
A Cluster-Based Active Router Architecture Supporting Video/Audio Stream
Transcoding Service

Jiani Guo, Fang Chen and Laxmi Bhuyan
Computer Science and Engineering

University of California, Riverside, CA 92521
fjiani,fchen,bhuyang@cs.ucr.edu

Raj Kumar
Hewlett-Packard Laboratory

raj kumar@hp.com

Abstract

Active routers allow computation to be performed within
the network by processing packets when they pass through
the routers. We design and implement a cluster-based active
router system that provides multimedia stream transcoding
service. The performance of the system is evaluated with
three different load balancing schemes. We evaluate the
out-of-order phenomenon and analyze the tradeoff between
this phenomenon and the processing speed. We present
a stream-based round robin algorithm for the transcoding
service offered in the router and demonstrate its superiority
over the conventional round-robin scheme. The main de-
sign criteria are to minimize the total transcoding time and
maintain the order of media units for each outgoing stream.

1. Introduction

The advent of World Wide Web has resulted in increas-
ingly large-scale deployment of parallel and distributed
computing systems. While limited network bandwidth is
still the foremost cause of service degradation, the growing
use of multimedia and e-commerce applications presents
scalability concerns for processing requirements as well.
Performing such kind of computation exclusively at the
server end is difficult because of the overload on servers.
It is also difficult to perform the necessary computation
at the terminal end point, since it usually consists of less-
expensive, specialized network appliances and thin-client
terminal devices. The proxy model used by several com-
mercial service providers only succeeds in moving the prob-
lem of scale from the server to the proxy. The active-
networking offers a viable solution to this problem through
parallel and distributed-computation models.

Active network architectures permit a massive increase
of sophisticated computation within the network by allow-
ing their users to inject customized programs into the nodes
of the network. Broadly, there are two approaches to active

networking [14]. One is that the network nodes are fully
programmable and active packets carry all of the code that
should be executed on them. The other approach is that
network nodes are dynamically configured to provide dif-
ferent customizable services, and active packets use these
services.

The transmission of multimedia information through
networks has long been a research topic, and it is claimed
that multimedia application is becoming one of the killer
applications in this century. The ability to accommodate
video/audio streams in the network extends the reach of
TV type broadcasts into the broadband environment, and
facilitates video/audio conferencing for collaboration and
remote instruction. In most cases, the video/audio streams
need to be transcoded into a form that satisfies the play-
back/recording requirements of various devices or users
with different preferences before they reach the destination.
Generally there are two reasons for this. First, the service
provided may not suit users’ need. For example, when a
media server streams a high-bit-rate video/audio to low-bit-
rate mobile clients, the video/audio should be transcoded
into low-bit-rate to match the client’s requirements. Second,
the media stream should adapt to the variation of available
bandwidth of the transmission channel, and transcoding can
provide this kind of adaptation. However, transcoding is
computation-intensive and needs to be executed fast. An
algorithm for fast down-scale transcoding of compressed
video is implemented on the new Itanium processor family
[10]. It was shown that 30%-40% of computing power is
saved while the quality of transcoding is maintained. In the
active network, the task of transcoding video/audio streams
is distributed over a number of processors, and allows bet-
ter resource management both within the network and at the
end hosts.

In the Journey network model [14], a cluster-based ac-
tive router architecture, called Clara, is adopted to collocate
routing and computational functionality. This model sup-
ports scalability by distributing computation among a se-
quence of active routers, but does not guarantee that the

0-7695-1926-1/03/$17.00 (C) 2003 IEEE



processing will be accomplished before the packet reaches
the destination, which may introduce such problems as high
packet out-of-order rate and high unprocessed packet rate.

In this paper, we present a cluster-based active router im-
plementation that provides video/audio transcoding service.
We assume that there is only one active router in the path
of media stream, where transcoding is performed. There
may be other passive routers on the path, as shown in Fig-
ure 1. In our model, the incoming video/audio streams are
captured and transcoded before they leave the router. The
active router consists of a routing node and a few computing
nodes. The routing node and computing nodes in the clus-
ter are organized as a distributed computing platform con-
nected over a high-performance network. The routing node
acts as the cluster manager as well as a normal IP router.

