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Abstract 
 
The Grid supports the sharing and coordinated use of 
resources in dynamic heterogeneous distributed 
environments. The effective use of a Grid requires the 
definition of an approach to manage the heterogeneity of 
the involved resources that can include computers, data, 
network facilities and software tools provided by different 
organizations. This issue get more importance when 
complex applications, such as data-intensive simulations 
and data mining applications, executed on a Grid. This 
paper is concerned with heterogeneous resource 
management in Grid-based data mining applications. It 
discusses how resources are represented and managed in 
the KNOWLEDGE GRID and how XML-based metadata are 
used to describe data mining tools, data sources, mining 
models and execution plans, and how those metadata are 
used for the design and execution of distributed data 
mining applications on Grids. 
 
1. Introduction 
 

The Grid infrastructure supports the sharing and 
coordinated use of resources in dynamic geographically 
distributed environments. The effective use of a Grid 
requires the definition of an approach to manage the 
heterogeneity of the involved resources that can include 
computers, data, network facilities and software tools 
provided by different organizations. Heterogeneity arises 
mainly from the large variety of resources within each 
category. For instance, software can run only on some 
particular host machines whereas data can be extracted 
from different data management systems such as relational 
databases, semi-structured databases, plain files, etc. 

The management of such heterogeneous resources 
requires the use of metadata, whose purpose is to provide 
information about the features of resources and their 
effective use. A Grid user needs to know which resources 

are available, where resources can be found, how 
resources can be accessed and when resources are 
available. Metadata can provide answers about involved 
computing resources such as data repositories (e.g., 
databases, file systems, web sites), machines, networks, 
programs, documents, user agents, etc. Therefore, 
metadata can represent a key element to effective resource 
discovery and utilization on the Grid. 

The role of metadata for resource management on 
Grids is more and more important as Grid applications are 
becoming more and more complex. Thus, Grids need to 
use mechanisms and models that define rich metadata 
schemas able to able represent the variety of involved 
resources. 

This paper is concerned with heterogeneous resource 
management in Grid-based data mining applications. That 
is, it addresses the problems of locating and allocating 
computational, data and information resources, and other 
activities required to use data mining resources in a 
knowledge discovery process on Grids. In particular, the 
paper discusses an XML-based approach for managing 
heterogeneous resources in the KNOWLEDGE GRID 
environment [1].  

The KNOWLEDGE GRID architecture uses the basic 
Grid services and defines a set of additional layers to 
implement the services of distributed knowledge 
discovery on world wide connected computers where each 
node can be a sequential or a parallel machine. 

The KNOWLEDGE GRID architecture (see Figure 1) is 
designed on top of mechanisms provided by Grid 
environments such as Globus [2]. The KNOWLEDGE GRID 
uses the basic Grid services such as communication, 
authentication, information, and resource management to 
build more specific parallel and distributed knowledge 
discovery (PDKD) tools and services.  

The KNOWLEDGE GRID services are organized into two 
layers: the Core K-Grid layer, which is built on top of 
generic Grid services, and the High level K-Grid layer, 



 which is implemented over the core layer.  
2. Management of the Resources in the 
Knowledge Grid 

The Core K-Grid layer comprises two basic services: 
the Knowledge Directory Service (KDS) and the 
Resources Allocation and Execution Management Service 
(RAEMS). The KDS manages the metadata describing the 
characteristics of relevant objects for PDKD applications, 
such as data sources, data mining software, results of 
computations, data and results manipulation tools, 
execution plans, etc. The information managed by the 
KDS is stored into three ad hoc repositories: the metadata 
describing features of data, software and tools, coded in 
XML documents, are stored in a Knowledge Metadata 
Repository (KMR), the information about the knowledge 
discovered after a PDKD computation is stored in a 
Knowledge Base Repository (KBR), whereas the 
Knowledge Execution Plan Repository (KEPR) stores the 
execution plans describing PDKD applications over the 
grid. The goal of RAEMS is to find a mapping between an 
execution plan and available resources on the grid, 
satisfying user, data and algorithms requirements and 
constraints. 

