Transparent Query Caching in Peer-to-Peer Overlay Networks

Sunil Patro and Y. Charlie Hu
School of Electrical and Computer Engineering
Purdue University
West Lafayette, IN 47907
{patro, ychu} @purdue.edu

Abstract

Peer-to-peer (p2p) systems such as Gnutella and KaZaa
are routinely used by millions of people for sharing music
and many other files over the Internet, and they account for
a significant portion of the Internet traffic. The p2p traffic
can be broken down into two categories: protocol messages
for maintaining and searching the overlay p2p network,
and data messages for downloading data files. This paper
makes the following two contributions. First, we present a
study of the locality in the collective Gnutella query pro-
tocol messages being initiated and forwarded by servents
within the same organization. Second, we propose a trans-
parent query caching scheme to reduce the bandwidth con-
sumed by p2p traffic going in and out of the gateway of an
organization.

Our locality measurements show that there is significant
locality in the collective queries going through a gateway
forwarded by servents behind that gateway, and the locality
increases with the population of those servents. Our pro-
posed transparent caching scheme preserves the user ex-
perience, i.e., users continue to use the same servents as
before, and queries will result in similar query hits with or
without the caching running. Measurements of our trans-
parent caching proxy in an experimental testbed of eight
passive Gnutella servents in a LAN has shown a query
cache hit rate of up to 38%, an uplink query traffic reduc-
tion of up to 40%, and a downlink query hit traffic reduction
of up to 12% at the gateway.

1 Introduction

In the first six years of the Internet explosion, one type of
dominating traffic over the Internet had been HTTP traffic
from accessing the World Wide Web. Around the year 2000,
a new paradigm for Internet applications emerged and has
quickly prevailed. Today, the so-called peer-to-peer (p2p)
systems and applications such as Gnutella and KaZaa are

routinely used by millions of people for sharing music and
other files over the Internet, and they account for a signifi-
cant portion of the Internet traffic. For example, the contin-
uous network traffic measurement at the University of Wis-
consin (http://wwstats. net.w sc. edu) shows that
peer-to-peer traffic (KaZaa, Gnutella, and eDonkey) ac-
counts for 25-30% of the total campus traffic (in and out)
in August 2002, while at the same time, web-related traffic
accounts for about 23% of the total incoming and 10% of
the total outgoing traffic.

To reduce the bandwidth consumption and the latency in
accessing web content, web caching has been extensively
studied. Today, web caching products are offered by numer-
ous vendors and widely deployed in the Internet, and have
shown to be highly effective in reducing network bandwidth
consumption and access latency. In contrast, little progress
has been made towards caching p2p traffic. The traffic gen-
erated by a p2p network such as Gnutella falls under two
categories: the protocol messages for maintaining the over-
lay network and for searching data files in the overlay net-
work, and the actual data messages for downloading files.
Previously, researchers have found that search messages
(queries) in Gnutella networks exhibit temporal locality,
suggesting that caching should prove to be an effective tech-
nique in reducing network bandwidth consumed by these
queries and the latency in retrieving query replies. Several
query caching schemes have been developed by modifying
Gnutella servents, and have confirmed the effectiveness of
query caching. However, these previous schemes have sev-
eral limitations. First and most importantly, these schemes
were proposed in the context of modifying Gnutella ser-
vents, and rely on the wide adoption of such modified ser-
vents to achieve the benefit of caching. The wide adoption
of any modified servents is a potentially slow process. One
simple reason for this is that users are used to the partic-
ular servents they have been using, because of their spe-
cific functionalities, GUIs, dependence on particular oper-
ating systems, and so on. Second, all the previous proposed
caching schemes were implemented at each individual ser-

vents, and thus they cannot exploit the locality in the queries
collectively forwarded or initiated by a set of servents, for
example, within the same organization.

In this paper, we explore query caching schemes in p2p
overlay networks that overcome the above mentioned limi-
tations. Our overall approach is to develop transparent p2p
caching proxies that will be attached to the gateway routers
of organizations or ISPs, i.e., similar to how web caching
proxies are typically deployed, with the goal of reducing
p2p traffic in and out of the gateways. The gateway Cisco
router (over 80% of routers in the Internet are Cisco routers)
running the WCCPv2 protocol will be configured to redi-
rect TCP traffic going to well known p2p ports, e.g., 6346
for Gnutella, to the attached p2p caching proxies.

We focus on Gnutella networks in this paper. The spe-
cific contributions of this paper are as follows:

e We study the locality in queries forwarded by servents
inside a gateway and its implications to the effective-
ness of caching at the gateway.

e We present a transparent caching scheme that pre-
serves the p2p user’s experience.

e Since Gnutella servents often use the same TCP port
for both protocol and data traffic, we also present a
scheme for integrating our query caching proxy with
any off-the-shelf high performance HTTP caching
proxy without reimplementing one into the other, and
without incurring significant overhead.

The rest of the paper is organized as follows. Section 2
gives a brief overview of the Gnutella protocol. Section 3
presents the measured locality in the collective Gnutella
query messages observed at the gateway of an experimen-
tal testbed consisting of eight Gnutella servents in a LAN.
Section 4 presents and evaluates our query caching scheme.
Section 5 presents a scheme for integrating our transparent
query caching scheme with HTTP data caching for Gnutella
networks. Finally, Section 6 discusses related work, and
Section 7 concludes the paper.

