
Managing Heterogeneous Resources in Data Mining Applications
on Grids Using XML-Based Metadata

Carlo Mastroianni1, Domenico Talia2, Paolo Trunfio2

1ICAR-CNR

Via P. Bucci, cubo 41-c, 87036 Rende (CS), Italy
mastroianni@icar.cnr.it

2DEIS

Università della Calabria, Via P. Bucci, cubo 41-c, 87036 Rende (CS), Italy
talia@deis.unical.it trunfio@deis.unical.it

Abstract

The Grid supports the sharing and coordinated use of
resources in dynamic heterogeneous distributed
environments. The effective use of a Grid requires the
definition of an approach to manage the heterogeneity of
the involved resources that can include computers, data,
network facilities and software tools provided by different
organizations. This issue get more importance when
complex applications, such as data-intensive simulations
and data mining applications, executed on a Grid. This
paper is concerned with heterogeneous resource
management in Grid-based data mining applications. It
discusses how resources are represented and managed in
the KNOWLEDGE GRID and how XML-based metadata are
used to describe data mining tools, data sources, mining
models and execution plans, and how those metadata are
used for the design and execution of distributed data
mining applications on Grids.

1. Introduction

The Grid infrastructure supports the sharing and
coordinated use of resources in dynamic geographically
distributed environments. The effective use of a Grid
requires the definition of an approach to manage the
heterogeneity of the involved resources that can include
computers, data, network facilities and software tools
provided by different organizations. Heterogeneity arises
mainly from the large variety of resources within each
category. For instance, software can run only on some
particular host machines whereas data can be extracted
from different data management systems such as relational
databases, semi-structured databases, plain files, etc.

The management of such heterogeneous resources
requires the use of metadata, whose purpose is to provide
information about the features of resources and their
effective use. A Grid user needs to know which resources

are available, where resources can be found, how
resources can be accessed and when resources are
available. Metadata can provide answers about involved
computing resources such as data repositories (e.g.,
databases, file systems, web sites), machines, networks,
programs, documents, user agents, etc. Therefore,
metadata can represent a key element to effective resource
discovery and utilization on the Grid.

The role of metadata for resource management on
Grids is more and more important as Grid applications are
becoming more and more complex. Thus, Grids need to
use mechanisms and models that define rich metadata
schemas able to able represent the variety of involved
resources.

This paper is concerned with heterogeneous resource
management in Grid-based data mining applications. That
is, it addresses the problems of locating and allocating
computational, data and information resources, and other
activities required to use data mining resources in a
knowledge discovery process on Grids. In particular, the
paper discusses an XML-based approach for managing
heterogeneous resources in the KNOWLEDGE GRID
environment [1].

The KNOWLEDGE GRID architecture uses the basic
Grid services and defines a set of additional layers to
implement the services of distributed knowledge
discovery on world wide connected computers where each
node can be a sequential or a parallel machine.

The KNOWLEDGE GRID architecture (see Figure 1) is
designed on top of mechanisms provided by Grid
environments such as Globus [2]. The KNOWLEDGE GRID
uses the basic Grid services such as communication,
authentication, information, and resource management to
build more specific parallel and distributed knowledge
discovery (PDKD) tools and services.

The KNOWLEDGE GRID services are organized into two
layers: the Core K-Grid layer, which is built on top of
generic Grid services, and the High level K-Grid layer,

 which is implemented over the core layer.
2. Management of the Resources in the
Knowledge Grid

The Core K-Grid layer comprises two basic services:
the Knowledge Directory Service (KDS) and the
Resources Allocation and Execution Management Service
(RAEMS). The KDS manages the metadata describing the
characteristics of relevant objects for PDKD applications,
such as data sources, data mining software, results of
computations, data and results manipulation tools,
execution plans, etc. The information managed by the
KDS is stored into three ad hoc repositories: the metadata
describing features of data, software and tools, coded in
XML documents, are stored in a Knowledge Metadata
Repository (KMR), the information about the knowledge
discovered after a PDKD computation is stored in a
Knowledge Base Repository (KBR), whereas the
Knowledge Execution Plan Repository (KEPR) stores the
execution plans describing PDKD applications over the
grid. The goal of RAEMS is to find a mapping between an
execution plan and available resources on the grid,
satisfying user, data and algorithms requirements and
constraints.