 
A number of approaches to represent and manage 

metadata has been investigated in Grid environments such 
as Globus [2], DICE [3], and the NASA’s Information 
Power Grid [4]. In particular, in the Globus Toolkit the 
Monitoring and Discovery Service (MDS) provides 
information about the status of the system components [5]. 
The MDS uses the Lightweight Directory Access Protocol 
(LDAP) [6] as a uniform interface to such information. 
MDS includes a configurable information provider called 
Grid Resource Information Service (GRIS) and a 
configurable aggregate directory service called Grid Index 
Information Service (GIIS). A GRIS can answer queries 
about the resources of a particular Grid node. Examples of 
information provided by this service include host identity 
(e.g., operating systems and versions), as well as more 
dynamic information such as CPU and memory 
availability. A GIIS combines the information provided by 
a set of GRIS services managed by an organization, giving 
a coherent system image that can be explored or searched 
by Grid applications.  

The High level K-Grid layer comprises the services 
used to build and execute PDKD computations over the 
Grid. The Data Access Service (DAS) is used for the 
search, selection, extraction, transformation and delivery 
of data to be mined. The Tools and Algorithms Access 
Service (TAAS) is responsible for search, selection, and 
download of data mining tools and algorithms. The 
Execution Plan Management Service (EPMS) is used to 
generate a set of different possible execution plans, 
starting from the data and the programs selected by the 
user. Execution plans are stored in the KEPR to allow the 
implementation of iterative knowledge discovery 
processes, e.g., periodical analysis of the same data 
sources varying in time. The Results Presentation Service 
(RPS) specifies how to generate, present and visualize the 
PDKD results (rules, associations, models, classification, 
etc.), and offers methods to store in different formats these 
results in the KBR. 

The KNOWLEDGE GRID manages resources involved in 
a typical distributed data mining computation such as: 
• Computational resources (computers, storage devices, 

etc.).   
• Data to be mined, such as databases, plain files, semi-

structured documents and other structured or 
unstructured data (data sources). 

• Tools and algorithms used to extract, filter and 
manipulate data (data management tools). 

• Tools and algorithms used to mine data, that is data 
mining tools available on the Grid nodes. 

• Knowledge obtained as result of the mining process, 
i.e. learned models and discovered patterns.  

• Tools and algorithms used to visualize, store and 
manipulate discovered models. By using services, tools, and repositories provided by 

the two layers of the KNOWLEDGE GRID, a user can search 
and identify data sources, data mining tools, and 
computational resources. Then she/he can combine all 
these components to build a distributed/parallel data 
mining application that can be executed on a Grid. 

This large set of different resources that in some cases 
require a complex description, motivated the definition of 
a metadata model that extends the basic Globus model.   

The basic objectives that guided us through the 
definition of the resource metadata are the following: 

In the next sections we discuss how resources are 
represented and managed in the KNOWLEDGE GRID; how 
XML-based metadata are used to define data mining tools, 
data sources, mining models and execution plans, and how 
those metadata are used in the design and execution of 
distributed data mining applications on Grids. Section 2 
discusses the management of resources. Section 3 
describes resource metadata representation. Section 4 
discusses the execution plan representation. Section 5 
presents an outline of related work and Section 6 
concludes the paper. 

• Metadata should document in a simple and human-
readable fashion the features of a data mining 
application. 

• Metadata should allow the effective search of 
resources. 

• Metadata should provide an efficient way to access 
resources. 

• Metadata should be used by software tools that 
support a user in building a KNOWLEDGE GRID 
computation such as VEGA [7], a visual toolset for 
designing and executing data mining applications over 

 

http://www.globus.org/mds


the KNOWLEDGE GRID. 
The current KNOWLEDGE GRID implementation uses 

the Globus MDS, and therefore the LDAP protocol, to 
publish, discover, and manage information about the 
generic resources of the underlying grid (e.g., cpu 
performance, memory size, etc.). As mentioned before, 
the complexity of the information associated to more 
specific KNOWLEDGE GRID resources (data sources, 
mining algorithms, models) has led us to design a 
different model to represent and manage the 
corresponding metadata. 