Media Server

Passive Router Active Router Passive Router

Figure 1. An active router in network

Three kinds of load sharing strategies, round robin, adap-
tive load sharing and stream-based round robin, are imple-
mented in the system. Notice that although a plethora of
adaptive load balancing strategies have been suggested in
the literature [7], they are rarely used in practice. It is
because of the difficulty in their implementation, the high
overhead of measuring the parameters, and evaluating op-
timization functions. As a result, most of the implemen-
tations are based on simple round-robin schemes. In this
paper, we identify and implement a particular adaptive load
balancing scheme [6] for our active router. We also propose
a new stream-based round-robin policy that is simple but
greatly reduces the out-of-order degree of the media units
in a simple unit-based round-robin scheme.

We did experiments to test the system performance of
our implementation by varying the number of the Comput-
ing PCs, incoming multimedia streams, and load balancing
policies. The main performance metrics are out-of-order
rate of the out-flowing media data, departure rate of these
media streams and scalability of the cluster. The paper
makes the following contributions:

1. We implement an active transcoding router using five
linux-based PCs connected over a Gigabit Ethernet.

2. We implement a RED-like algorithm for admission
control, and two load balancing policies, round-robin
and adaptive load sharing, for distributing tasks to the
computing nodes. We also develop a new stream-based
round robin algorithm and shows its superiority over
the traditional unit-based round robin policy.

3. We carry out extensive performance evaluation of the
active router through measurements. The results give
insights into out-of-order properties of the video out-
puts and scalability of the parallel computation.

The paper is organized as follows: In section 2, we
briefly discuss the related work. The framework of the
cluster-based active router and some implementation issues
are introduced in section 3. In section 4, we present various
load balancing schemes. Experimental results are presented
in section 5. Finally, section 6 concludes this paper.

2. Related work

In the active network research domain, the NetScript
project [16] at Columbia University, the ANTS system [15]
from MIT, and SwitchWare [1] from the University of Penn-
sylvania all aim toward the model where routers are fully
programmable and active packets carry executable codes.
For security reason, the execution context usually resides
in a virtual machine, which makes it questionable for high
performance.

The MeGa project [2] of the University of California,
Berkeley, and the Journey network model [14] at the NEC-
USA, fall into the second category, where routers provide
customizable services according to packet requests. Ralph
Keller et al. proposed an active router architecture [5],
where video scaling algorithms are deployed to improve
video performance. The difference between this model and
the journey network model is that the former requires that
all the scaling computation should be accomplished within
the same active router, while the latter focuses on distribut-
ing computation to different routers even when the packets
belong to the same stream.

Admission control is a crucial part in router queue man-
agement to enforce QoS policies, so that ill-behaved flows
will experience higher packet drop rate. In contrast to static
algorithms like Drop-Tail, Drop-Head, etc., active algo-
rithms such as RED [3] pro-actively drop a packet with a
variable probability when the average queue length reaches
a threshold.

Load balancing is widely used in parallel and distributed
systems. A detailed survey of general load balancing al-
gorithms is provided in [12]. In the network domain, load
balancing schemes are particularly adopted to split network
service requests among a bunch of servers such as web
servers, or distributed cache servers. When the concept of
flow is involved, one of the most important properties of
any load balancing policies is that the packets belonging to
the same flow should be kept in order as much as possi-
ble. For example, in TCP-based flows, out-of-order packets
may trigger retransmission or even worse congestion con-
trol, and thus degrade the throughput; in UDP-based flows
such as video/audio transmission, limited receiving buffers

0-7695-1926-1/03/$17.00 (C) 2003 IEEE



may not accommodate the out-of-order packets, which re-
sults in higher drop rate and thus affects the quality of ser-
vice.