2 TheGnutdla Protocol

The Gnutella protocol [1, 2] specifies the operations for
maintaining and searching a peer-to-peer overlay network
superimposed on top of the Internet. Gnutella peering nodes
(called servents) connect with their direct neighbors using
point-to-point connections. In the following, we first de-
scribe how a new node joins an existing Gnutella network,
and its implications on the topology formed by the servents
within an organization. We then briefly describe the proto-
col for the query request and response messages, and data
file downloads.

The joining process and its implications on topology
We describe the joining process of a typical Gnutella ser-
vent. Any host running a servent can connect to the Gnutella
network. When a servent wants to connect, it first looks
up its host cache to find addresses of Gnutella servents to
connect to. The servent addresses are removed from the
host cache after they are read. If the host cache is empty,
then it tries to connect to a well known Gnutella host cache
server (also called PONG server) to receive PONG mes-
sages in response to its PING message. After receiving
the PONG messages, the servent tries to establish connec-
tions with the servents whose addresses are obtained from
the PONG messages.

In a typical Gnutella servent, after the pre-specified num-
ber of Gnutella connections is established, the servent sends
PING messages periodically to monitor those connections
and in response receives a number of PONG messages?,
which are appended at the end of the host cache. In addi-
tion, once an existing connection with some servent is bro-
ken down, the servent’s address information is saved and
eventually will be added to the host cache when the servent
leaves the Gnutella network.

In summary, during the joining process of a typical
Gnutella servent, the neighbors are chosen from the host
cache whose content is fairly random. This suggests that it
is unlikely servents from the same organization will become
neighbors of each other, let alone forming a clique, and
consequently, the query messages will unavoidably travel
across the gateway of the organization.

Query requests and responses In order to locate a file,
a servent sends a query request to all its direct neighbors,
which in turn forward the query to their neighbors, and the
process repeats. When a servent receives a query request, it
searches its local files for matches to the query and returns
a query response containing all the matches it finds. Query
responses follow the reverse path of query requests to reach
the servents that initiated the queries. The servents along
the path do not cache the query responses.

To avoid query requests and responses from flooding the
network, each query contains a TTL (time to live) field,
which is usually initialized to 7 by default. When a servent
receives a query with a positive TTL, it decrementsthe TTL
before forwarding the query to its neighbors. Queries re-
ceived with TTL being 1 are not forwarded. In other words,
queries are propagated with a controlled flooding.

It is easy to see that the same query can visit a servent
more than once during the controlled flooding, i.e., through
different neighbors of that servent. To make sure that each
node does not serve the same query more than once, each
query is identified by an unique identification called rmui d.

1PONG messages are generated by a servent either on its own behalf or
on behalf of other servents using its PONG cache as supported in Gnutella
version 0.6.

When a servent receives a query with a nui d it has en-
countered in the past, it will simply drop the query. Obvi-
ously, such repeated copies of the same query should not be
counted when measuring the locality among a set of queries.

Data file downloads After the query hits are received by
the servent, the user can select a file to download. This
download request is carried out throughan HTTP GET mes-
sage sent over a direct TCP connection between the request-
ing servent and replying servent.

3 Locality Measurement

In this section, we study the locality in queries forwarded
by a set of servents behind a gateway and its implications to
the effectiveness of caching at the gateway.

3.1 Methodology

To monitor the collective traffic going out of a set of ser-
vents behind a router, we implemented a tunneling probe
running on a FreeBSD machine that is configured as shown
in Figure 1. First, the probe machine is placed next to
the gateway Cisco router running WCCPVv2. The gateway
router will be configured to redirect all packets destined to
known Gnutella ports (for example, 6346) to the attached
tunneling probe. Second, the probe machine is configured
to use IP forwarding to redirect all TCP traffic going to other
destinations with port 6346 to port 6346 of localhost, on
which the probe is listening. This allows the probe to hijack
all outgoing connections with destination port 6346. The
probe then initiates a TCP connection to the original des-
tination, and tunnels all the packets traveling towards both
directions, Thus to outside destination servents, the probe
machine appears as the servent that initiated the connection,
while the servents inside the gateway that initiated the TCP
connection think they have established a TCP connection
with the destination servent. In other words, the hijacking
of the TCP connection is transparent to the servents inside
the gateway, but not to servents outside the gateway.

While tunneling the Gnutella traffic, the probe collects
the information about the packets being tunneled through,
such as the type of the messages, the size, and in terms of
query, the TTL, and the frequency. These information will
then be used to analyze the locality in the query requests
forwarded or initiated by all the servents inside the gateway
as well as data file downloads if they use the same connec-
tions, i.e., with port 6346, to the destination servents.

To monitor the Gnutella traffic going through each
individual Gnutella servent, we made modifications to
gtk-gnutel l a, a UNIX-based open-source servent for
Gnutella, to record all the protocol messages and data
downloads in and out of the servent.

Router

Request Non—G#ptelIa To Internet
Gnutella _ traffic |
T e o B
outgoing connection i L new outgoing connection
from servent to 6346@dest | " from GW to 6346@dest
Y i
|
- _Port 6346@dest e
default router=GW| | | PEW ‘ngoeg'eng
port63460localhost | (or query
caching proxy)
FreeBSD Kernel

GW (or Cache Box)

Figure 1. The tunneling probe running on a PC with IP
forwarding (called a GW) hijacks servents’ outgoing con-
nections. The router can be absent if the servents are con-
figured to use the GW as their default router. The caching
box discussed in Section 4 replaces the tunneling probe with
the query caching proxy.