 

For managing data mining resources on Grids, we 
adopted the eXtensible Markup Language (XML), that 
provides a set of functionalities and capabilities that are 
making it a common emerging model for describing data 
structure and data set frameworks: 
• XML provides a way to define infrastructure 

independent representations for information. 
• XML allows a user to define complex data structures: 

for example the XML Schema formalism [8] provides 
a means for defining a strong control on simple and 
complex data types in XML documents. 

• XML allows the use of powerful query languages: for 
instance the XML Query [9] provides SQL-like query 
facilities to extract data from real and virtual 
documents on the Web. 

• It is easy to map XML documents into data structures 
of an object-oriented programming language: for 
example the Xerces library [10] performs the parsing 
of an XML document in a Java or C++ environment. 

On the basis of these features, we decided to represent 
metadata by XML documents according to a set of XML 
schemas defined for the different classes of resources, as 
we discuss in the next section. 

It is worth noting that by using XML for metadata 
definition we may benefit from a standard language that 

makes our model flexible and extensible. Furthermore, the 
resulting metadata model could be used to describe other 
advanced Grid applications. 

In the KNOWLEDGE GRID, metadata are accessed and 
managed by means of a set of services. In particular, the 
KNOWLEDGE GRID architecture defines, as mentioned 
above, the KDS, that maintains the metadata documents 
and allows applications to query and manage them. The 
information managed by the KDS is stored into three ad 
hoc repositories:  
1. the Knowledge Metadata Repository (KMR) that 

stores the metadata describing features of data, 
software, and tools;  

2. the Knowledge Base Repository (KBR) that stores 
information about the discovered models, and  

3. the Knowledge Execution Plan Repository (KEPR) 
which stores the execution plans describing 
distributed data mining applications over the Grid.  

The KNOWLEDGE GRID DAS and TAAS services make 
use of the KDS for, respectively: 
• search, selection (Data search services), extraction, 

transformation and delivery (Data extraction services) 
of data to be mined and 

• search, selection and downloading of data mining 
tools and algorithms. 

Figure 1 shows main metadata flows among 
KNOWLEDGE GRID services and repositories. The high 
level DAS and TAAS services use the core level KDS 
service to manage metadata about algorithm and data 
sources; in turn, the KDS interacts with the KMR 
repository to access and store such metadata. The EPMS 
service manages execution plan metadata, which are 
accessed through the core level RAEMS service, and 
stored in the KEPR database.  
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Figure 1. The KNOWLEDGE GRID architecture. 



 
Furthermore, execution results and related model metadata 
are stored in the KBR repository, and processed by the 
RPS service. 

Metadata management process is a key aspect in the 
developing of data mining applications over the 
KNOWLEDGE GRID. A typical life cycle of metadata 
consists of the following steps: 
1. Resource metadata are published on the KMRs of the 

corresponding nodes. 
2. The user specifies the features of the resources she/he 

needs to design a data mining application. 
3. The DAS and TAAS services search the KMRs of the 

KNOWLEDGE GRID nodes for the requested resources; 
4. Metadata describing the resources of interest are 

delivered by such services to the requesting user. 
5. Metadata related to software, data and operations are 

combined into an execution plan (see Section 4) to 
design a complete data mining application. 

6. After application execution, results are stored into the 
KBR; new and/or modified resources’ metadata are 
published in the respective KMRs for future use. 

 
3. Resource Metadata Representation 
 

As stated before, our goal is to classify all the 
heterogeneous resources involved in a data mining 
application on the Grid, by defining the corresponding 
metadata.  

The first step in designing the metadata is the 
categorization of the resources. In the current 
implementation of the KNOWLEDGE GRID, we focused on 
the definition of metadata related to data sources, data 
mining tools, and discovered knowledge. In the following, 
for each of those resource types, we present the metadata 
structure, and report a sample metadata document 
extracted from a real data mining application based on the 
AutoClass clustering tool [11]. 
 