In practice, simple static policies, such as random distri-
bution policy [11] or modulus-based round robin policy [4],
can achieve satisfactory results. However, the random dis-
tribution cannot preserve packet order within a flow if per-
flow information is not maintained. Modulus-based round
robin policy also has the drawback that all flows are re-
mapped if the number of computing nodes is changed. On
the other hand, adaptive load balancing policies are usually
complicated and require prediction of computation time for
any incoming requests [17]. The hash based highest random
weight (HRW) algorithm was first proposed by Thaler [13],
and then developed by Ross [9]. It is reported to provide
good performance and low overhead when the request iden-
tifier space is evenly distributed. Lukas Kencl et al. HRW is
extended with a feedback mechanism, which allows adjust-
ment to the weights with minimum flow re-mapping[6], to
cope with request identifier space locality. We incorporate
this adaptive load balancing technique in our active router.

3. The framework

3.1. Active router cluster architecture

Figure 2 demonstrates the computation model of our ac-
tive router system. When media units pass through the ac-
tive router in the network, they are processed before their
departure as long as the active router can provide enough
computational resources. The proposed active router con-
sists of a cluster of generic PCs. One PC, called rout-
ing PC, acts as the coordinator, as well as performs all
router functionality. Other PCs, called computing PCs, pro-
vide customizable computation-intensive services. In this
model, the computing PCs and the routing PC are con-
nected through a Gigabit Ethernet. The routing PC is also
connected to a remote PC, which continuously sends sev-
eral media streams to it. A media stream is a complete
video/audio segment, like a movie or a conference record-
ing. The remote PC can be regarded as a simplified media
server in the practical network.

We assume that the media stream data can be divided into
a sequence of media units that are ready for independent
transcoding. A media unit can be a group of pictures (GOP)
of MPEG streams or a FRAME of AVI streams. The rout-
ing PC receives these media units from the remote PC, and
forwards them to the computing PCs for transcoding. Each
computing PC independently processes the media units us-
ing the local computing resource and does not require any
global stream state. We do not transcode any units in the
routing PC because the routing function will usually keep
this PC busy. Since our experiments emphasize the paral-

Unit
Buffer

receiver
transcoder

sender

receiver
transcoder

sender

receiver
transcoder

sender

receiver
transcoder

sender

collector

Routing PC

collector
Queuing delay

Manager

Dispatchers

Arrival Pattern

Computing PC

Reject rate

Transcode

Time

Receiver

Figure 2. Computation Model of Active Router
Cluster

lel computing service offered in the cluster, we did not in-
clude layer 3 functions such as routing-table lookup in our
cluster-based active router. Because of the limited resources
available in the active router cluster, some packets in the
media stream will be sent out without being processed. The
aims of our implementation are to minimize the processing
time for each media unit in the active router, and to pre-
serve the unit order of outgoing media streams as much as
possible. Many factors need to be considered under this cir-
cumstance.

� The first is the arrival pattern with which multiple
media streams reach the routing PC from the remote
PC. How to define and guarantee the fairness among
streams needs to be addressed.

� The second is the admission policy that determines
which packets from which streams should be admitted
to ensure the fairness and QoS.

� The third issue is the load balancing policy that de-
termines how to distribute the units to different com-
puting PCs for transcoding. Since the order of output
media stream units is largely affected by the dispatch-
ing policy, whether the units of the same media stream
should be dispatched to different computing PCs has
to be decided.

In the user-level multiprocess/multithreaded implemen-
tation of the active router, shown in Figure 2, media units
are continuously sent from the remote PC to the routing PC
according to the arrival pattern discussed in section 3.3. On
the routing PC, four kinds of threads, namely, receiver, dis-
patcher, collector and manager, are running concurrently.
Three kinds of processes, receiver, transcoder and sender,
reside in the computing PC.

