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Abstract

The overset grid methodology has significantly reduced time-to-solution of high-fidelity com-

putational fluid dynamics (CFD) simulations about complex aerospace configurations. The so-
lution process resolves the geometrical complexity of the problem domain by using separately
generated but overlapping structured discretization grids that periodically exchange information
through interpolation. However, high performance computations of such large-scale realistic ap-
plications must be handled efficiently on state-of-the-art parallel supercomputers. This paper
analyzes the effects of various performance enhancement techniques on the parallel efficiency of
an overset grid Navier-Stokes CFD application running on an SGI Origin2000 machine. Specif-

ically, the role of asynchronous communication, grid splitting, and grid grouping strategies are
presented and discussed. Results indicate that performance depends critically on the level of

latency hiding and the quality of load balancing across the processors.

1 Introduction

The overset grid methodology [1] for high-fidelity computational fluid dynamics (CFD) simula-

tions about complex aerospace configurations falls into the general class of Schwartz decomposition

methods [8]. The solution process resolves the geometrical complexity of the problem domain

by generating and using overlapping multi-block structured discretization grids. This overset ap-

proach typically employs a Chimera interpolation technique [9] to periodically update and exchange

inter-grid boundary information.
However, to reduce time-to-solution, high performance computations of such large-scale realistic

applications must be handled efficiently on state-of-the-art parallel supercomputers. Over the years,

various parallel programming paradigms have been developed for both distributed and distributed-

shared memory systems. Widely used scientific programs suitable for most modern architectures

are implemented using a message passing paradigm, such as MPI. Fortunately, the overset grid

method can readily employ MPI to exploit parallelism as well as communicate information between

distributed overlapping grids.

The parallel efficiency of the overset approach, however, depends upon the proper distribution

of the computational workload and the communication overhead among the processors. For a large

class of practical problems, optimal load-balancing to minimize processor idle time is a challenging
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task. Applications with tens of millions of grid points may consist of many overlapping grids.

Smart clustering of individual grids (also known as blocks or zones) into groups should therefore

not only consider the total number of "weighted" grid points, but also the size and connectivity

of the inter-grid data. Major challenges during the grouping process may arise due to the wide

variation in block sizes and the disparity in the number of inter-grid boundary points. Note also

that for large processor sets, the overhead associated with boundary data exchange may adversely

affect parallel performance.
This paper analyzes the effects of various performance enhancement techniques on the parallel

efficiency of an overset grid Navier-Stokes CFD application called OVERFLOW. Specifically, the

role of asynchronous communication, grid splitting, and grid grouping strategies are presented and

discussed. First, we study the effect of synchronous and asynchronous communication via MPI.

The asynchronous exchange is an attempt to relax the communication schedule in order to hide

latency. Second, the splitting of large blocks as a means of controlling the computational load

is analyzed. This is particularly important for scalability, where the same grid system must be

retained for executing on different numbers of processors. Finally, two grid clustering techniques

are examined: one based on a naive bin-packing approach and the other using a more sophisticated

graph partitioning method. All our experiments are conducted on an SGI Origin2000 machine using
a test case that simulates complex rotorcraft vortex dynamics and consists of more than 69 million

grid points. Results indicate that performance depends critically on the level of latency hiding and

the quality of load balancing across the processors.
The remainder of this paper is organized as follows. Section 2 provides a brief description of

the OVERFLOW application. The performance enhancement techniques of grid splitting, asyn-
chronous communication, and grid grouping are described in Section 3. Parallel performance results

are presented and critically analyzed in Section 4. Finally, Section 5 concludes the paper with a

summary and some key observations.

2 Numerical Methodology

In this section, we provide a brief overview of the overset grid CFD application called OVERFLOW,

including the basics of its solution process, grid connectivity, and message-passing parallelization

model.

2.1 Solution Process

The high-fidelity overset grid application, called OVERFLOW [1], owes its popularity within the

aerodynamics community due to its ability to handle complex designs consisting of multiple geomet-

ric components, where individual body-fitted grids can be constructed easily about each component.