GW-8

|PFW + tunneling probe
GW-4

|PFW + tunneling probe
GW-2

|PFW + tunneling probe

(s (o] (o) s [svers] (] o) (o]

Gnutella outgoing connections
hijacked by the tunneling probes

Figure 2. Configuration of the measurement testbed.
GW-2, GW-4, and GW-8 hijack outgoing connections (with
destination port 6346) of Gnutella servents, and appear as
the origin of connections to outside servents.

To simplify the measurement setup, instead of using a
real router, we configured each servent to use the GW as the
default router (see Figure 1). IP forwarding rules are speci-
fied on the GW such that packets going to port 6346 of any
destination will be forwarded to port 6346 of localhost, and
all other traffic are forwarded. Thus only outgoing Gnutella
connections will be hijacked by the tunneling probe.

3.2 Measurement Results

We measure the locality among a set of eight passive ser-
vents running on a cluster of eight PCs behind a router. Each
servent is configured to allow four incoming and four out-
going connections. Each servent is passive, because it only
forwards queries and query hits, but does not initiate any
queries. Furthermore, it does not store any files for sharing.
To measure the locality among queries from varying num-
bers of servents, we configured three PCs as GWSs running
the tunneling probe, and we configured the whole testbed
into a hierarchy as shown in Figure 2. GW-2, GW-4, and
GW-8 are the three GWs, and traffic on the outgoing con-
nections of two, four, and all eight servents go through GW-
2, GW-4, and GW-8, respectively.

Traffic Pie for Hijacked Outgoing Connections: GW-8

D Hash/URN based Query Out

TINon Hash/URN based Query In
WQuery Hit Out
DQuery Hit In

WPing and Ping (In, Out)

Figure 3. Percentage distribution of different types of in-
coming and outgoing messages at GW-8 on hijacked outgo-
ing connections.

We started the experiments with all eight servents at
1:00am EST on January 13, 2003 (after a 15-minute warm-
up period), and the experiment lasted for an hour. Each ser-
vent recorded all messages sent and received, and the tun-
neling probe recorded all Gnutella packets going into and
out of the GWSs on hijacked outgoing connections.

3.2.1 Traffic Breakdowns

We first report the total Gnutella traffic going through each
servent and GW and their breakdowns into different types
of messages. Figure 3 shows the percentage distribution
of different types of both outgoing messages and incoming
messages on outgoing connections hijacked at GW-8. The
same breakdowns at individual servents, at GW-2, and at
GW-4 are very similar, and therefore are not shown. Fig-
ure 3 shows that the query traffic is broken into two cate-
gories, ie. hash/urn based and non-hash/urn based queries.
In non-hash/urn queries, the queries contain the simple ascii
file name, while in hash based queries, each file is identi-
fied by a hash value as described in [3]. Overall among the
outgoing traffic, query traffic dominates query hits traffic.
This distribution suggests for passive Gnutella servents, the
major saving from query caching will not be from reduced
query hit messages, but from reduced query request mes-
sages themselves.

3.2.2 TTL Distributions

Figures 4 and 5 plots the TTL distributions of queries go-
ing through each of the eight servents as well as each
of the three GWs. Figure 4 shows that the number of
queries decreases experientially with increasing TTLs. This
“exponential” behavior can be explained by the flooding
scheme used by the Gnutella protocol: if all servents have
the same number of neighbors, the number of servents a

TTL Distribution at Individual Servents

100.00
90.00 +
80.00

70.00
60.00
50.00
40.00
30.00 +
20.00 - mm
10.00 -
0o UML) J A AT e
0 1 2 3

4 5 6
TTL remaining

O Servent1
W Servent2
OServent3
OServent4
MW Servent5
@ Servent6
W Servent7
O Servent8

% of Queries

Figure 4. TTL distribution of queries going into the ser-
vents on their incoming and outgoing connections, exclud-
ing empty queries.

TTL Distribution at Tunneling Gateways

100.00
90.00 +
80.00
70.00
60.00

v
2
$ BGW-2
& 50.00 | mGW-4
5 40.00 oew-8
=

30.00 +
20.00
10.00 -

0.00 -

TTL Remaining

Figure 5. TTL distribution of queries going into the gate-
ways on hijacked outgoing connections, excluding dupli-
cated queries with the same nui d. and empty queries.

query will reach with decreasing TTLs grows exponentially.
Conversely, if every servent initiates the same number of
queries, the number of queries that reach a particular ser-
vent increase exponentially with decreasing TTLs.

Note that on average between 60% to 70% of all queries
that reach each servent have ttl = 1 (¢t = 0 after decre-
menting), and these queries will not be forwarded further.

The queries that reach servents with ¢¢/ > 0 after decre-
menting will be forwarded to the GWSs, and recorded by
the tunneling probes. Our tunneling probes do not alter
the TTL, and simply forward the queries to the destina-
tion servents outside. Figure 5 shows the TTL distribution
of queries going out of the GWs, i.e., on hijacked outgo-
ing connections. As expected, the percentage distribution is
similar to the distribution of queries with ¢¢/ > 0 recorded at
the individual servents, normalized after removing queries
with ¢t = 0.