Routing PC
The receiver puts unprocessed units into the unit buffer

according to the admission control policy described in sec-
tion 3.2. Once a packet is admitted into the unit buffer, all
packets of the same unit should be accepted and assembled
before they can be distributed to a computing PC. When the

0-7695-1926-1/03/$17.00 (C) 2003 IEEE



admission control rejects the first packet of a unit, all pack-
ets of this unit are rejected, i.e., sent out to the outgoing
path without being processed. The unit buffer adopts a sim-
ple FIFO policy for assembled units since the media streams
simulated in our experiment are concurrent and treated with
equal priority. The dispatcher fetches units from the unit
buffer and dispatches them to computing PCs according to
the load balancing policy. When all computing PCs are very
busy, the accepted units will stay in the buffer until comput-
ing resources are available.

The manager collects the load statistics information and
does load balancing only when feedback information is re-
quired by a load balancing policy. The load balancing
strategies are further described in section 4.

We have a collector per computing PC to collect all the
processed units from the computing PC.

Computing PC
Each computing PC has one receiver, multiple

transcoders and one sender, which are running in pipeline.
The unprocessed units received by the receiver are first
stored in the buffer, and are then fetched and transcoded
by one of the transcoders. Finally, the sender sends the pro-
cessed units back to the router. The processing time per unit
at the transcoding stage is much higher than that of the other
two stages, hence multiple transcoders are adopted, but the
number of transcoder processes should be optimized.

3.2. Admission control

Admission control determines whether an unprocessed
media unit should be admitted into the unit buffer. Usually
the algorithm will affect the fairness and quality of service.

One possible policy is that each unit carries a tolerable
delay bound. The active router, by checking its own status,
evaluates whether the bound can be satisfied. If possible,
the video packet and all following packets in the same unit
are accepted for transcoding; otherwise, they are rejected
and hopefully processed by other active routers in the ongo-
ing path. However, this requires that the router accurately
predict the process time. In addition, the router has to as-
sume that all packets of the same unit should arrive in time,
or the interval does not exceed the delay bound. In our ex-
periment, we only care about how many streams can be sup-
ported with a reasonable delay under the system configura-
tion assuming all the streams have the same priority.

We define fairness as giving each stream similar accep-
tance rate (or rejection rate). Keeping this in mind, we pro-
pose a RED-like algorithm to achieve fairness over media
streams. In the algorithm, we set two threshold values to
the unit buffer. Whenever the average queue length exceeds
the lower threshold, the incoming units are randomly re-
jected with a variable probability p that is proportional to
the average queue length. If the average queue length ex-

ceeds the upper threshold, any incoming units are rejected;
otherwise, all incoming units are accepted. In our experi-
ment, the lower threshold and the upper threshold are set as
0.8 and 0.99 respectively. The maximum queue size is an
adjustable parameter.

The RED idea adopted here is different from that of a
regular router, where RED is used to drop packets and no-
tify senders [3]. In our case, the packets are not dropped
but rejected, i.e., sent out without processing. However,
we expect that the future video streaming servers will have
congestion-control response mechanism to count unpro-
cessed packet rate. Another difference arises in that, all
packets of a unit should be rejected once the first packet of
the unit is rejected in our scheme, while RED drops packets
without considering the correlations among packets.

3.3. Hardware Setup

We implement a simplified media server on the remote
PC, which continuously sends media stream data to the ac-
tive router using UDP. The media streams are short movies
encoded in MPEG-1 format with the bit rate of 1441Kbps.
Each GOP of the media stream consists of 15 frames for
the playback time of 0.5 second, since the normal playback
rate is 30 frames per second (fps). The average GOP size is
around 90k. The media server sends streams in round robin
fashion. For each stream, the media server splits its GOP
into a series of packets, and sends all these packets within
0.5 seconds. Such a round robin scheme reflects the correct
scenario where the active router receives video packets from
multiple media severs simultaneously. Although the sim-
ple policy does not consider multi-layer encoding or stream
error correction encoding used in some commercial appli-
cations, it is a reasonable assumption for our measurement
purpose.

The transcoding service, provided by each comput-
ing PC, is derived from a powerful Linux video stream-
processing tool implemented by Thomas Ostreich [8]. It
can change video compression formats, change the play-
back bit-rate and even adjust the frame resolution by chop-
ping off some frame regions. Its current implementation
is based on a multi-process and multi-thread model. Be-
cause the whole program runs in the user space, invoking
the transcoding process consists of many context switches
and thus affects the performance. In addition, the interface
to this service is through files that involves disk I/O opera-
tions.