3.1 Data Mining Software 
 

The categorization of the data mining software has 
been made on the basis of the following classification 
parameters [12]: 
• the kind of data sources on which the software works 

on; 
• the kind of knowledge that is to be discovered by the 

software; 
• the type of techniques that the software uses in the 

data mining process; 
• the driving method, i.e. the mining process can be 

autonomous, driven by data or queries, or driven by 
the user (interactive). 

Table 1 summarizes a number of possible values for 
each classification parameter. This table is mapped on a 

XML Schema which defines the format and the syntax of 
the XML file that will be used to describe the features of a 
generic data mining software. The second column of 
Table 1 reports the XML elements that correspond to the 
classification parameters. 

As an example, Figure 2 reports the XML metadata 
related to the data mining software AutoClass.  
The XML file is composed of two parts. The first part is 
the software Description, the second one is the software 
Usage. The Description section specifies one (or more) 
of the possible values, reported in Table 1, for each 
classification parameter. The Usage section contains all 
the information that can be used by a client to access and 
use the software. This section is composed of a set of 
subsections, among which Syntax, Hostname, 
ManualPath, and DocumentationURL. The Syntax 
subsection describes the format of the command that the 
client should use to invoke the software. This subsection 
is defined as a tree, where each node is an Arg element, 
and the root is the name of the software itself. The root 
children specify the arguments that should follow the 
software name in the software invocation, and these 
arguments can in turn have children, i.e. sub-arguments, 
and so on. Each Arg element has the following attributes: 
the description attribute is a textual description of the 
argument; the type attribute specifies if the argument is 
optional, required, or alternative. In the last case all 
the sibling arguments should have the same value for this 
attribute, meaning that only one of the siblings should be 
used in the software invocation. Finally, the value 
attribute (optional) specifies the fixed value of the 
argument. If the value attribute is omitted, the value is to 
be provided by the client. In the example shown in Figure 
2, in the AutoClass execution command, the executable 
name should be followed by the -search argument to ask 
for a classification, or by the -reports argument, to 
obtain the model file. If the -search argument is chosen, 
it should be followed by four sub-arguments, all 
required. 

Therefore, AutoClass can be invoked with the 
command: 
 

/usr/autoclass/autoclass –search aFile.db2 \ 
aFile.hd2 aFile.model aFile.s-params 

 
3.2 Data Sources 
 

Data sources are the input on which the data mining 
algorithms work to extract new knowledge [12]. They can 
be provided by relational databases, plain files, and other 
structured and semi-structured documents. In spite of the 
wide variety of the possible data source types, we aim to 
define a common structure of data source metadata in 
order to standardize the access and search operations on 
such resources.  

 



 
Classification 

parameter XML tag Possible values 

Kind of data sources to 
work on 

<KindOfData> 

relational database, transaction database, object-oriented 
database, deductive database, spatial database, temporal 
database, multimedia database, heterogeneous database, active 
database, legacy database, semi-structured data, flat file. 

Kind of knowledge to be 
mined 

<KindOfKnowledge> 
association rules, clusters, characteristic rules, classification 
rules, sequence discovery, discriminant rules, evolution 
analysis, deviation analysis, outlier detection, regression. 

Kind of techniques to be 
utilized 

<KindOfTechnique> 
statistics, decision trees, neural networks, genetic algorithms, 
Apriori, fuzzy logic, SVD, bayesian networks, nearest 
neighbors… 

Driving method <DrivingMethod> 
autonomous knowledge miner, data-driven miner, query-driven 
miner, interactive data miner. 

Table 1. Classification of data mining software. 