The grids are either attached to the aerodynamics configuration (near-body), or are detached (off-

body). The union of near- and off-body grids covers the entire computational domain (see Fig. 1(a)).
OVERFLOW uses a Reynolds-averaged Navier-Stokes solver, augmented with a number of

turbulence models. In this work, a special version of the code, named OVERFLOW-D [5, 6], is

used. Unlike the original version which is primarily meant for fixed-body (static) grid systems,

OVERFLOW-D is explicitly designed to simplify the modeling of components in relative motion

(dynamic grid systems). For example, in typical rotary-wing problems, the near-field is modeled

with one or more grids around the moving rotor blades. The code then automatically generates

Cartesian "background" or "wake" grids, called bricks, that encompass these curvilinear near-

body grids. At each time step, the flowfield equations are solved independently on each zone in

a sequential manner. Overlapping boundary points or inter-grid data are updated from previous
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Figure 1: (a) Overset grid schematic; (b) hole and outer inter-grid boundary points.

solutions prior to the start of the current time step using a Chimera interpolation procedure [9].

The code uses finite differences in space, with a variety of spatial differencing and implicit/explicit

temporal time-stepping.

2.2 Grid Connectivity

The Chimera interpolation procedure [9] determines the proper connectivity of the individual grids.

To update inter-grid boundary data, the scheme has to process two types of boundary points: "hole"
and "outer" boundary points (see Fig. l(b)). Holes are cut in grids which intersect solid surfaces,

such as when a portion of an overset grid lies inside a physical body. The hole boundary points are
on the surfaces of these cuts. All other inter-grid boundary points are classified as outer. Adjacent

grids are expected to have at least a one-cell, or a single fringe, overlap to ensure the continuity
of the solutions; for higher-order accuracy and to retain certain physical features in the solution, a

double fringe overlap is sometimes sought [10]. A program named Domain Connectivity Function

(DCF) [7] computes the inter-grid donor points that have to be supplied to other grids. The DCF

procedure is incorporated into the OVERFLOW-D code and fully coupled with the flow solver. For

dynamic grid systems, DCF has to be invoked at every time step to create new holes and inter-grid

boundary data.

2.3 MPI Parallelization Model

The parallel version of the OVERFLOW-D application has been developed around the multi-block

feature of the sequential code, which offers a natural coarse-grained parallelism [13]. The main

computational logic at the top level of the sequential code consists of a "time-loop", a "grid-loop',

and a "subiteration-loop". The last two loops are nested within the time-loop. Within the grid-

loop, solutions are obtained on the individual grids with imposed boundary conditions, where

the Chimera interpolation procedure successively updates inter-grid boundaries after computing

the numerical solution on each grid. Convergence of the solution process is accelerated by the

subiteration-loop. Upon completion of the grid-loop, the solution is automatically advanced to

the next time step by the time-loop. The overall procedure may be thought of as a Gauss-Seidel

iteration.

A message passing programming model based on the MPI library was implemented using the

single program multiple data (SPMD) paradigm. To facilitate parallel execution, a grouping strat-
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Figure 2: Overset grid intra-group and inter-group communication.

egy is required to assign each grid to an MPI process. The total number of groups, G, is equal to
the total number of MPI processes, P. Since a grid can only belong in one group, the total number

of grids, Z, must be at least equal to P. If Z is larger than P, a group will consist of more than

one grid. Two techniques for clustering grids into groups is discussed later in Section 3.3.

The logic in the MPI programming model differs slightly from that of the sequential case

(G = P = 1). Here the grid-loop is subdivided into two procedures, a loop over groups ("group-

loop") and a loop over the grids within each group. Since each MPI process is assigned to only

one group, the group-loop is performed in parallel, with each group performing its own sequential

grid-loop. The inter-grid boundary updates among the grids within each group (these are also

called intra-group updates) are performed as in the serial case. Chimera updates are also necessary

for overlapping grids that are in different groups, and are known as inter-group exchanges (see

Fig. 2). The inter-group donor points from grids in group Gi to grids in group Gj are stored in a
send buffer and exchanged between the corresponding processes via MPI calls. These inter-group

exchanges are transmitted at the beginning of every time step based on the interpolatory updates

from the previous time step.

3 Performance Enhancement Techniques

We have developed and utilized various performance enhancement techniques to improve the parallel

efficiency of the OVERFLOW-D application. Specifically, the role of asynchronous communication,

grid splitting, and grid grouping strategies are presented and discussed in this section. Superior

parallel performance of such large-scale realistic applications on state-of-the-art commercial super-

computers is critical to advance our scientific understanding and problem solving capability.