% of Unique Queries vs Frequency of Reoccurence at
Servents and GW-8 (TTL > 0)

100.00

K]
H @ Servent1
'g W Servent2
14 i DO Servent3
» 10.00
o O Servent4
§ W Servent5
<] @ Servent6
§ 1.00 1 3 W Servent7
Z OServent8
2 mGW-8
=

0.10

1 2 3 4 5 6 7 8 9 10
Frequency of Reoccurence

Figure 6. Query locality at individual servents going into
the servents on their incoming and outgoing connections for
queries with t¢tl > 0 after decrementing, excluding empty
queries; and query locality at GW-8 for queries with ¢t > 0
going into GW-8 on hijacked outgoing connections, exclud-
ing empty queries. Duplicates with the same rrui d are dis-
counted.

3.2.3 Locality at Each Servent

Before looking at the locality among the queries going
through each GW, we first look at the locality among the
queries going through each servent, and we separate the lo-
cality measurement for queries with ¢t/ = 0 after decre-
menting, from those with ¢t/ > 0 after decrementing, as the
former category will not benefit from any form of caching,
whether caching is performed at the servents or at the gate-
way. Figure 6 shows the percentage of unique queries as a
function of the frequency they are witnessed by each of the
eight servents, for t¢/ > 0 after decrementing. We see that
the number of unique queries decreases close to exponen-
tially as a function of their frequency of occurring, showing
a popularity pattern similar to the Zipf-like distribution.

Table 1 lists the locality (i.e., weighted average fre-
quency of reoccurring) of queries with ¢t/ > 0 going into
each servent and the three GWs. At each servent, the local-
ity is measured by treating queries with unique query strings
and TTLs as distinct queries.

3.2.4 Locality at the Gateway

Figure 6 also shows the percentage of unique queries as a
function of the frequency that are witnessed by GW-8, the
main router which hijacks all outgoing connections and thus
witnesses all queries on those connections. We see that the
percentage of high frequency queries is significantly higher
than its counterparts at individual servents, suggesting that
there is significant locality among the queries forwarded by
the eight servents.

Note that if a servent has several outgoing connections
to outside servents, it will forward a query through each of
the connections. Furthermore, different servents can for-

Node Weighted Frequency

of Reoccurring
Servent 1 (unique (query str,ttl)) 181
Servent 2 (unique (query str,ttl)) 1.52
Servent 3 (unique (query str,ttl)) 1.58
Servent 4 (unique (query str,ttl)) 1.83
Servent 5 (unique (query str,ttl)) 1.92
Servent 6 (unique (query str,ttl)) 1.66
Servent 7 (unique (query str,ttl)) 1.98
Servent 8 (unique (query str,ttl)) 1.80
GW-2 (unique (query str, ttl, nbr)) 1.67
GW-4 (unique (query str, ttl, nbr)) 1.70
GW-8 (unique (query str, ttl, nbr)) 1.79
GW-2 (unique (query str,ttl)) 1.88
GW-4 (unique (query str,ttl)) 2.33
GW-8 (unique (query str,ttl)) 3.32

Table 1. Summary of locality in queries with ttf > 0
going into each servent on incoming and outgoing connec-
tions, and queries going into the three GWs on hijacked
outgoing connections, both excluding empty queries. Du-
plicates with the same nui d are discounted.

ward the same query (i.e., with identical mui d) to outside
because they share the same servent several hops back along
the propagation tree of the query. Such repeated copies
of the same query going through the gateway should not
be counted as locality, since responses from one neighbor
should not be used to serve a request to another neighbor. To
avoid counting such repeated queries, our tunneling probe
records the mui d of each query it has seen, and discounts
any queries whose mui d has been encountered before,

Table 1 also lists the locality of queries with ¢t/ > 0
going into each of the three GWs. The first set of lo-
cality numbers for GWSs are counted by treating queries
with unique query strings, TTLs, and neighbors as distinct
queries. Thus, they do not contain locality among queries
from different servents. When the servents do not share any
neighbors outside the gateway, as is the case in our mea-
surements, the locality at the GWs is similar to the locality
at each of the servents. The second set of locality numbers
for GWs are counted by treating queries with unique query
strings and TTLs as distinct queries. Thus these numbers
contain the locality among queries from different servents.
Table 1 shows that the locality increases with the popula-
tion of the servents. We conjecture the locality among the
queries forwarded by servents within a large organization
such as a university will be much higher.

4 Transparent Query Caching

The locality measurements in the previous section sug-
gest that caching at the gateway of an organization can be
far more effective than caching at individual servents behind
the gateway because it can exploit the aggregated locality
among all queries forwarded and initiated by all servents

inside the organization. In this section, we present a query
caching scheme at the gateway of an organization. To sim-
plify the discussion, we ignore caching HTTP downloads
for now, and delay the discussion of integrating transparent
query caching with transparent HTTP caching at the gate-
way till Section 5.

41 Overview

Our transparent caching scheme is similar to the local-
ity measurement setup discussed in Section 3.1. The only
difference is in the caching setup; the tunneling probe is
replaced with a caching proxy that caches query responses
(see Figure 1).

All the PING/PONG messages initiated or forwarded
by the servents inside or outside going through the gate-
way will be forwarded by the proxy servent. The caching
proxy will not change the TTL, and thus the reachabil-
ity of PING/PONG messages remains the same as before.
Similarly, HTTP data download messages will be tunneled
through.