A number of approaches to represent and manage

metadata has been investigated in Grid environments such
as Globus [2], DICE [3], and the NASA’s Information
Power Grid [4]. In particular, in the Globus Toolkit the
Monitoring and Discovery Service (MDS) provides
information about the status of the system components [5].
The MDS uses the Lightweight Directory Access Protocol
(LDAP) [6] as a uniform interface to such information.
MDS includes a configurable information provider called
Grid Resource Information Service (GRIS) and a
configurable aggregate directory service called Grid Index
Information Service (GIIS). A GRIS can answer queries
about the resources of a particular Grid node. Examples of
information provided by this service include host identity
(e.g., operating systems and versions), as well as more
dynamic information such as CPU and memory
availability. A GIIS combines the information provided by
a set of GRIS services managed by an organization, giving
a coherent system image that can be explored or searched
by Grid applications.

The High level K-Grid layer comprises the services
used to build and execute PDKD computations over the
Grid. The Data Access Service (DAS) is used for the
search, selection, extraction, transformation and delivery
of data to be mined. The Tools and Algorithms Access
Service (TAAS) is responsible for search, selection, and
download of data mining tools and algorithms. The
Execution Plan Management Service (EPMS) is used to
generate a set of different possible execution plans,
starting from the data and the programs selected by the
user. Execution plans are stored in the KEPR to allow the
implementation of iterative knowledge discovery
processes, e.g., periodical analysis of the same data
sources varying in time. The Results Presentation Service
(RPS) specifies how to generate, present and visualize the
PDKD results (rules, associations, models, classification,
etc.), and offers methods to store in different formats these
results in the KBR.

The KNOWLEDGE GRID manages resources involved in
a typical distributed data mining computation such as:
• Computational resources (computers, storage devices,

etc.).
• Data to be mined, such as databases, plain files, semi-

structured documents and other structured or
unstructured data (data sources).

• Tools and algorithms used to extract, filter and
manipulate data (data management tools).

• Tools and algorithms used to mine data, that is data
mining tools available on the Grid nodes.

• Knowledge obtained as result of the mining process,
i.e. learned models and discovered patterns.

• Tools and algorithms used to visualize, store and
manipulate discovered models. By using services, tools, and repositories provided by

the two layers of the KNOWLEDGE GRID, a user can search
and identify data sources, data mining tools, and
computational resources. Then she/he can combine all
these components to build a distributed/parallel data
mining application that can be executed on a Grid.

This large set of different resources that in some cases
require a complex description, motivated the definition of
a metadata model that extends the basic Globus model.

The basic objectives that guided us through the
definition of the resource metadata are the following:

In the next sections we discuss how resources are
represented and managed in the KNOWLEDGE GRID; how
XML-based metadata are used to define data mining tools,
data sources, mining models and execution plans, and how
those metadata are used in the design and execution of
distributed data mining applications on Grids. Section 2
discusses the management of resources. Section 3
describes resource metadata representation. Section 4
discusses the execution plan representation. Section 5
presents an outline of related work and Section 6
concludes the paper.

• Metadata should document in a simple and human-
readable fashion the features of a data mining
application.

• Metadata should allow the effective search of
resources.

• Metadata should provide an efficient way to access
resources.