 

<DataMiningSoftware name="AutoClass"> 
  <Description> 
    <KindOfData>flat file</KindOfData>  
    <KindOfKnowledge>clusters</KindOfKnowledge> 
    <KindOfTecnique>statistics</KindOfTecnique> 
    <DrivingMethod>autonomous knowledge miner</DrivingMethod>   
  </Description> 
  <Usage> 
    ... 
    <Syntax> 
      <Arg description="executable required" val /usr/autoclass/autoclass">" type=" ue="
        <Arg description="make a classification alternative" value="-search"> " type="
          <Arg description="a .db2 file" type="required"/> 
          <Arg description="a .hd2 file type="required > " "/
          <Arg description="a .model file ype="required               " t "/>
          <Arg description="a .s-params file" type="required"/> 
        </Arg>      
        <Arg description="create a report" type="alternative" value="-reports">    
          <Arg description="a .results-bin file" type="required"/>  
          ...              
        </Arg>   
        ... 
      </Arg> 
    </Syntax> 
    <Hostname>icarus.cs.icar.cnr.it me> </Hostna
    <ManualPath>/usr/autoclass/read-me.text</ManualPath> 
    <DocumentationURL>http://ic-www.arc.nasa.gov/ic/projects/...</DocumentationURL> 
    ... 
  </Usage> 
</DataMiningSoftware> 

 

Figure 2. An extract from an XML metadata sample for the AutoClass software. 
 

The common structure of metadata is composed of two 
parts:  

The Access section includes file system information, 
e.g. the Location and the Size of the file, etc. The 
Structure section includes two subsections, Format and 
Attributes.  

• an Access section that includes information for 
retrieving the data source; 

The Format subsection contains information about the 
physical structure of the flat file, e.g. the strings that are 
used to separate the records and the attributes within a 
record.  

• a Structure section that provides information about 
the data source logical and/or physical structure. 

As an example, Figure 3 shows an XML metadata 
document for a flat file that can be used as an input by the 
AutoClass software. The Attributes subsection contains information about 



the logical structure, i.e. it lists the table attributes and 
provides the relative specifications (such as the name of 
the Attribute, its type, etc.). 

If the data source is a relational database, the high-
level XML metadata format is the same (with the Access 
and Structure sections), but modifications can be 
operated on more specific details. For example, the 
Format subsection is no more needed, since the physical 
formatting is managed by the database system. 
Furthermore, new subsections should be defined; for 
instance, in the Access section, information should be 
provided for the connection to the database (e.g., the 
ODBC specifications). 

 
3.3 Data Mining Models 
 

The knowledge discovered through the data mining 
process is represented by “data mining models”. Whereas 
till today no common models have been defined for the 
definition of the data mining resources discussed before, a 
standard model, called Predictive Model Markup 
Language (PMML) has been defined to describe data 
mining results. PMML is an XML language which 
provides a vendor-independent method for defining data 
mining models [13]. The PMML provides a Document 
Type Definition (DTD) to describe different kinds of 
models such as classification rules and association rules. 
We use it to define data mining models in the 
KNOWLEDGE GRID. As an example, in Figure 4 we show 

an extract from a PMML document that represents the 
clustering model produced by AutoClass from the dataset 
whose metadata have been reported in Figure 3. In this 
example, AutoClass performs a clustering on records 
concerning car imports in 1985. 
The MiningSchema element of the model reported in 
Figure 4 points out that the clustering is based on three 
record attributes: make, num-of-doors and body-style. 
Moreover, two clusters (out of 12) are described, the 
former composed of 28 and the latter composed of 4 
records. 

Notice that each cluster record can be reconstructed 
by taking the values reported in the same position in each 
clustering field. For example, <bmw two sedan> is the 
first record belonging to Cluster 1. The portion of the 
PMML DTD that we used for this clustering model is 
available at [14]. 

 
4. Execution Plan Representation 
 
A distributed data mining computation is a process 
composed of several steps which are executed sequentially 
or in parallel. In the KNOWLEDGE GRID framework, the 
management of complex data mining processes has been 
carried out by the definition of an execution plan. An 
execution plan is a graph that describes the interaction and 
data flow between data sources, data mining tools, 
visualization tools and output models.