3.1 Asynchronous Communication

Almost all of the communication that is required in the OVERFLOW-D application concerns the ex-

change of inter-grid boundary data, and is contained in the subroutine, qbc_exchange. The message

passing can be synchronous or asynchronous, but the choice significantly affects the MPI program-

ming model. The synchronous communication can be performed with blocking MPI send/receive

calls, while the asynchronous communication uses non-blocking calls.
With synchronous communication, the total number of send/receive calls is P x (P-1), counting



/, Send data from group ND to group NR */

do ND = 1, G

if (myrank .eq. ND) then

do NR = 1, G

MLEN_SEND = ISNT (NR)

if (myrank .ne. NR) then

else

/, Set length of send array */

call MPI_SEND ([_BCSND,MLEN_SEND, --.)

do I = 1, MLEN_SEND

QBCRCV (I) = QBCSND (I) /, Memory copies */

end do

end if

end do

else

/, Receive data from group ND */
MLEN_RECV = IRCV (ND)

callMPI_RECV (QBCRCV, MLEN_RECV,

end if

end do

/. Set length of receive array */

• . -)

Figure 3: Outline of the synchronous communication model in the original OVERFLOW-D code.

even the messages of zero length. The send calls complete only when the receiving processor is ready

to accept the messages, i.e., the matching receive calls are posted. The increase in execution time

caused by this communication pattern is analogous to the introduction of an implicit serialization
into the code. The initial parallel version of OVERFLOW-D was implemented with synchronous

message passing and tested with a relatively small dataset on 16 processors [13]. As a result,
the communication time was quite insignificant and therefore acceptable. However, performance

analysis using a larger dataset and more processors (presented in Section 4) indicate a serious
communication bottleneck for the exchange of boundary data via the synchronous approach.

In order to be better able to compare the original synchronous and our new asynchronous

communication strategies, we present in Fig. 3 an outline of the synchronous model. The group

boundary data arrays are specified by QBCSND and QBCRCV with total lengths of MLEN_SEND and

MLEN_RECV, respectively. These values are determined for each group (processor) by pertinent

arrays, ISNT and IRCV, each of length G.
Our first performance enhancement technique is to use asynchronous communication for inter-

grid boundary data exchange within subroutine qbc_exchange. The asynchronous stratregy is an

attempt to relax the communication schedule in order to hide latency. Asynchronous communi-
cation consists of non-blocking send/receive calls. Unlike the corresponding blocking calls, these

invocations place no constraints on each other in terms of completion. Receive completes immedi-

ately, even if no messages are available, and hence allows maximal concurrency. The non-blocking

receives are posted by receiving processors prior to the pertinent sends from the sending processors.

Furthermore, messages of zero length are not sent to decrease the communication overhead. We have

implemented this asynchronous message passing model in the current version of OVERFLOW-D.

In general, however, control flow and debugging can become a serious problem if, for instance,

the order of messages needs to be preserved. Fortunately, in the overset grid application, the

Chimera boundary updates take place at the completion of each time step, and the computations



/, Post receives in group NR from group ND */

do ND = 1, G

MLEN_RECV = IRCV (ND)

if(MLEN_RECV .ne. O) then

if(myrank .ne. NO) then

call MPI_IRECV (QBCRCV, MLEN_RECV,'- ')

end if

end if

end do

/, Send data from group ND to group NR */

do NR = 1, G

MLEN_SEND = ISNT (NR)

if(myrank .ne. NR) then

if(MLEN_SEND .he. 0) then
callMPI/SEND (QBCSND, MLEN_SEND, -..)

end if

else

do I = i, MLEN_SEND

QBCRCV (I) = QBCSND(I)

end do

end if

end do

/, Check that all receives have completed */
call MPI_WAITALL

/, Set length of receive array */

/, Set length of send array */

/, Memory copies */

Figure 4: Outline of our asynchronous communication model in OVERFLOW-D.

are independent of the order in which messages are sent or received. Being able to exploit this

fact allows us to easily use asynchronous communication within OVERFLOW-D. Figure 4 gives

an outline of the asynchronous approach that we have implemented. The same naming convention

discussed with respect to the synchronous case is also adopted here.