• Metadata should be used by software tools that
support a user in building a KNOWLEDGE GRID
computation such as VEGA [7], a visual toolset for
designing and executing data mining applications over

http://www.globus.org/mds

the KNOWLEDGE GRID.
The current KNOWLEDGE GRID implementation uses

the Globus MDS, and therefore the LDAP protocol, to
publish, discover, and manage information about the
generic resources of the underlying grid (e.g., cpu
performance, memory size, etc.). As mentioned before,
the complexity of the information associated to more
specific KNOWLEDGE GRID resources (data sources,
mining algorithms, models) has led us to design a
different model to represent and manage the
corresponding metadata.

For managing data mining resources on Grids, we
adopted the eXtensible Markup Language (XML), that
provides a set of functionalities and capabilities that are
making it a common emerging model for describing data
structure and data set frameworks:
• XML provides a way to define infrastructure

independent representations for information.
• XML allows a user to define complex data structures:

for example the XML Schema formalism [8] provides
a means for defining a strong control on simple and
complex data types in XML documents.

• XML allows the use of powerful query languages: for
instance the XML Query [9] provides SQL-like query
facilities to extract data from real and virtual
documents on the Web.

• It is easy to map XML documents into data structures
of an object-oriented programming language: for
example the Xerces library [10] performs the parsing
of an XML document in a Java or C++ environment.

On the basis of these features, we decided to represent
metadata by XML documents according to a set of XML
schemas defined for the different classes of resources, as
we discuss in the next section.

It is worth noting that by using XML for metadata
definition we may benefit from a standard language that

makes our model flexible and extensible. Furthermore, the
resulting metadata model could be used to describe other
advanced Grid applications.

In the KNOWLEDGE GRID, metadata are accessed and
managed by means of a set of services. In particular, the
KNOWLEDGE GRID architecture defines, as mentioned
above, the KDS, that maintains the metadata documents
and allows applications to query and manage them. The
information managed by the KDS is stored into three ad
hoc repositories:
1. the Knowledge Metadata Repository (KMR) that

stores the metadata describing features of data,
software, and tools;

2. the Knowledge Base Repository (KBR) that stores
information about the discovered models, and

3. the Knowledge Execution Plan Repository (KEPR)
which stores the execution plans describing
distributed data mining applications over the Grid.

The KNOWLEDGE GRID DAS and TAAS services make
use of the KDS for, respectively:
• search, selection (Data search services), extraction,

transformation and delivery (Data extraction services)
of data to be mined and

• search, selection and downloading of data mining
tools and algorithms.

Figure 1 shows main metadata flows among
KNOWLEDGE GRID services and repositories. The high
level DAS and TAAS services use the core level KDS
service to manage metadata about algorithm and data
sources; in turn, the KDS interacts with the KMR
repository to access and store such metadata. The EPMS
service manages execution plan metadata, which are
accessed through the core level RAEMS service, and
stored in the KEPR database.

DAS
Data Access
Service

TAAS
Tools and Algorithms

Access Service

EPMS
Execution Plan

Management Service

RPS
Result

Presentation Service

KDS
Knowledge Directory

Service

RAEMS
Resource Alloc.
Execution Mng.KEPRKMR KBR

High level K-Grid layer

Core K-Grid layer

Resource Metadata
Execution Plan Metadata
Model Metadata

Figure 1. The KNOWLEDGE GRID architecture.

Furthermore, execution results and related model metadata
are stored in the KBR repository, and processed by the
RPS service.

Metadata management process is a key aspect in the
developing of data mining applications over the
KNOWLEDGE GRID. A typical life cycle of metadata
consists of the following steps:
1. Resource metadata are published on the KMRs of the

corresponding nodes.
2. The user specifies the features of the resources she/he

needs to design a data mining application.
3. The DAS and TAAS services search the KMRs of the

KNOWLEDGE GRID nodes for the requested resources;
4. Metadata describing the resources of interest are

delivered by such services to the requesting user.
5. Metadata related to software, data and operations are

combined into an execution plan (see Section 4) to
design a complete data mining application.