The remote PC, routing PC and computing PCs are
equipped with Athlon 1.4G CPU and 1GB memory; the re-
mote PC connects with the routing PC through 100M Ether-
net, while the routing PC and computing PCs are connected
through a Gigabit switch. The operating systems is Linux
Mandrake 7.2.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE



4. Load balancing

A critical issue in implementing this cluster system is
the load balancing strategy, i.e., how to distribute multiple
media streams among different computing PCs to achieve
the best utilization. A unit based round robin scheduling
is adopted in [14]. Using this scheme, we observe that the
performance is poor in terms of out-of-order degree for pro-
cessed units. Hence, we propose to implement another two
algorithms and evaluate them in the next section.

4.1. Round Robin Strategy

With round robin, the dispatcher searches for an avail-
able computing PC in fixed order. When multiple dispatch-
ers are used, concurrently sending different streams to dif-
ferent computing PCs is allowed. In this case, once a dis-
patcher starts to send a media unit to a computing PC, the
computing PC will be labeled ”unavailable”; and when the
data communication is completed, this computing PC will
be labeled ”available” again and can be chosen by another
dispatcher. Notice that in this policy, the units of the same
flow are most likely to be distributed to different comput-
ing nodes, and thus the order is not preserved. However
this scheme is efficient when only processing speed is con-
cerned.

4.2. Stream-based Round Robin Policy

To preserve the order of computation among media units,
as well as keep the simplicity of round robin, we propose
and implement a stream-based round robin algorithm. The
unit is mapped to a computing PC according to the follow-
ing function:

f(C) = C mod N (1)
where, C is the stream number to which the unit belongs;
and N is the number of computing PCs in the cluster.
Therefore, all the units belonging to one stream will be
sent to the same computing PC. Concurrently running dis-
patchers are allowed to dispatch different streams to dif-
ferent computing PCs simultaneously. Once a dispatcher
thread fetches one unit from the unit buffer, it first checks
if the mapped computing PC is available and decides what
to do. The unit will be dispatched immediately if the PC is
available; otherwise, the dispatcher will go back to the unit
buffer to fetch another unit.

4.3. Adaptive Load Sharing Policy

Although a number of adaptive load sharing policies are
proposed in the literature[12], we found that the extended
HRW technique[6] is suitable for network applications con-
taining a number of flows. Hence, we implemented it in our

system. Since the studies [6] are theoretical in nature, we
have to carefully assign the parameters.

According to the adaptive load sharing policy proposed
in [6], a packet can be mapped to a particular computing PC
according to the function f(~v) = j, which is defined as

xj g(~v; j) = max
k2f1;:::;Ng

xk g(~v; k) (2)

where, v is the identifier vector of the packet; j is the com-
puting PC to which the packet will be mapped for process-
ing; g(~v; j) is a peudo-random function which produces
random variables in (0,1) with uniform distribution; and
x0; x1; :::xN are the weights for all the N computing PCs.
Concerning the weights which describe the processing ca-
pacity of each computing PC, [6] also proposed a dynamic
adaptation through feedback. The routing PC gathers infor-
mation about the utilization of the computing PCs. If an
adaptation threshhold is exceeded, the routing PC adjusts
the weights. A smoothed, low-pass filtered processor uti-
lization measure of the following form is used to calculate
the utilization of each computing PC ��j(t) by gathering the
load statistics information �j(t) at fixed time interval.

��j(t) =
1

r
�j(t) +

r � 1

r
��j(t��t) (3)

The total system utilization is measured as ��(t) =
1

r
�(t) + r�1

r
��(t � �t). The adaptation algorithm con-

sists of triggering policy and adaptation policy. Once the
triggering condition is reached, adaptation will be taken to
the weights of involved computing PCs.