3.2 Grid Splitting

Load balancing is critically important for efficient parallel computing. The objective is to distribute

equal computational workloads among the processors while minimizing the inter-processor commu-
nication cost. On a given platform, the primary procedure that affects the load balancing of an

overset grid application is the grid grouping strategy. To facilitate parallel execution, each grid

must be assigned to an MPI process. Since the total number of grids, Z, is at least equal to the

number of processes, P, a proper clustering of the grids into G groups is required (G = P).

Unfortunately, the size of the Z blocks in an overset grid system may vary substantially, thereby

complicating the grouping procedure and significantly affecting the overall load balance. For in-

stance, each near-body block is a three-dimensional curvilinear structured grid generated about the

geometric components of an aerodynamics configuration. The ordered triplet, (i, j, k), represents

the three spatial dimensions and varies from (1,1,1) to a maximum of (I, J, K), for a block with

I x J x K grid points. The dimensions of each block are primarily selected to introduce proper

refinement into the grid spacing in an effort to maintain certain features of the physical solution,



but haveno bearingon the type of computationsused,serialor parallel. Consequently,there
maybeordersof magnitudedifferencesin near-bodyblocksizesfor the initial grid system.Recall
that thesenear-bodygrids overlapthe Cartesianwake(off-body)grid systemto coverthe entire
computationaldomain.

A smartmechanismis thereforeneededto limit the sizeof the individual blocks.Oneoption
is to add somecontrolduring the grid generationprocess,but this would further complicatean
alreadycomplextask. Thestrategywouldalsorequireinformationaboutthenumberof groups(G)
whichmayvaryfromonesimulationrun to the nextdependingon thechosennumberof processors
(P), sinceG must be equal to P. The second approach, which we have implemented as part of

this work, is to split the largest blocks into sub-blocks of desired sizes prior to grouping them.

This performance enhancement technique is independent of the grid generation procedure and is

automatically implemented at runtime, prior to the start of the time-loop.

The original version of OVERFLOW-D has the ability to perform some automatic grid splitting

without any user input, but it was only to ensure there were enough blocks Z to form G groups with

G = P. However, for large test cases such as those used in this paper, further control is required. In

particular, we must maintain exactly the same blocks in the grid system when executing on different

numbers of processors to examine code scalability. In our latest version of OVERFLOW-D, the user

specifies two input parameters, maznb and maxgrd, for splitting the largest blocks based on some

knowledge of the initial grid system and the maximum target value of P. All near- and off-body

grids larger in size than maznb and maxgrd, respectively, are then split into overlapping sub-blocks

of smaller but equal sizes. For near-body grids, the split is done in one dimension only, i.e., for one

of the indices i, j, or k, depending on the values of I, J, and K. The type of imposed boundary

condition (periodic, reflecting, etc.) also plays a role in determining the splitting direction. For the

uniform Cartesian off-body grids, splitting can be performed in multiple dimensions if necessary.

Conceptually, having smaller block sizes simplifies the load balancing procedure and leads to a

more computationally balanced workload; however, a limiting drawback is an increase in the ratio

of surface-to-volume grid points. A large value of this ratio indicates that the amount of overlap

boundary data to be transferred via point-to-point communication between pairs of processors

has increased disproportionately relative to the computational workload. Furthermore, since it is

necessary to maintain at least a single (one-cell) and sometimes even a double (two-cell) fringe

overlap between adjacent blocks, the total number of grid points increases during the splitting

process, resulting in a larger computational and communication load per processor.

3.3 Grid Grouping

As mentioned in Section 3.2, the grid grouping strategy has a substantial effect on the quality of

load balancing for an overset grid application like OVERFLOW-D. The grouping is a function of

the following parameters: execution time per grid point, total number of grid points per block,

number of blocks Z, volume of the total boundary data to be exchanged per processor, rate of

communication, and total number of processors P. In principle, grouping depends only on the

characteristics of the grids and their connectivity; it does not take into account the topology of

the physical processors. The assignment of groups to processors is somewhat random, and is taken

care of by the system job scheduler usually based on a first-touch strategy at the time of the run.