6. After application execution, results are stored into the
KBR; new and/or modified resources’ metadata are
published in the respective KMRs for future use.

3. Resource Metadata Representation

As stated before, our goal is to classify all the
heterogeneous resources involved in a data mining
application on the Grid, by defining the corresponding
metadata.

The first step in designing the metadata is the
categorization of the resources. In the current
implementation of the KNOWLEDGE GRID, we focused on
the definition of metadata related to data sources, data
mining tools, and discovered knowledge. In the following,
for each of those resource types, we present the metadata
structure, and report a sample metadata document
extracted from a real data mining application based on the
AutoClass clustering tool [11].

3.1 Data Mining Software

The categorization of the data mining software has
been made on the basis of the following classification
parameters [12]:
• the kind of data sources on which the software works

on;
• the kind of knowledge that is to be discovered by the

software;
• the type of techniques that the software uses in the

data mining process;
• the driving method, i.e. the mining process can be

autonomous, driven by data or queries, or driven by
the user (interactive).

Table 1 summarizes a number of possible values for
each classification parameter. This table is mapped on a

XML Schema which defines the format and the syntax of
the XML file that will be used to describe the features of a
generic data mining software. The second column of
Table 1 reports the XML elements that correspond to the
classification parameters.

As an example, Figure 2 reports the XML metadata
related to the data mining software AutoClass.
The XML file is composed of two parts. The first part is
the software Description, the second one is the software
Usage. The Description section specifies one (or more)
of the possible values, reported in Table 1, for each
classification parameter. The Usage section contains all
the information that can be used by a client to access and
use the software. This section is composed of a set of
subsections, among which Syntax, Hostname,
ManualPath, and DocumentationURL. The Syntax
subsection describes the format of the command that the
client should use to invoke the software. This subsection
is defined as a tree, where each node is an Arg element,
and the root is the name of the software itself. The root
children specify the arguments that should follow the
software name in the software invocation, and these
arguments can in turn have children, i.e. sub-arguments,
and so on. Each Arg element has the following attributes:
the description attribute is a textual description of the
argument; the type attribute specifies if the argument is
optional, required, or alternative. In the last case all
the sibling arguments should have the same value for this
attribute, meaning that only one of the siblings should be
used in the software invocation. Finally, the value
attribute (optional) specifies the fixed value of the
argument. If the value attribute is omitted, the value is to
be provided by the client. In the example shown in Figure
2, in the AutoClass execution command, the executable
name should be followed by the -search argument to ask
for a classification, or by the -reports argument, to
obtain the model file. If the -search argument is chosen,
it should be followed by four sub-arguments, all
required.

Therefore, AutoClass can be invoked with the
command:

/usr/autoclass/autoclass –search aFile.db2 \
aFile.hd2 aFile.model aFile.s-params

3.2 Data Sources

Data sources are the input on which the data mining
algorithms work to extract new knowledge [12]. They can
be provided by relational databases, plain files, and other
structured and semi-structured documents. In spite of the
wide variety of the possible data source types, we aim to
define a common structure of data source metadata in
order to standardize the access and search operations on
such resources.

Classification

parameter XML tag Possible values

Kind of data sources to
work on

<KindOfData>

relational database, transaction database, object-oriented
database, deductive database, spatial database, temporal
database, multimedia database, heterogeneous database, active
database, legacy database, semi-structured data, flat file.

Kind of knowledge to be
mined

<KindOfKnowledge>
association rules, clusters, characteristic rules, classification
rules, sequence discovery, discriminant rules, evolution
analysis, deviation analysis, outlier detection, regression.

Kind of techniques to be
utilized

<KindOfTechnique>
statistics, decision trees, neural networks, genetic algorithms,
Apriori, fuzzy logic, SVD, bayesian networks, nearest
neighbors…

Driving method <DrivingMethod>
autonomous knowledge miner, data-driven miner, query-driven
miner, interactive data miner.

Table 1. Classification of data mining software.