To implement the algorithm, [6] suggests to implement
function g(~v; j) by using the hash function h��1(y) =
(��1y)mod 1, which is based on the Fibonacci golden ratio
multiplier ��1 = (

p
5� 1)=2, such that,

g(~v; j) = h��1(~v XOR h��1(j)) (4)

Another open implementation issue is how to actually mea-
sure the load of each processor.

In our experiments, we adopt the above function g(~v; j),
and define the load indicator �j(t) as

�j(t) = ttaskj=�t (5)

where, ttaskj is the CPU time spent by the transcoding ser-
vices during the polling interval �t. �(t) is defined as

�(t) = (

NX

i=0

ttaski)=N�t =
1

N

NX

i=0

�i(t) (6)

The identifier vector v is chosen to be the stream number
to which the units belong. So, once a dispatcher fetches
a unit from the unit buffer, the function f is calculated to
determine a specific computing PC to which the unit should
be dispatched.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE



In summary, with the adaptive load sharing strategy, the
system works as follows: all the Computing PCs are as-
signed the same weights at the beginning. Then, the man-
ager polls all the computing PCs to collect load statistics
information at a fixed time interval of 3 seconds. The col-
lected load statistics information is calculated to determine
if adaptation of the weights is triggered. If adaptation is nec-
essary, the weights of adapted computing PCs are modified
and so the packet to computing PC mapping may change to
better balance the loads.

5. Experimental results

5.1. Performance metrics

To measure the performance of our cluster-based active
router, several performance metrics are defined below:

Metric 1: Out-of-order (OFO) degree is used to com-
pare the output order of media units in a given video stream
with respect to their input order. To describe the OFO de-
gree, we examine the statistical distribution of out-of-order
units in each stream. The out-of-order is caused by several
reasons: first, multiple dispatchers may fetch the units of
the same stream out of order; second, different media units
consume different computation time; third, several concur-
rently running transcoders may transcode the units of the
same stream out of order; lastly, when round robin policy
is adopted, the units belonging to the same stream are not
guaranteed to be dispatched to the same computing PC.

Metric 2: Output time interval among successive media
units of a media stream (OTI per stream) is defined to de-
scribe how fast the transcoded media stream can be output
by the router. It is different from the average processing
time per unit in that it describes the actual output time in-
terval between two successive units belonging to the same
stream.

Metric 3: Total processing time is defined as the total
time spent in the active router from receiving the first packet
of all the streams to collecting the last packet of all the
streams from the computing nodes.

Metric 4: Average processing time per unit is calculated
by dividing the total processing time by the total number of
the media units transcoded in the active router. It depicts
how fast the active router can process one media unit.

5.2. OFO Degree and OTI per Stream

We start the measurements with OFO degree of the me-
dia units. The in-order property is the most valuable per-
formance measure to preserve the video quality. There are
two kinds of out-of-order situations: “n preceding” means
a media unit jumps n units ahead of its original order; “n

lagging” means a media unit lags n units behind its original
order.

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

-20 -15 -10 -5 0 5 10 15 20

P
er

ce
nt

ag
e

Out-of-order Degree (units)

stream 1
stream 2
stream 3
stream 4
stream 5

Figure 3. OFO Degree (round robin)

Figure 3 depicts the OFO degree when the experiment
uses 3 computing PCs, 5 media streams, 700 units, buffer
of 200 units, and round robin policy. The X-axis indicates
the OFO degree: -n means “n lagging”, and n means “n
preceding”. Specifically, 0 means that the unit is in order.
The percentage of in-order units is not shown in the figure,
since we only consider out-of-order units here. Using round
robin policy, all streams have OFO degree between -15 and
15. Most of the OFO units fall between -5 and 5. As we
can see, the OFO degrees with the highest percentage of all
5 streams are 1 (42%), 1 (47%), 2 (34%), 1 (27%) and 2
(28%), respectively.