The original parallel version of OVERFLOW-D uses a grid grouping strategy based on a bin-

packing algorithm [13]. It is one of the simplest clustering techniques that strives to maintain a
uniform number of "weighted" grid points per group while retaining some degree of connectivity

among the grids within each group. Prior to the grouping procedure, each grid is weighted de-

pending on the physics of the solution sought. The goal is to ensure that each weighted grid point



requiresthe sameamountof computationalwork. Forinstance,the executiontime per point be-
longingto near-bodygridsrequiringviscoussolutionsishigherthan that for the inviscidsolutions
of off-bodygrids. The weightcanalsobededucedfrom the presenceor absenceof a turbulence
model.The bin-packingalgorithm thensortsthe gridsby sizein descendingorder,and assignsa
grid to everyemptygroup. Therefore,at this point, the G largest grids are each in a group by

themselves. The remaining grids are then handled one at a time. Each grid is assigned to the

smallest group that satisfies the connectivity test with other grids in that group. The connectivity

test only inspects for an overlap between a pair of grids regardless of the size of the boundary data

or their connectivity to other neighboring grids. The process terminates when all grids are assigned

to groups.
Our third performance enhancement technique is to devise and implement a more sophisticated

grid grouping algorithm that incorporates more of the parameters discussed at the beginning of

this section. It is based on a graph representation of the overset grid system. The nodes of the

graph correspond to the near- and off-body grids, while an edge exists between two nodes if the

corresponding grids overlap. The nodes are weighted by the weighted number of grid points and the

edges by the communication volume. Given such a graph with Z nodes and E edges, the problem
is to divide the nodes into G sets such that the sum of the nodal weights in each set are almost

equal while the sum of the cut edges' weights is minimized. This is the classical graph partitioning

problem that is widely encountered in the parallel computing arena [12]. Such a grouping strategy

is, in theory, more optimal than bin-packing in that the grids in each group enjoy higher intra-group

dependencies with fewer inter-group exchanges.

The graph partitioning algorithm that we have implemented in OVERFLOW-D to address the

grid grouping problem is based on EVAH [4]. It consists of a set of allocation heuristics that
considers the constraints inherent in multi-block CFD problems. EVAH was initially developed

to predict the performance scalability of overset grid applications on large numbers of processors,

particularly within the context of distributed grid computing across multiple resources [2]. In this

work, we have modified EVAH to cluster overset grids into groups while taking into account their

relative overlaps.

Among several heuristics that are available within EVAH, we have used the one called largest

task first with available communication costs (LTF_ACC). In the context of the current work, a

task is synonymous with a block in the overset grid system. The size of a task is defined as the

computation time for the corresponding block. LTF_ACC is constructed from the basic largest task

first (LTF) heuristic that is identical to the bin-packing strategy. LTF is then enhanced by the

systematic integration of the status of the processes in the form of minimum finish time and largest
idle time. Because of the overhead involved due to data exchanges between neighboring zones, the

assignment heuristic is further refined to integrate communication costs to model their impact on
the overall execution time. A procedure has been developed to interface the DCF subroutine of

OVERFLOW-D with EVAH heuristics. Extensive details of this approach is available in [4].

4 Parallel Performance Results

The CFD problem used for the experiments in this paper is a Navier-Stokes simulation of vortex

dynamics in the complex wake flow region for hovering rotors. Figure 5 shows sectional views of the

test application grid system. The Cartesian off-body wake grids surround the curvilinear near-body

grids with uniform resolution, but become gradually coarser upon approaching the outer boundary

of the computational domain. Specifically, the spacing of the off-body grid nearest the rotor blade is

As, that for the next surrounding level is 2As, and so on for every successive level. Figure 6 shows a
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Figure 5: Sectionalviewsof the testapplicationgrid system: (a) off-bodyCartesianwakegrids,
(b) near-bodycurvilineargrids,and (c) cut planethroughtheoff-bodywakegridssurroundingthe
hubandrotors.

Figure6: Computedvorticity magnitudecontoursona cuttingplanelocated45° behindthe rotor
blade.

cut planethroughthe computedvortexwakesystemincludingvortexsheetsaswellasanumberof
individualtip vortices.A completedescriptionof the underlyingphysicsandanextensiveanalysis
of the numericalsimulationspertinentto this test problemcanbefoundin [11].Wehaveusedthe
followingthreecasesto evaluateourperformanceenhancementtechniquesdiscussedin Section3:

• Case1: Z = 454, _63M grid points, maxnb = 250K, maxgrd = 300K.

• Case 2: Z = 857, ,,_69M grid points, maxnb = 100K, maxgrd = 100K.

• Case 3: Z = 1679, _ 78M grid points, maxnb = 60K, maxgrd = 70K.