For query requests going out of the gateway, the caching
proxy checks the local query hits cache. If it can serve query
responses out of its cache, it will not forward the query re-
quest to outside the gateway. If it cannot serve query re-
sponses out of its cache, it will forward the query to the
original destination of the query, without decrementing the
TTL. Again, the reachability of this query stays the same as
if the proxy does not exist.

4.2 The Caching Algorithm

As discussed in Section 3.2.4, the proxy servent attached
to the gateway can potentially see repeated copies of the
same query, i.e., with an identical nui d. This complicates
the notion of cache misses and cache hits in our transpar-
ent caching scheme. In the following, we discuss design
options for the caching algorithm and present the details of
the chosen algorithm.

4.2.1 Design Options

Each Gnutella query request tunneled by the caching proxy
has a unique set of nui d, query string, forwarder (inside the
gateway), neighbor (outside the gateway), TTL, and mini-
mum speed values. This is because repeated queries with
the same mui d have already been dropped at individual ser-
vents. In the following, we discuss design options in terms
of the subsets of these parameters to be used for indexing
query hits. Obviously, the smaller the subset, the more fre-
quent the reuse of the cached query hits, i.e., the higher the
cache hit ratio.

Out of the six parameters, query string and TTL are two
obviously necessary caching parameters. Parameter nui d

Organization

Figure 7. An example topology of servents inside the
gateway.

should not be a parameter, because otherwise, queries with
the same string and other parameters but different mui d
will never generate a hit. Thus the strictest caching algo-
rithm is to index query hits by the tuple (query stri ng,
forwarder, neighbor, ttl, mininmm speed).

Our caching algorithm further loosens up two parameters
from the above tuple of five. First, it ignores the forwarder
value, since query hits from a subtree (e.g., rooted at node
Al in Figure 7) due to a query sent by one forwarder (e.g.,
servent A) can be used to reply to a subsequent query with
the same query string but from a different forwarder (e.g.,
servent C).

Second, it removes the minimum speed from the cache
indexing tuple as follows. When a cache miss happens, the
proxy rewrites the minimum speed to zero before forward-
ing it to outside the gateway. As a result, it collects query
hits with all possible speeds. For subsequent queries that
match all other parameters with the cached query hits, but
specify a non-zero minimum speed requirement, the proxy
can always extract a subset of the cached query hits that
satisfy the minimum speed requirement without forwarding
the query out of the gateway again. We call this scheme one-
time bandwidth adjustment. Alternatively, the proxy can
incrementally forward queries with lower and lower mini-
mum speed requirement and thus could not be satisfied by
previously cached query hits. In this case, the proxy re-
places the cached query hits with newly received query hits
every time it forwards a query with a lower minimum speed
requirement. We call this scheme incremental bandwidth
adjustment. Obviously, there is a tradeoff between the two
schemes. The one-time bandwidth adjustment scheme pays
a one-time cost to get all possible query hits, which may
be higher than necessary, but can be used to reply all future
recurrence of the same query. The incremental bandwidth
adjustment scheme fetches query hits on demand, but it in-
curs overhead from repeated query hits when forwarding
the same queries with lower and lower minimum speed re-
quirements. We experimentally compare these two schemes
in Section 4.3.

Case Muid Forwarder
Case 1 | equal equal
Case 2 | equal not equal
Case 3 | notequal | ***

Proxy Behavior

will not happen

ignore and drop the query

reply from the cache and
drop the query

Table 2. Behavior of the caching algorithm for different
cases.

A more aggressive caching algorithm further ignores
the neighbor parameter and caches query hits indexed by
(query string, ttl) only. This caching scheme can
exploit the locality in the collective queries by different ser-
vents (see Table 1), since it can use query hits in its cache
collected from replies from nodes in a subtree rooted at one
neighbor outside the gateway (e.g., servent A3 in Figure 7)
to reply to a query destined for a different subtree outside
the gateway (e.g., rooted at servent B3). It remains unclear
to what extent this scheme preserves the user searching ex-
perience as different subtrees may generate different sets of
query hits for the same query with the same TTL. We are
studying this caching scheme in our ongoing work.

4.2.2 The Chosen Algorithm

Our caching algorithm caches query hits according to the tu-
ple of (query string, neighbor, ttl) values of the
query. It uses two main data structures. First, any time
the proxy tunnels a query to outside servents, it records the
mui d, the query string and the TTL information in a Cache
Miss Table (CMT). When a query hit is received from out-
side, its muid is checked against CMT to find the corre-
sponding query string and TTL, which is used to index into
the cache table. The cache table (CT) is the data structure
for storing cached query hits. For each CT entry CT(i), the
algorithm adds a vector field to remember the nui d and
f or war der of up to 10 most recent queries for which query
hits are replied using that cache entry.

