM experiences more energy savings because of the in-
crease in degree of parallelism in the schedule. P-SPM is
able to exploit this feature by sharing the slack with more
tasks at a time. Although not shown, the total energy con-
sumed in case of 8 processors is greater than that consumed
using 4 processors. The reason is that total idle time typi-
cally increases for larger number of processors due to more
synchronization needed on more processors (recall that an
idle processor consumes energy). Another interesting result
is that SHIFT technique performs better in case of smaller
laxity, whereas P-SPM gets better with increasing laxity.
The reason is because SHIFT reclaims slack in the middle
of schedule while P-SPM only reclaims global static slack.
There is less global static slack with smaller laxity, and the

effect of slack in the middle of schedule decreases as laxity
increases. Finally, the P-SPM scheme saves 5% more than
S-SPM and 40% more than G-SPM when using 4 proces-
sors. When there are 8 processors these values are 10% and
50%, respectively.
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Figure 5. The normalized energy vs. laxity for
different SPMs.

Next, we measure the energy saved by the dynamic
schemes, with and without gap-filling. We perform these
experiments by varying the laxity factor from 1.25 to 2.0
and number of processors from 4 to 8. The results can be
seen in Figures 6 and 7. We first run all SPM algorithms and
then apply our dynamic scheme over the resultant schedule
obtained from different SPM algorithms. We find that the
DPM-P technique is the best among all three.

Another interesting observation is that with
DPM GAPFILL ON we save as much as 5% compared to
G-DPM, S-DPM and P-DPM with GAPFILLOFF. We also
notice from the graphs that for eight processors DPM-G
performs better than DPM-S at lower values ofα. This is



0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

 E
ne

rg
y 

C
on

su
m

ed

alpha

DPM-G-GAPFILL-ON
DPM-G-GAPFILL-OFF

DPM-S-GAPFILL-ON
DPM-S-GAPFILL-OFF
DPM-P-GAPFILL-ON

DPM-P-GAPFILL-OFF

a. energy vs.α for 4 Processors

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

 E
ne

rg
y 

C
on

su
m

ed

alpha

DPM-G-GAPFILL-ON
DPM-G-GAPFILL-OFF

DPM-S-GAPFILL-ON
DPM-S-GAPFILL-OFF
DPM-P-GAPFILL-ON

DPM-P-GAPFILL-OFF

b. energy vs.α for 8 Processors

Figure 6. The normalized energy vs.α for DPM
(laxity = 1.25, for both GAPFILL ON and GAP-
FILL OFF)

because when much dynamic slack is generated, DPM-S
does not use the whole available slack at once, saving
slack for future tasks. However, when slack is dynamically
generated, this turns out to be a very conservative approach
that benefits DPM-G. Also, by increasing the number
of processors the relative gain increases but at the same
time the overall energy consumption also increases due to
increase in the total idle time.

7 Conclusion

In this paper, we propose two novel techniques for power
management in distributed systems. First, static power
management for parallelism (P-SPM) allocates global static
slack, defined as the difference between the length of the
static schedule and the deadline, to different sections of the
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Figure 7. The normalized energy vs.α for DPM
(Laxity = 1.75, for both GAPFILL ON and GAP-
FILL OFF)

schedule according to their degree of parallelism. Second,
the gap-filling technique enhances the greedy algorithm by
allowing out-of-order execution when preemption is con-
sidered; that is, if there is some slack and the next expected
task is not ready, the processor will run the future ready
tasks mapped to it.

We compared our schemes with some previous pro-
posed schemes, the simulation results show that P-SPM
can save 10-20% more energy compared with simple static
power management (S-SPM) for parallel systems, which
distributes global static slack proportionally to the length
of the schedule, and save 10% more than the static scheme
proposed in [15]. While the gap-filling technique can save
5% more energy when applied after greedy.

In this work, we assume continuous speed changes. The
schemes can be easily adapted for processors with discrete
speed levels as shown in [12, 28].
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