Figure 4 demonstrates the statistical distribution of OTI
per stream. The graph shows that n% (Y-axis) of the units
of the stream are output within m (X-axis) seconds succes-
sively. All the units are classified into 5 categories: the OTI
per stream is 0.5 second, 1 second, 1.5 second, 2 second,
and 2.5 second, respectively. As shown in Figure 4, three
streams have most of their units processed with the OTI of
0.5 second; while the other two streams have most of their
units processed with the OTI of 1 second.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

P
er

ce
nt

ag
e

Output Time Interval Among Successive Media Units(secs)

stream 1
stream 2
stream 3
stream 4
stream 5

Figure 4. OTI per Stream (round robin)

Figure 5 demonstrates the OFO degree for the same ex-
periment with adaptive load sharing policy. The perfor-
mance is much better than the round robin. Three of the
streams barely have out-of-order units. For the other two
streams, at most 14% of their units have the OFO degree of
1; and only 1% of their units have the OFO degree greater

0-7695-1926-1/03/$17.00 (C) 2003 IEEE



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

-20 -15 -10 -5 0 5 10 15 20

P
er

ce
nt

ag
e

Out-of-order Degree (units)

stream 1
stream 2
stream 3
stream 4
stream 5

Figure 5. OFO Degree (adaptive load sharing)

than 1. The measurement of OTI per stream is described in
Figure 6. On average, only roughly 20% units can be out-
put within 0.5 second following each other. Compared with
round robin, adaptive load sharing gives much better output
order of media units per stream, but its overhead of collect-
ing load statistic information causes the OTI per stream to
degrade.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

P
er

ce
nt

ag
e

Output Time Interval Among Successive Media Units(secs)

stream 1
stream 2
stream 3
stream 4
stream 5

Figure 6. OTI per stream(adaptive load shar-
ing)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-20 -15 -10 -5 0 5 10 15 20

P
er

ce
nt

ag
e

Out-of-order Degree (units)

stream 1
stream 2
stream 3
stream 4
stream 5

Figure 7. OFO degree (Stream-based round
robin)

To solve this problem, we propose the stream-based
round robin described in section 4.2. The results are shown
in Figures 7 and 8. It can be observed that the order is
preserved well and the output interval has been improved
compared with adaptive load sharing. This is because the
stream-based round robin has less computation overhead
and no communication overhead for load balancing.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

P
er

ce
nt

ag
e

Output Time Interval Among Successive Media Units(secs)

stream 1
stream 2
stream 3
stream 4
stream 5

Figure 8. OTI per stream (Stream-based round
robin)

5.3. Processing Time

To evaluate the total processing time, we use 5 media
streams, 50 units per stream, buffer of 200 units. With the
RED-like admission policy, about 10% of the total units are
rejected when only one computing PC is used in the clus-
ter, because the units cannot be processed on the comput-
ing PC fast enough and thus the number of units waiting
in the queue passes the threshold. As shown in Figure 9 ,
with round robin(RR), the total processing time scales well
when the number of computing PCs increases from 1 to 4.
On the other hand, both adaptive load sharing(ALS) and
stream-based round robin(SRR) consume more processing
time than RR because of their overhead to maintain the flow
consistency. The ALS needs to collect load statistics and
calculate the triggering and adaptation function,while the
SRR needs to calculate the mapping function. Besides, they
both distribute incoming traffic according to streams, which
makes the system less efficient when the stream number is
not a multiple of the cluster size.

Figure 9. Total Processing Time

Finally, we use 8 media streams and plot the results in
Figure 10. The average per unit processing time scales best
with RR, and then SRR, with ALS ranking the last. SRR
scales worse than RR when the cluster size increases from
2 to 3; but performs as well as RR when the cluster further
goes up to 4. With ALS, the system shows the same scal-
ability trend as SRR, except that the overhead costs ALS
more and more time when the cluster size becomes bigger.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE



Figure 10. AVG Unit Processing Time

6. Conclusion

Active network provides a new direction for processing
network traffic, which makes it possible to distribute expen-
sive computation among a number of active routers instead
of executing it on the server or client. This is especially
useful in processing multimedia traffic like video or audio
streams. However, this model does not guarantee that the
media unit will be processed before it reaches its destina-
tion, and the computation distribution has an inherent out-
of-order problem, which in return will affect the overall per-
formance and QoS.