<DataMiningSoftware name="AutoClass">
 <Description>
 <KindOfData>flat file</KindOfData>
 <KindOfKnowledge>clusters</KindOfKnowledge>
 <KindOfTecnique>statistics</KindOfTecnique>
 <DrivingMethod>autonomous knowledge miner</DrivingMethod>
 </Description>
 <Usage>
 ...
 <Syntax>
 <Arg description="executable required" val /usr/autoclass/autoclass">" type=" ue="
 <Arg description="make a classification alternative" value="-search"> " type="
 <Arg description="a .db2 file" type="required"/>
 <Arg description="a .hd2 file type="required > " "/
 <Arg description="a .model file ype="required " t "/>
 <Arg description="a .s-params file" type="required"/>
 </Arg>
 <Arg description="create a report" type="alternative" value="-reports">
 <Arg description="a .results-bin file" type="required"/>
 ...
 </Arg>
 ...
 </Arg>
 </Syntax>
 <Hostname>icarus.cs.icar.cnr.it me> </Hostna
 <ManualPath>/usr/autoclass/read-me.text</ManualPath>
 <DocumentationURL>http://ic-www.arc.nasa.gov/ic/projects/...</DocumentationURL>
 ...
 </Usage>
</DataMiningSoftware>

Figure 2. An extract from an XML metadata sample for the AutoClass software.

The common structure of metadata is composed of two
parts:

The Access section includes file system information,
e.g. the Location and the Size of the file, etc. The
Structure section includes two subsections, Format and
Attributes.

• an Access section that includes information for
retrieving the data source;

The Format subsection contains information about the
physical structure of the flat file, e.g. the strings that are
used to separate the records and the attributes within a
record.

• a Structure section that provides information about
the data source logical and/or physical structure.

As an example, Figure 3 shows an XML metadata
document for a flat file that can be used as an input by the
AutoClass software. The Attributes subsection contains information about

the logical structure, i.e. it lists the table attributes and
provides the relative specifications (such as the name of
the Attribute, its type, etc.).

If the data source is a relational database, the high-
level XML metadata format is the same (with the Access
and Structure sections), but modifications can be
operated on more specific details. For example, the
Format subsection is no more needed, since the physical
formatting is managed by the database system.
Furthermore, new subsections should be defined; for
instance, in the Access section, information should be
provided for the connection to the database (e.g., the
ODBC specifications).

3.3 Data Mining Models

The knowledge discovered through the data mining
process is represented by “data mining models”. Whereas
till today no common models have been defined for the
definition of the data mining resources discussed before, a
standard model, called Predictive Model Markup
Language (PMML) has been defined to describe data
mining results. PMML is an XML language which
provides a vendor-independent method for defining data
mining models [13]. The PMML provides a Document
Type Definition (DTD) to describe different kinds of
models such as classification rules and association rules.
We use it to define data mining models in the
KNOWLEDGE GRID. As an example, in Figure 4 we show

an extract from a PMML document that represents the
clustering model produced by AutoClass from the dataset
whose metadata have been reported in Figure 3. In this
example, AutoClass performs a clustering on records
concerning car imports in 1985.
The MiningSchema element of the model reported in
Figure 4 points out that the clustering is based on three
record attributes: make, num-of-doors and body-style.
Moreover, two clusters (out of 12) are described, the
former composed of 28 and the latter composed of 4
records.

Notice that each cluster record can be reconstructed
by taking the values reported in the same position in each
clustering field. For example, <bmw two sedan> is the
first record belonging to Cluster 1. The portion of the
PMML DTD that we used for this clustering model is
available at [14].

4. Execution Plan Representation

A distributed data mining computation is a process
composed of several steps which are executed sequentially
or in parallel. In the KNOWLEDGE GRID framework, the
management of complex data mining processes has been
carried out by the definition of an execution plan. An
execution plan is a graph that describes the interaction and
data flow between data sources, data mining tools,
visualization tools and output models.