All experimentswererunon the512-processorSGIOrigin2000shared-memorysystemat NASA
AmesResearchCenter. Each Origin2000 node is a symmetric multiprocessor (SMP) containing

two 400 MHz MIPS R12000 processors and 512 MB of local memory. Due to the size of the test

problem, all runs were conducted for only 100 time steps. Our timing results are averaged over the

number of iterations and given in seconds.

4.1 Asynchronous Communication Results

Table 1 shows a comparison of various timings for Case 1 using synchronous (blocking send/receive)

and asynchronous (non-blocking) communication. The grouping algorithm is the basic bin-packing

strategy that is available with the original version of OVERFLOW-D. The execution time Tezec is

the average time required to solve every time step of the application, and includes the computation,

communication, Chimera interpolation, and processor idle time. The average computation ,('F_vg-camp,

and communication (Ta_r_m) times over P processors are also shown. Finally, the maximum com-

putation (T_om_p) and communication (T_o'_,_) times are reported and used to measure the quality
T_ompof load balancing for each run. The computation load balance factor (LBcomp) is the ratio of max

r_omr n to'-Favg while the communication load balance factor (LBcamm) is the ratio of max Tavg
to - comp,

Obviously, the closer these factors are to unity, the higher is the quality of load balancing.

Table 1: Runtimes (in seconds) and load imbalance factors with synchronous and asynchronous

communication, and bin-packing grouping strategy for Case 1

t9 Texe c max rFavgTcomp - comp

32 37.7 31.9 24.1 4.4 4.3

64 22.1 17.0 12.5 4.3 4.2

128 14.0 8.8 6.3 4.3 4.3

256 13.0 6.0 3.2 6.4 6.4

320 14.8 5.3 2.7 9.2 8.0

384 16.6 5.2 2.0 9.9 9.9

448 18.3 9.9 1.8 11.5 11.4

Synchronous

max Tavg LBcomp LBcommTcomm _ comm

r Texec max TavgT_omp - comp

32 34.6 32.7 24.5 0.70 0.61

64 18.0 16.8 12.4 0.41 0.35

128 9.8 8.8 6.3 0.36 0.31

256 7.0 5.9 3.2 0.37 0.30

320 6.9 5.1 2.6 0.98 0.68

384 6.8 6.0 2.0 0.48 0.36

448 7.0 6.3 1.8 0.49 0.43

1.32 1.02

1.36 1.02

1.40 1.00

1.87 1.00

1.96 1.15

2.60 1.00

5.50 1.01

Asynchronous

TcmaZ rf, avg LBcomp LBcommOmm _ comm

1.33 1.15

1.35 1.17

1.40 1.16

1.84 1.23

1.96 1.44

3.00 1.33

3.50 1.14

Notice that the computational workload for both runs is identical as is evidenced by the fact

that '-I"avg is essentially the same. However, T_xec for asynchronous communication is consistently
- cornp

lower, and shows bigger improvements as the number of processors increases. In fact, for P > 256,

the non-blocking communication strategy reduces Tezec by more than a factor of two. The reason for

10



Zcorn m andthis improvement can be found in the communication times. A comparison shows that raaz

Tcavg for the synchronous runs are an order of magnitude larger than the corresponding times for
omm

the asynchronous communication. This is reflected in Texec where communication usually accounts
for less that 6% for the asynchronous case, but is more than 50% for many of the synchronous runs.

Scalability for the asynchronous case for P _< 256 is significantly better than its synchronous

counterpart. For P _> 320, scalability suffers for both cases not only due to the relatively larger

communication overhead but also because of workload imbalance. The latter can be observed from

the increasing value of LBcomp. However, LBcomm shows that communication is well-balanced

across all processors for most runs, particularly for blocking communication (which is due to the

very nature of synchronous communication). Overall results indicate the general superiority of the

non-blocking asynchronous approach over synchronous communication for this application.

4.2 Grid Splitting Results

The impact of grid splitting on load balancing quality is investigated for all the three cases. Case 1
models the situation where the number of splits per block is low, or equivalently, the sizes of the

newly-created sub-blocks are quite large. In Case 2, the sizes of the sub-blocks are somewhat

smaller, while in Case 3, they are even more so. All runs use asynchronous communication and the

bin-packing strategy to cluster grids into groups. Timings for Case 1 are shown in Table 1, while

those for the other two cases are presented in Table 2.