<FlatFile> 
  <Access> 
    <Location>/usr/share/imports-85c.db2</Location> 
    <Size>26756</Size> 
    ... 
  </Access> 
  <Structure> 
    <Format> 
      <AttributeSeparatorString>,</AttributeSeparatorString> 
      <RecordSeparatorString>#</RecordSeparatorString> 
      <UnknownTokenString>?</UnknownTokenString> 
      ... 
    </Format> 
    <Attributes> 
      <Attribute symboling" type="discrete"> name="
        <SubType>nominal SubType> </
        <Parameter>range 7</Parameter> 
      </Attribute> 
      <Attribute name="normalized-loses" type="real"> 
        <SubType>scalar</SubType> 
        <Parameter>zero_point 0.0</Parameter> 
        <Parameter>rel_error 0.01</Parameter> 
      </Attribute> 
      ... 
    </Attributes> 
  </Structure> 
</FlatFile> 

Figure 3. An extract from an XML metadata sample for a flat file. 

 



<PMML version="2.0"> 
  ... 
    <ClusteringModel modelName="Clustering on imports-85c"  
                     modelClass="distributionBased" numberOfClusters="12"> 
       <MiningSchema> 
          <MiningField name="make"/> 
          <MiningField name="num-of-doors"/> 
          <MiningField name="body-style"/> 
       </MiningSchema> 
       ...             
       <Cluster name="Cluster 1">     
         <Partition name="Partition 1"> 
           <PartitionFieldStats field="make"> 
             <Array n="28" type="string">bmw bmw jaguar nissan ...</Array> 
           </PartitionFieldStats> 
           <PartitionFi dStats f num-of-doorsel ield=" "> 
             <Array n="28" type="string">two four four four ...</Array> 
           </PartitionFieldStats> 
           <PartitionFi dStats f body-styleel ield=" "> 
             <Array n="28" type="string">sedan sedan sedan wagon ...</Array> 
           </PartitionFieldStats>      
         </Partition> 
       </Cluster>      
       <Cluster name="Cluster 2  ">    
         <Partition name="Partition 2"> 
           <PartitionFieldStats field="make"> 
             <Array n="4" type="string">chevrolet chevrolet chevrolet dodge</Array> 
           </PartitionFieldStats> 
           ... 
         </Partition> 
       </Cluster> 
       ...      
     </ClusteringModel> 
</PMML> 

Figure 4. An extract from a PMML model file. 
 
Starting from the XML representation of the data 

mining resources, an execution plan defines the high-level 
logical structure of a data mining process. The 
KNOWLEDGE GRID provides a visual environment, called 
VEGA [7], that allows a user to build an execution plan in 
a semi-automatic way.  

 

An execution plan may contain concrete resources and 
abstract resources. A concrete resource is completely 
specified by its metadata that have been previously 
retrieved from remote and local KMRs. In an abstract 
resource metadata, some features are expressed as 
constraints and not as well known values.  

For instance, whereas the metadata described in 
section 3 describes a concrete software Autoclass 
available on a given node, the metadata document shown 
below describes an (abstract) data mining software able to 
perform a clustering computation on flat files. 

 
<DataMiningSoftware name="genericSoftware"> 
  <Description> 
    <KindOfData>flat file</KindOfData>  
    <KindOfKnowledge>clusters</KindOfKnowledge> 
  </Description> 
</DataMiningSoftware> 

 
An abstract resource can be instantiated into an 

existing concrete resource whose metadata match the 

specified constraints. 
An execution plan that contains at least one abstract 

resource is an abstract execution plan, whereas an 
execution plan containing only concrete resources is 
referred to as an instantiated execution plan. Such 
distinction is made to take into account the dynamic 
nature of a Grid environment, in which resources fail and 
become available, data gets deleted, software gets 
updated, etc. In general, a user builds an abstract 
execution plan, and the EPMS service attempts to 
transform it into an instantiated execution plan, by 
substituting abstract resources into concrete resources. 
Such action is performed by a scheduler that allows the 
generation of the optimal execution plan. 