<FlatFile>
 <Access>
 <Location>/usr/share/imports-85c.db2</Location>
 <Size>26756</Size>
 ...
 </Access>
 <Structure>
 <Format>
 <AttributeSeparatorString>,</AttributeSeparatorString>
 <RecordSeparatorString>#</RecordSeparatorString>
 <UnknownTokenString>?</UnknownTokenString>
 ...
 </Format>
 <Attributes>
 <Attribute symboling" type="discrete"> name="
 <SubType>nominal SubType> </
 <Parameter>range 7</Parameter>
 </Attribute>
 <Attribute name="normalized-loses" type="real">
 <SubType>scalar</SubType>
 <Parameter>zero_point 0.0</Parameter>
 <Parameter>rel_error 0.01</Parameter>
 </Attribute>
 ...
 </Attributes>
 </Structure>
</FlatFile>

Figure 3. An extract from an XML metadata sample for a flat file.

<PMML version="2.0">
 ...
 <ClusteringModel modelName="Clustering on imports-85c"
 modelClass="distributionBased" numberOfClusters="12">
 <MiningSchema>
 <MiningField name="make"/>
 <MiningField name="num-of-doors"/>
 <MiningField name="body-style"/>
 </MiningSchema>
 ...
 <Cluster name="Cluster 1">
 <Partition name="Partition 1">
 <PartitionFieldStats field="make">
 <Array n="28" type="string">bmw bmw jaguar nissan ...</Array>
 </PartitionFieldStats>
 <PartitionFi dStats f num-of-doorsel ield=" ">
 <Array n="28" type="string">two four four four ...</Array>
 </PartitionFieldStats>
 <PartitionFi dStats f body-styleel ield=" ">
 <Array n="28" type="string">sedan sedan sedan wagon ...</Array>
 </PartitionFieldStats>
 </Partition>
 </Cluster>
 <Cluster name="Cluster 2 ">
 <Partition name="Partition 2">
 <PartitionFieldStats field="make">
 <Array n="4" type="string">chevrolet chevrolet chevrolet dodge</Array>
 </PartitionFieldStats>
 ...
 </Partition>
 </Cluster>
 ...
 </ClusteringModel>
</PMML>

Figure 4. An extract from a PMML model file.

Starting from the XML representation of the data

mining resources, an execution plan defines the high-level
logical structure of a data mining process. The
KNOWLEDGE GRID provides a visual environment, called
VEGA [7], that allows a user to build an execution plan in
a semi-automatic way.

An execution plan may contain concrete resources and
abstract resources. A concrete resource is completely
specified by its metadata that have been previously
retrieved from remote and local KMRs. In an abstract
resource metadata, some features are expressed as
constraints and not as well known values.

For instance, whereas the metadata described in
section 3 describes a concrete software Autoclass
available on a given node, the metadata document shown
below describes an (abstract) data mining software able to
perform a clustering computation on flat files.

<DataMiningSoftware name="genericSoftware">
 <Description>
 <KindOfData>flat file</KindOfData>
 <KindOfKnowledge>clusters</KindOfKnowledge>
 </Description>
</DataMiningSoftware>

An abstract resource can be instantiated into an

existing concrete resource whose metadata match the

specified constraints.
An execution plan that contains at least one abstract

resource is an abstract execution plan, whereas an
execution plan containing only concrete resources is
referred to as an instantiated execution plan. Such
distinction is made to take into account the dynamic
nature of a Grid environment, in which resources fail and
become available, data gets deleted, software gets
updated, etc. In general, a user builds an abstract
execution plan, and the EPMS service attempts to
transform it into an instantiated execution plan, by
substituting abstract resources into concrete resources.
Such action is performed by a scheduler that allows the
generation of the optimal execution plan.

From an abstract execution plan, different instantiated
execution plans could be generated, depending on the
resources that are available on the KNOWLEDGE GRID in
different times.