Table 2: Runtimes (in seconds) and load imbalance factors with asynchronous communication and

bin-packing grouping strategy for Cases 2 and 3

t9 Texe c max TavgTgornp - comp

32 32.0 29.3 23.0 1.30 0.90

64 13.5 11.9 10.8 0.67 0.55

128 7.6 6.2 5.4 0.60 0.52

256 5.5 3.7 2.8 0.88 0.50

320 4.7 2.9 2.2 0.57 0.46

384 4.7 2.9 1.9 _0.99 0.56

448 4.5 3.0 1.7 0.85 0.46

Case 2

max TavgT_omm - comm LBcomp L Bcomm

p Teze c max TavgT_ornp - comp

32 39.9 34.5 27.8 3.10 2.20

64 13.8 11.4 10.4 0.95 0.75

128 7.9 6.4 5.2 0.85 0.70

256 4.5 3.1 2.6 0.95 0.68

320 4.3 2.8 2.1 0.90 0.61

384 4.0 2.4 1.8 0.65 0.57

448 3.8 2.3 1.6 0.71 0.60

1.27 1.44

I.i0 1.22

1.15 1.15

1.32 1.76

1.32 1.24

1.53 1.77

1.76 1.85

Case 3

max Tavg LBcomp LBcommrff_OTllril _ COTIIIT$

1.24 1.41

1.10 1.27

1.23 1.21

1.19 1.40

1.33 1.48

1.33 1.14

1.44 1.18

The overall quality of computational workload balancing for the three cases can be observed

by comparing LBcomp from Tables 1 and 2. Obviously, the factor increases with the number of

11



processorsas load balancingbecomesmorechallengingwith a fixedproblemsize. As expected,
Case3 exhibits the bestquality for any givenvalueof P because it has the largest number of

grids which are all generally smaller, i.e., it has the finest granularity. It should be noted here

that though we are evaluating the level of workload imbalance from the runtimes, the grid splitting

and grouping strategies are based on the number of weighted grid points. Computed from that

perspective, the load balance quality is somewhat better but follows the same trend.
Let us now look at the communication times. Notice that both T max and 7 'avg generallyCOmf_ _ ¢om77_

increase with increasing number of blocks (Case 1 through Case 3). (The communication time also

depends on the topology and the connectivity of the grid system.) This is because even though

grid splitting has a positive impact on the computational load balance, it adversely affects the

communication time. Basically, the surface area increases with the number of blocks, thereby

increasing the volume of the boundary exchange data. For example, the ratio of surface-to-volume

grid points for the three cases are 11%, 14%, and 18%, respectively. Communication therefore also

accounts for a larger percentage of the total execution time. The ratio of TcaoV_mto Texec is 2-10%

for Case 1, 3-12% for Case 2, and 5-16% for Case 3.

Conceptually, the splitting of grids into smaller blocks should also improve the communication

load balance LBcomm. Clearly, Case 3 does not have the best overall communication load balance,

and Case 2 has poorer quality than Case 1. These results indicate that the optimal choice of the

splitting parameters rnaxnb and mazgrd depends on the number of processors used. However, in

our experiments, we wanted a fixed grid system independent of the processor count. We should also

note that because of the complex nature of OVERFLOW-D, grid splitting has been implemented

in only one coordinate direction at this time for the near-body grids. Even if it were available in

multiple directions, most grids would not benefit due to boundary condition and viscous direction

splitting restrictions.

Finally, parallel scalability also improves with more blocks. This can be observed by comparing

the Texec times in Tables 1 and 2. In fact, we obtain superlinear speedup between 32 and 64

processors for Cases 2 and 3. Also, Tezec decreases consistently for Case 3 all the way to the

maximum number of processors used. Overall, our grid splitting investigations show that a larger

number of smaller blocks improves computational load balance and parallel scalability; however,

there is a tradeoff since a large number of splits adversely affects efficiency due to an increase in

the surface-to-volume ratio of grid points.

4.3 Grid Grouping Results

We compare our EVAH-based heuristic grid grouping strategy with naive bin-packing only for

Case 2, and investigate their role on the quality of load balancing. All timing results are presented

in Table 3 (the performance data for bin-packing is reproduced from Table 2 for easier comparison).