From an abstract execution plan, different instantiated 
execution plans could be generated, depending on the 
resources that are available on the KNOWLEDGE GRID in 
different times.  

Figure 4 shows an extract from a sample (instantiated) 
execution plan. An execution plan gives a list of tasks and 
task links, which are specified using respectively the XML 
tags Task and TaskLink. The label attribute of the Task 
element identifies one basic task in the execution plan, 
and it is used in linking various basic tasks to form the 
overall task flow. Each Task element contains a task-
specific sub-element, which indicates the parameters of 



the particular represented task. For instance, the task 
identified by the ws1_dt4 label contains a DataTransfer 
element, indicating that it is a data transfer task. The 
DataTransfer element specifies Protocol, Source and 
Destination of the data transfer. The href attributes of 
such elements specify respectively the location of 
metadata about protocol, source and destination objects. 

A TaskLink element represents a relation between two 
tasks in an execution plan. For instance, the shown 
TaskLink indicates that the task flow proceeds from the 
task ws1_dt4 to the task ws2_c1 (that represents an 
Execution step), as specified by its from and to attributes. 

An instantiated execution plan will be translated into 
the language of a specific Grid resource broker for its 
execution. The KNOWLEDGE GRID implementation uses 
the Globus Resource Allocation Manager (GRAM) [15] 
whose script language is the Resource Specification 
Language (RSL) [16]. RSL is a structured language by 
which a user can program the execution of a Grid 
application. 

Figure 6 shows the RSL script corresponding to the 
sample XML execution plan of Figure 5. Such RSL script 
comprises two resource descriptions: the former refers to 
the DataTransfer task labeled as ws1_dt4, the latter 
corresponds to the Execution task labeled as ws2_c1 in 
the instantiated execution plan. A typical resource 
description is composed of several attribute-value 
relationships in a conjunction. 

For instance the first description in this RSL script 
specifies that a data transfer is to be performed using the 
globus-url-copy executable, located in the 

minos.cs.icar.cnr.it grid node, to copy the imports-
85c.db2 dataset from minos.cs.icar.cnr.it to 
icarus.cs.icar.cnr.it. 

 
5. Related work 

 
Several systems that support distributed data mining 

and data transformation processes have been proposed. 
A few of those systems operate on the Grid, whereas 

most of the proposed systems work on clusters of 
computers or over the Internet. Here we shortly list their 
basic features and metadata management modalities. 

Discovery Net [17] provides an architecture for 
building and managing KDD processes on the Grid. Like 
in the KNOWLEDGE GRID, metadata are crucial in the 
Discovery Net infrastructure: an XML language called 
Discovery Process Markup Language (DPML) is used to 
describe simple and compound applications, while data 
resources are characterized through the definition of “data 
types” stored in a “Meta-Information Server”. However, 
the lack of distinction between logical and concrete 
resources can limit the efficient management of dynamics 
in the Grid environment. 

Papyrus [18] is a distributed data mining system 
developed for clusters and superclusters of workstations as 
composed four software layers: data management, data 
mining, predictive modeling, and agent or Bast. Papyrus is 
based on mobile agents implemented using Java aglets.  
(DSML) for clusters and data information.  

 

 