In this paper, we designed and implemented a cluster
based active router architecture and evaluated its perfor-
mance through real MPEG stream data. We found the ar-
chitecture scales well with the cluster size when accompa-
nied with adequate admission control and load distribution
policies. To keep better unit order of the outgoing me-
dia streams, we proposed to adopt a stream-based round
robin instead of the unit-based round robin load balanc-
ing scheme. We also implemented an adaptive load sharing
scheme from the literature. Experimental results showed
that the stream-based round robin outperforms the adap-
tive load sharing by reducing the overhead to maintain flow
consistency. However, the inherent out-of-order problem
can still severely affect the QoS of the received stream, and
might not be solved without coordination among successive
active routers. In our future research, we plan to address the
problems above and try to find performance optimizations
to this router architecture.

References

[1] D. S. Alexander, W. A. Arbaugh, M. W. Hicks, P. Kakkar,
A. D. Keromytis, J. T. Moore, C. A. Gunter, S. M. Nettles,
and J. M. Smith. The switchware active network architec-
ture. IEEE Network, vol. 12, May/June 1998.

[2] E. Amir, S. McCanne, and R. Katz. An active service frame-
work and its application to real-time multimedia transcod-
ing. ACM SIGCOMM Symp., September 1998.

[3] S. Floyd and V. Jacobson. Random early detection gateways
for congestion avoidance. IEEE/ACMTransactions on Net-
working, 1(4), August 1993.

[4] E. Katz, M. Butler, and R. McGrath. A scalable http server:
The ncsa prototype. Computer Networks and ISDN systems,
27:155–164, 1994.

[5] R. Keller, S. Choi, M. Dasen, D. Decasper, G. Fankhauser,
and B. Platter. An active router architecture for multicast
video distribution. IEEE INFOCOM, 2000.

[6] L. Kencl and J. Y. L. Boudec. Adaptive load sharing for
network processors. IEEE INFOCOM, 2002.

[7] N. Ni and L. N. Bhuyan. Fair scheduling and buffer man-
agement in internet routers. Proc. INFOCOM, June 2002.

[8] T. Ostreich. Linux video stream processing.
http://www.theorie.physik.uni-goettingen.de/˜ostreich/
transcode/.

[9] K. W. Ross. Hash routing for collections of shared web
caches. IEEE Network, 11(6), November-December 1997.

[10] S. Roy and B. Shen. Implementation of an algorithm for fast
down-scale transcoding of compressed video on the itanium.
Proceeding of the 12th International Workshop on Network
and Operating Systems Support for Digital Audio and Video,
2002.

[11] M. Satyanarayanan. Scalable, secure, and highly available
distributed file access. IEEE Computer, May 1990.

[12] B. A. Shirazi, A. R. Hurson, and K. M. Kavi. Scheduling and
load balancing in parallel and distributed systems. IEEE CS
Press, 1995.

[13] D. G. Thaler and C. C. Ravishankar. Using name-based
mappings to increase hit rates. IEEE/ACM Transactions on
networking, vol. 6:10–27, November-December 1997.

[14] G. Welling, M. Ott, and S. Mathur. A cluster-based active
router architecture. IEEE Micro, 21(1), January/February
2001.

[15] D. J. Wetherall, J. V. Guttag, and D. L. Tennenhouse. Ants:
A toolkit for building aned dynamically deploying network
protocols. San Francisco, CA, April 1998.

[16] Y. Yemini and S. da Silva. Towards programmable networks.
L’Asquila, Italy, October 1996.

[17] H. Zhu, T. Yang, Q. Zheng, D. Watson, O. Ibarra, and
T. Smith. Adaptive load sharing for clustered digital library
servers. Proceedings of the seventh International Sympo-
sium on High Performance Distributed Computing, pages
235–242, 1998.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE


	IPDPS 2003
	Return to Main Menu