Assume query hits for a particular query have been
cached in the i, entry of the cache, indexed by (query
string, neighbor, ttl). Next, when a query mes-
sage MSG-1 results in a cache hit on this entry for the
first time, the proxy replies from the cache and stores the
(mui d, forwarder) information of MSG in CT(i). Ev-
ery time there is a cache hit with the i, entry, the (nui d,
f orwar der) information of the new message MSG-N is
compared with those stored in CT(i) and the appropriate ac-
tion according to Table 2 is taken.

e Case 1: The (nui d, forwarder) of MSG-N match
those of one of the previous messages replied by the
proxy using the same cache entry. This will not happen
as the forwarding servent should have dropped it.

e Case 2: The mui d of MSG-N matches that of one of

the previous messages replied by the proxy using the
same cache entry, but their f or war der values differ.
This only happens when a query is forwarded through
different forwarders towards the same neighbor. In
this case, the proxy must have already replied once
to a query with the same (mui d, forwarder) us-
ing cached query hits coming from the Gnutella sub-
tree rooted at the cache entry’s neighbor, and thus the
proxy should simply drop MSG-N.

e Case 3: The mui d of MSG-2 does not match with
the nui d of any of the previous queries replied by the
proxy using cached query hits. In this case, the proxy
is seeing this query message with this mui d for the first
time. Hence the proxy replies from the cache. The
proxy also stores the (nui d, forwarder) values of
MSG-2 in the corresponding cache entry.

Optimization A simple optimization to our caching algo-
rithm is to check CMT for the existence of an entry with the
same (nmui d, nei ghbor) and drop the new query right
away if such an entry is found. The reason is that the
neighbor servent will drop the query anyway according to
Gnutella protocol.

Caching delay A complication to our caching scheme
rises when repeated queries (i.e., with the same cache in-
dex) are arriving at the proxy before all the query hits from
outside the gateway for the first forwarded query have been
received. We solve this problem as follows. Once there is
a cache miss and the query is forwarded by the proxy, the
proxy creates the corresponding entry, records the time, and
declares it to be unusable until a certain period of time has
elapsed, at which point, the cache entry is marked as us-
able. Our measurements at the caching proxy have shown
that over 99% of the queries forwarded to outside the gate-
way receive all of their query hits within 15 seconds. There-
fore we set the elapsed period to be 15 seconds. A hit on an
unusable cache entry is treated the same as cache miss.

4.3 Caching Results

We ran two sets of experiments for an hour consecu-
tively, one with one-time bandwidth adjustment and the
other with incremental bandwidth adjustment. The caching
results are shown in Table 3.

Table 3 shows the caching results for only non hash/urn
based query traffic. We believe that the results will be
similar when hash/urn based queries are also cached be-
cause the proposed caching algorithm will behave exactly
the same way with hash/urn based queries as it does with
non hash/urn based queries. One question about the caching
results is whether to count the dropped queries due to opti-
mization in Section 4.2.2 in calculating the hit ratios. Since

Cache version One-time BW Adjustment Incremental BW Adjustment
Time measured (EST) 3:30-4:30am, Jan 26, 2003 2:00-3:00am, Jan 26, 2003
(after a 30-minute warmup) (after a 30-minute warmup)
number of non hash/urn queries (C1 + C2) 2386603 2150308
number of cache misses (C3) 1476160 1472218
number of cache misses generating nonempty query hits 10866 8545
number of cache misses due to speed N/A 766
number of queries overwritten with 0 speed requirement 14669 N/A
number of cache hits, but unusable (Section 4.2.2 caching delay) 43003 45181
number of cache hits 903505 671441
number of cache hits with nonempty query hits 8939 11620
number of cache hits, but no reply (Table 2 Case 2) 2722 6702
number of queries dropped (C2) (Section 4.2.2 optimization) 6938 6649
query traffic from inside the gateway (B1) (KB) 197332.74 177651.66
query traffic tunneled from inside to outside the gateway (B2) (KB) 119259.12 118901.44
query hit traffic received from outside the gateway (B3) (KB) 36141.77 48383.82
query hit traffic sent by the proxy to inside the gateway (B4) (KB) 41263.61 51881.76
Measured cache hit ratios and byte hit ratios (with caching delay)
query message hit ratio (C1+C2-C3)/(C1+C2) 38.15% 31.53%
query message byte hit ratio ((B1-B2)/B1) 39.56% 33.07%
query hit message byte hit ratio ((B4-B3)/B4) 12.41% 6.74%
Theoretical cache hit ratios (without caching delay)

query locality (taking into account the neighbor and TTL)
average frequency 1.664 1.510
query message hit ratio (1.664 - 1)/1.664 = 39.90% (1.510 - 1)/1.510=33.77%

Table 3. Caching results for the one-time bandwidth adjustment scheme and the incremental bandwidth adjustment scheme.

the dropped queries contribute to reducing the uplink traffic,
we view them as cache hits.

The two versions of the caching algorithms result in
38.15% and 31.53% query message hit ratios (with dropped
queries considered as hits), 39.56% and 33.07% byte hit ra-
tios for query messages (i.e., reduction in uplink traffic), and
12.41% and 6.74% byte hit ratios for query hit messages
(i.e., reduction in downlink traffic), respectively. Compar-
ing the two caching algorithms, we see that the cache hit ra-
tio in using the incremental bandwidth adjustment scheme
is about 20% smaller than using the one-time bandwidth ad-
justment scheme. Since the number of cache misses due to
a mismatch in speed requirement by using the incremental
bandwidth adjustment scheme is rather insignificant (766
out of 1472218 misses), and the number of queries with
non-zero speed requirements in the run using the one-time
bandwidth adjustment scheme is also insignificant (14669
out of 1476160 misses), we attribute the difference in the
hit ratios to the difference in locality in the two runs; the
run using the one-time bandwidth adjustment scheme has
higher locality than the run using the incremental band-
width adjustment scheme. In other words, the two caching
algorithms are likely to perform comparably given the same
query traffic.