Figure 4 shows an extract from a sample (instantiated)
execution plan. An execution plan gives a list of tasks and
task links, which are specified using respectively the XML
tags Task and TaskLink. The label attribute of the Task
element identifies one basic task in the execution plan,
and it is used in linking various basic tasks to form the
overall task flow. Each Task element contains a task-
specific sub-element, which indicates the parameters of

the particular represented task. For instance, the task
identified by the ws1_dt4 label contains a DataTransfer
element, indicating that it is a data transfer task. The
DataTransfer element specifies Protocol, Source and
Destination of the data transfer. The href attributes of
such elements specify respectively the location of
metadata about protocol, source and destination objects.

A TaskLink element represents a relation between two
tasks in an execution plan. For instance, the shown
TaskLink indicates that the task flow proceeds from the
task ws1_dt4 to the task ws2_c1 (that represents an
Execution step), as specified by its from and to attributes.

An instantiated execution plan will be translated into
the language of a specific Grid resource broker for its
execution. The KNOWLEDGE GRID implementation uses
the Globus Resource Allocation Manager (GRAM) [15]
whose script language is the Resource Specification
Language (RSL) [16]. RSL is a structured language by
which a user can program the execution of a Grid
application.

Figure 6 shows the RSL script corresponding to the
sample XML execution plan of Figure 5. Such RSL script
comprises two resource descriptions: the former refers to
the DataTransfer task labeled as ws1_dt4, the latter
corresponds to the Execution task labeled as ws2_c1 in
the instantiated execution plan. A typical resource
description is composed of several attribute-value
relationships in a conjunction.

For instance the first description in this RSL script
specifies that a data transfer is to be performed using the
globus-url-copy executable, located in the

minos.cs.icar.cnr.it grid node, to copy the imports-
85c.db2 dataset from minos.cs.icar.cnr.it to
icarus.cs.icar.cnr.it.

5. Related work

Several systems that support distributed data mining

and data transformation processes have been proposed.
A few of those systems operate on the Grid, whereas

most of the proposed systems work on clusters of
computers or over the Internet. Here we shortly list their
basic features and metadata management modalities.

Discovery Net [17] provides an architecture for
building and managing KDD processes on the Grid. Like
in the KNOWLEDGE GRID, metadata are crucial in the
Discovery Net infrastructure: an XML language called
Discovery Process Markup Language (DPML) is used to
describe simple and compound applications, while data
resources are characterized through the definition of “data
types” stored in a “Meta-Information Server”. However,
the lack of distinction between logical and concrete
resources can limit the efficient management of dynamics
in the Grid environment.

Papyrus [18] is a distributed data mining system
developed for clusters and superclusters of workstations as
composed four software layers: data management, data
mining, predictive modeling, and agent or Bast. Papyrus is
based on mobile agents implemented using Java aglets.
(DSML) for clusters and data information.

<ExecutionPlan>
 ...
 <Task ep:label="ws1_dt4">
 <DataTransfer>
 <Protocol ep:href="minos../GridFTP.xml"
 ep:title="GridFTP on minos.cs.icar.cnr.it"/>
 <Source ep:href="minos../imports-85c_db2.xml"
 ep:title="imports-85c.db2 on minos.cs.icar.cnr.it"/>
 <Destination ep:href="icarus../imports-85c_db2.xml"
 ep:title="imports-85c.db2 on icarus.cs.icar.cnr.it"/>
 </DataTransfer>
 </Task>
 ...
 <Task ep:label="ws2_c1">
 <Execution>
 <Program ep:href="icarus../autoclass3-3-3.xml"
 ep:titl autoclass on icarus.cs.icar.cnr.it"/> e="
 <Input ep:href="icarus../imports-85c_db2.xml"
 ep:title="imports-85c.db2 on icarus.cs.icar.cnr.it"/>
 ...
 <Output ep:href="icarus../classes.xml"
 ep:title="Classes on icarus.cs.icar.cnr.it"/>
 </Execution>
 </Task>
 ...
 <TaskLink ep:from="ws1_dt4" ep:to="ws2_c1"/>
 ...
Figure 5. An extract from an execution plan.