<ExecutionPlan> 
 ...  
 <Task ep:label="ws1_dt4">      
  <DataTransfer> 
   <Protocol ep:href="minos../GridFTP.xml"  
             ep:title="GridFTP on minos.cs.icar.cnr.it"/> 
   <Source ep:href="minos../imports-85c_db2.xml"  
           ep:title="imports-85c.db2 on minos.cs.icar.cnr.it"/> 
   <Destination ep:href="icarus../imports-85c_db2.xml"   
                ep:title="imports-85c.db2 on icarus.cs.icar.cnr.it"/> 
  </DataTransfer> 
 </Task>   
 ...  
 <Task ep:label="ws2_c1"> 
  <Execution> 
   <Program ep:href="icarus../autoclass3-3-3.xml"  
            ep:titl autoclass on icarus.cs.icar.cnr.it"/> e="
   <Input ep:href="icarus../imports-85c_db2.xml"  
          ep:title="imports-85c.db2 on icarus.cs.icar.cnr.it"/> 
   ... 
   <Output ep:href="icarus../classes.xml"  
           ep:title="Classes on icarus.cs.icar.cnr.it"/> 
  </Execution> 
 </Task> 
 ... 
 <TaskLink ep:from="ws1_dt4" ep:to="ws2_c1"/>  
 ... 
Figure 5. An extract from an execution plan. 
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(&(resourceManagerC minos.cs.icar.cnr.it) ontact=
  (subjobStartType=strict-barrier) 
  (label=ws1_dt4) 
  (executable $(GLOBUS_LOCATION)/bin/globus-url-copy= ) 

-vb –notpt gsiftp://minos.cs.icar.cnr.it/.../imports-85c.db2   (arguments=
             gsiftp://icarus.cs.icar.cnr.it/.../imports-85c.db2   
   ) 
) 
 
... 
 
(&(resourceManagerC icarus.cs.icar.cnr.it) ontact=
  (subjobStartType=strict-barrier) 
  (label=ws2_c1) 
  (executable .../autoclass= ) 

-search .../imports-85c.db2  .../imports-85c.hd2 .../imports-85c.model   (arguments=
             ...    
   ) 
) 
... 
Figure 6. An extract from an RSL script. 

stributed data mining system uses PMML for 
ve models and an XML language called Data 
arkup Language Another distributed data mining 
sed on Java is PaDDMAS [19], a component-
ool set that integrates predeveloped or custom 
s (that can be sequential or parallel) using a 
 approach. Each system component is wrapped as 

or CORBA object with its interface specified in 
he XML definition may be used in PaDDMAS to 
ically derive help on a particular component, to 
he suitability of a component for analyzing a 
ar data set, the type of platforms that may support 
ponent, etc.  
cerning the use of metadata for application 
ion, the Chimera system [20] proposes a language, 
irtual Data Language (VDL), for defining data 

mation processes. A VDL document is structured 
ay similar to an execution plan defined in the 
EDGE GRID. 
des the systems we discussed above, other 
ng distributed data mining systems have been 
ed. In such systems metadata management appears 
t a central issue, because they focus on the use of 
d platforms or make use of homogeneous 
 components.  
ng such systems, JAM [21] is an agent-based 

ted data mining system that has been developed to 
ta stored in different sites for building so called 

odels as a combination of several models learned 
fferent sites where data are stored. JAM uses Java 
to move data mining agents to remote sites.  
rt of metalearning, called collective data mining, 
mented also in the BODHI system [22]. BODHI is 

agent-based distributed data mining system 

implemented in Java. 
Metadata management models similar to the 

approaches discussed here are also deployed in other 
computer science areas such as problem solving 
environments (PSEs). Examples of significant PSEs that 
use XML-based metadata models for representation of 
heterogeneous resources are WebFlow and the Common 
Portal Application [23] .  

 
6. Conclusions 
 

This paper discussed the management of 
heterogeneous resources in Grid-based data mining 
applications. We motivated and presented the use of an 
XML-based approach to represent metadata in the 
KNOWLEDGE GRID environment. We introduced and 
discussed the metadata structure for the main classes of 
resources involved in a data mining process (data mining 
software, data sources, mining results, and execution 
plans). For each resource class we reported a sample 
metadata document extracted from a real data mining 
application. We are currently using the metadata model 
for the implementation of distributed data mining 
applications running on the KNOWLEDGE GRID. 

As a result of our work we can conclude about the 
importance of the usage of metadata for the 
implementation of resource representation, search, and 
discovery services in heterogeneous computing 
environments such as Grids and meta-computing systems. 
In particular, metadata models are major players where 
complex applications, such as knowledge discovery 
processes or scientific simulations, must be developed in 
such environments. 
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