The results in Section 4.2 showed that the quality of communication load balancing LBcomm is a

big drawback of the bin-packing grouping strategy. Table 3 demonstrates that the EVAH heuristic '

technique improves this factor considerably. In fact, except for P = 384, LBcomm using EVAH

is at most 1.17. However, T avg is always larger for EVAH, and is 5-15% of Texec (compared to
co'm.m

3-12% for bin-packing). This is somewhat expected since the overall goal of the heuristic grouping

strategy is to reduce Tezec.
Performance scalability for both strategies when using more than 256 processors is low due

to our fixed problem size. For example, when P = 484, each group contains, on average, only

two grids (since Z = 857). With such a low number of blocks per group, the effectiveness of

any strategy is diminished; moreover, the communication overhead relative to computation may

increase substantially. For instance, with low processor counts, the communication-to-computation
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Table3: Runtimes(in seconds)andloadimbalancefactorswith bin-packingand EVAH heuristic
groupingstrategies,andasynchronouscommunicationfor Case2

P Texec Tg_p Tgy_p
32 32.0 29.3 23.0 1.30 0.90
64 13.5 11.9 10.8 0.67 0.55
128 7.6 6.2 5.4 0.60 0.52
256 5.5 3.7 2.8 0.88 0.50
320 4.7 2.9 2.2 0.57 0.46
384 4.7 2.9 1.9 0.99 0.56
448 4.5 3.0 1.7 0.85 0.46

P

32

64

128

256

320

384

448

Bin-packing

max Tavg LBcomp LBcommTCOmTYt _ CO?'t_TI],

1.27 1.44

i.i0 1.22

1.15 1.15

1.32 1.76

1.32 1.24

1.53 1.77

1.76 1.85

EVAH heuristic

Texec max Tavg Tmax TavgTcomp - cornp - comm _ comrn

26.2 23.3 21.8 1.50 1.28

13.0 11.3 10.8 0.76 0.66

7.3 5.8 5.4 0.99 0.89

4.8 3.2 2.7 0.77 0.67

4.4 3.0 2.3 0.76 0.65

4.7 3.1 1.9 0.97 0.55

4.3 3.0 1.7 0.73 0.64

LBcomp LBcomm

1.07 1.17

1.05 1.15

1.07 1.11

1.19 1.15

1.30 1.17

1.63 1.76

1.76 1.14

ratio is less than 7%, but grows to more than 35% with higher counts.

5 Summary and Conclusions

The overset grid method is a powerful technique for high-fidelity CFD simulations about complex

aerospace configurations. In this paper, we presented and analyzed three parallel performance

enhancement techniques for efficient computations of such large-scale realistic applications on state-

of-the-art supercomputers. Specifically, the role of asynchronous communication, grid splitting, and

grid grouping strategies were discussed. The asynchronous exchange relaxed the communication

schedule in order to hide latency. Grid splitting was used to improve computational load balance

while retaining the same grid system on different numbers of processors. Finally, a heuristic grid

clustering technique balanced interprocessor communication with the goal of reducing the overall

execution time.

All experiments were performed with the OVERFLOW-D Navier-Stokes code on a 512-processor

Origin2000 system at NASA Ames Research Center. The CFD problem was the simulation of vortex

dynamics in the complex flow region for hovering rotors. The grid systems for our three test cases
consisted between 454 and 1679 overset grids, and varied in size from 63 million to 78 million

grid points. The asynchronous communication strategy reduced execution time by more than a

factor of two by significantly reducing the communication overhead. Grid splitting improved the

workload balance by increasing the number of grids; however, the relative communication cost was

adversely affected due to a larger surface-to-volume ratio of grid points. The heuristic grid grouping

strategy compared extremely favorably with the original bin-packing technique. It improved the
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communicationbalanceconsiderablywhile reducingthe executiontime. Overallresultsindicated
that all threeperformanceenhancementtechniquesarevery effectivein improvingthe quality of
loadbalanceandreducingexecutiontime for oversetgrid applications.

Further improvementsin the scalabilityof the oversetgrid methodologycouldbe soughtby
usingamoresophisticatedparallelprogrammingparadigmespeciallywhenthenumberof blocksZ

is comparable to the number of processors P, or even when P > Z. One potential strategy that can

be exploited on SMP clusters is to use a hybrid MPI+OpenMP multilevel programming style [3].

This approach is currently under investigation.
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