Table 3 also shows that there is only a small gap between
the measured hit ratios which take into account the caching
delay as explained in Section 4.2.2 and the theoretical hit
ratios which are calculated based on the locality of queries
assuming no caching delay. This suggests that repeated
queries rarely happens right next to each other, and caching

delay has little impact on the effectiveness of caching.

5 Integrating Query Caching with HTTP
Caching

In this section, we present a scheme for integrating our
query caching proxy with off-the-shelf HTTP caching prox-
ies widely deployed in the Internet.

The fact that Gnutella servents often use the same TCP
port for both protocol and data traffic poses challenges to
transparently cache both types of traffic. On one hand, we
cannot simply configure a regular web cache to listen on
the default Gnutella port (i.e., 6346), as it will not under-
stand Gnutella protocol messages. On the other hand, high
performance off-the-shelf HTTP caching proxy are widely
deployed, and thus it is desirable not to reimplement query
caching and HTTP caching on top of one another.

Figure 8 illustrates our scheme for integrating transpar-
ent caching of Gnutella protocol and data traffic at the gate-
way of the organization. The router running WCCPV?2 is
configured to redirect TCP traffic destined to any specific
port to the attached caching proxy machines. Two caching
proxies are attached to the router: the first is our query
caching proxy, listening on port 6346 only; the second is
an off-the-shelf web caching proxy, listening on port 9346,
assuming 9346 is an unused port. 2 The default configu-
ration of the web caching proxy is changed slightly: on a

2We assume that additional web caching proxies listening on port 80
are attached to the router for caching normal web traffic.

(listening on port 6346)

query hit

23 port 6346
HTTP miss| 7

L/ 1 __ query caching
rt 6346
proxy hit‘ po proxy

HTTPGET A
port 6346 |
Rou:f[er

5 rewritten query hit

HTTPGET |° |1 |4
port 9346 | [potosss| |
——=sarvent A

Figure 8. Integrating transparent query caching with
HTTP data caching.

cache miss, instead of making a connection to port 80 of
the origin server, it will make a connection to port 6346 of
the origin server. Note that the two proxies can be running
on the machine, as long as the router is properly configured.
The major steps (labeled 1-6 in Figure 8) that Gnutella traf-
fic are being redirected to the caching proxies and cached
are as follows.

e The router redirects all protocol traffic going to port
6346 to the proxy cache (Step 1), and all HTTP traf-
fic going to 9346 to the web caching proxy (Step 5).
It will become clear below all Gnutella HTTP request
from inside the gateway will not go to port 6346.

e The host running the proxy cache uses IP firewall to
redirect protocol packets forwarded from the router to
port 6346 of localhost.

e The proxy cache listening on port 6346 accepts these
protocol messages, and processes them accordingly, as
described in Section 4.2.2. Query misses will be for-
warded to the destination servent, with destination port
6346 (Step 2). For each query hit coming back from a
servent outside (Step 3), if the specified port is 6346,
the query caching proxy will modify the port to 9346
before sending back to the servent inside the gateway
(Step 4). Note if specified port is not 6346, it will not
be rewritten.

e When the servent inside the organization downloads
files via HTTP, it will specify port 9346 (Step 5), as
dictated by the query hits it has received. This guaran-
tees that all Gnutella HTTP requests going out of the
gateway will use port 9346.

e The router redirects the HTTP request to port 9346 to
the web caching proxy.

e The web caching proxy node uses IP firewall to redi-
rect the HTTP packets to port 9346 of localhost.

e The web caching proxy accepts the HTTP requests,
and proceeds as usual. On a hit, it replies to the servent
out of its cache (Step 6). On a miss, it always makes a
connection to the origin server on port 6346 (Step 7).

The origin server is guaranteed to be listening on port
6346. This is because only when the port specified in
the query hit is 6346, the query caching proxy would
rewrite it to 9346, as explained above. If specified port
is not 6346, it would not have been overwritten, and
the HTTP request would not have been redirected by
the router. In other words, they would not be cached.

6 Redated Work

Although caching peer-to-peer traffic is a relatively new
topic, there have been many studies of the characteristics
of Gnutella networks and traffic. Adar and Huberman stud-
ied the Gnutella traffic for a 24-hour period [4], and found
that close to 70% of the users shared no files, and that 50%
of all responses were returned by only 1% of the hosts.
In [8], Saroiu et al. also observed that small percentage
of the peers appeared to have “server-like” characteristics:
they were well-connected in the overlay network and they
served a significant number of files. In [7], Ripeanu et al.
studied the topology of the Gnutella network over a period
of several months, and reported two interesting findings: (1)
the Gnutella network shares the benefits and drawbacks of a
power-law structure, and (2) the Gnutella network topology
does not match well with the underlying Internet topology
leading to inefficient use of network bandwidth.

Several previous work studied query caching in Gnutella
networks. Sripanidkulchai [10] observed that the popular-
ity of query strings follows a Zipf-like distribution, and
proposed and evaluated a simple query caching scheme by
modifying a Gnutella servent. The caching scheme pro-
posed was fairly simple; it caches query hits solely based
on their query strings and ignores TTL values. In [6],
Markatos studied one hour of Gnutella traffic traces col-
lected at three servents located in Greece, Norway, and
USA, respectively, and found that on average each query
with ¢¢l > 1 is witnessed by each servent between 2.57
to 2.98 times (disregarding the TTLs), suggesting signifi-
cantly locality among queries forwarded by each servent.
Markatos also proposed a query caching scheme by modi-
fying servents that caches query hits according to the query
string, the forwarder where the query comes from, and
the TTL. In summary, all previous caching schemes for
Gnutella networks focus on individual servents, and are
implemented by modifying the servents and thus rely on
wide adoption of modified servents to become effective. In
contrast, our scheme views all the servents within an or-
ganization as a whole, exploits locality among the collec-
tive queries, requires no change to individual servents, and
therefore can be easily deployed.

Several recent work studied other p2p traffic. Leibpwitz
et al. [5] studied one month of FastTrack-based [11] p2p
traffic at a major Israeli ISP and found that majority of the

p2p files are audio files and the majority of the traffic are
due to video and application files. They also reported sig-
nificant locality in the studied p2p data files. Saroiuetal. [9]
studied the breakdowns of Internet traffic going through the
gateway of a large organization into web, CDN, and p2p
(Gnutella and KaZaa) traffic. They focused on HTTP traf-
fic, for which caching techniques are well-known. In con-
trast, this paper focuses on the p2p protocol traffic, and pro-
poses a transparent caching scheme for query traffic as well
as a scheme for integrating transparent query caching with
transparent HTTP caching.

7 Conclusions

We have studied the locality in the collective queries go-
ing through a gateway forwarded by servents behind that
gateway, and found that there is a significant locality in the
collective queries, and the locality increases with the popu-
lation of those servents. To exploit the locality, we have pro-
posed a scheme for transparently caching query hits at the
gateway. Our scheme does not require any modifications to
the individual servents, and can exploit the locality in the
collective queries going through the gateway. We have im-
plemented a conservative caching algorithm that preserves
user’s experience by distinguishing query hits from differ-
ent Gnutella subtrees outside the gateway; queries will re-
sult in similar query hits with or without the transparent
caching running. If servents inside the gateway do not
share any neighbors outside the gateway, our conservative
caching algorithm does not benefit from the locality in the
collective queries, and it will generate similar cache hit ra-
tios as caching at the individual servents (e.g., inside the
gateway).

Measurements of our transparent caching proxy in an
experimental testbed of 8 Gnutella servents in a LAN has
shown a query cache hit ratio of up to 38%, an uplink query
traffic reduction of up to 40%, and a downlink query hit
traffic reduction of up to 12% at the gateway.

We are pursuing several directions in our ongoing work.
First, we are studying the effectiveness and the accuracy
of the more aggressive caching algorithm discussed in Sec-
tion 4.2.1 which does not distinguish the subtrees outside
the gateway from which query hits come from. Second,
our tunneling probe and caching proxy only hijacks outgo-
ing connections of servents inside the gateway. In princi-
ple, however, incoming connections can be hijacked by a
proxy servent at the gateway in a similar fashion. We plan
to study reverse caching of queries at the gateway. Third,
to measure the effectiveness of our caching scheme in the
real world which will a large number of active servents, we
plan to deploy our tunneling probe and our caching proxy
in the Purdue Research and Development Network (RDN).
The RDN is a shadow network of the campus network de-

10

veloped to allow for researchers, faculty, and students to
have access to Gigabit Network connectivity throughout the
campus for research, testing, and development. It can be
configured to take over adjustable amount of network traf-
fic from the main campus network. Fourth, we also plan to
study other p2p network traffic such as KaZaa, and extend
the developed caching schemes for Gnutella to these other
p2p networks and applications.

Acknowledgment

We thank the anonymous reviewers for their helpful
comments. This work was supported by Cisco Systems
through the University Research Program.

References

[1] The Gnutella protocol specification, 2000.
http://dss.clip2.com/GnutellaProtocol04.pdf.

[2] The Gnutella 0.6 protocol draft, 2002. http://rfc-

gnutella.sourceforge.net/.

Hash/urn gnutella extensions (huge) v0.94, 2002. Gnutella
Developer Forum.

E. Adar and B. Huberman. Free riding on gnutella. First
Monday, 5(10), 2000.

N. Leibpwitz, A. B. an Roy Ben-Shaul, and A. Shavit. Are
file swapping networks cacheable? characterizing p2p traf-
fic. In Proceedings of the 7th Intl. WMV Caching Workshop,
August 2002.

E. P. Markatos. Tracing a large-scale peer to peer system:
an hour in the life of gnutella. In Proceedings of the 2nd
IEEE/ACM Intl. Symp. on Cluster Computing and the Grid
2002, May 2002.

M. Repeanu, I. Foster, and A. lamnitchi. Mapping the
gnutella network: Properties of large-scale peer-to-peer sys-
tems and implications for system design. |EEE Internet
Computing Journal, 6(1), 2002.

S. Saroiu, P. Gummadi, and S. Gribble. A measurement
study of peer-to-peer file sharing systems. In Proceedings
of Multimedia Computing and Networking (MMCN), 2002.
S. Saroiu, P. K. Gummadi, R. J. Dunn, S. D. Gribble, , and
H. M. Levy. An analysis of internet content delivery sys-
tems. In Proceedings of the Fifth Symposium on Operating
Systems Design and Implementation (OSDI), Dec. 2002.

K. Sripanidkulchai. The popularity of gnutella queries and
its implication on scaling, 2001.

K. Truelove and A. Chasin. Morpheus out of the under-
world, 2001.

(3]

[4]

[5]

(6]

[7]

(8]

(9]

[10]

[11]