This di
predicti
Space M
suite ba
based t
package
dataflow
a Java
XML. T
automat
check t
particul
the com

Con
descript
called V
transfor
in a w
KNOWL

Besi
interesti
develop
to be no
dedicate
software

Amo
distribu
mine da
meta-m
at the di
applets

A so
is imple
another
+
...
(&(resourceManagerC minos.cs.icar.cnr.it) ontact=
 (subjobStartType=strict-barrier)
 (label=ws1_dt4)
 (executable $(GLOBUS_LOCATION)/bin/globus-url-copy=)

-vb –notpt gsiftp://minos.cs.icar.cnr.it/.../imports-85c.db2 (arguments=
 gsiftp://icarus.cs.icar.cnr.it/.../imports-85c.db2
)
)

...

(&(resourceManagerC icarus.cs.icar.cnr.it) ontact=
 (subjobStartType=strict-barrier)
 (label=ws2_c1)
 (executable .../autoclass=)

-search .../imports-85c.db2 .../imports-85c.hd2 .../imports-85c.model (arguments=
 ...
)
)
...
Figure 6. An extract from an RSL script.

stributed data mining system uses PMML for
ve models and an XML language called Data
arkup Language Another distributed data mining
sed on Java is PaDDMAS [19], a component-
ool set that integrates predeveloped or custom
s (that can be sequential or parallel) using a
 approach. Each system component is wrapped as

or CORBA object with its interface specified in
he XML definition may be used in PaDDMAS to
ically derive help on a particular component, to
he suitability of a component for analyzing a
ar data set, the type of platforms that may support
ponent, etc.
cerning the use of metadata for application
ion, the Chimera system [20] proposes a language,
irtual Data Language (VDL), for defining data

mation processes. A VDL document is structured
ay similar to an execution plan defined in the
EDGE GRID.
des the systems we discussed above, other
ng distributed data mining systems have been
ed. In such systems metadata management appears
t a central issue, because they focus on the use of
d platforms or make use of homogeneous
 components.
ng such systems, JAM [21] is an agent-based

ted data mining system that has been developed to
ta stored in different sites for building so called

odels as a combination of several models learned
fferent sites where data are stored. JAM uses Java
to move data mining agents to remote sites.
rt of metalearning, called collective data mining,
mented also in the BODHI system [22]. BODHI is

agent-based distributed data mining system

implemented in Java.
Metadata management models similar to the

approaches discussed here are also deployed in other
computer science areas such as problem solving
environments (PSEs). Examples of significant PSEs that
use XML-based metadata models for representation of
heterogeneous resources are WebFlow and the Common
Portal Application [23] .

6. Conclusions

This paper discussed the management of
heterogeneous resources in Grid-based data mining
applications. We motivated and presented the use of an
XML-based approach to represent metadata in the
KNOWLEDGE GRID environment. We introduced and
discussed the metadata structure for the main classes of
resources involved in a data mining process (data mining
software, data sources, mining results, and execution
plans). For each resource class we reported a sample
metadata document extracted from a real data mining
application. We are currently using the metadata model
for the implementation of distributed data mining
applications running on the KNOWLEDGE GRID.

As a result of our work we can conclude about the
importance of the usage of metadata for the
implementation of resource representation, search, and
discovery services in heterogeneous computing
environments such as Grids and meta-computing systems.
In particular, metadata models are major players where
complex applications, such as knowledge discovery
processes or scientific simulations, must be developed in
such environments.

Acknowledgements

This work has been partially funded by the project ”MIUR
Fondo Speciale SP3: GRID COMPUTING: Tecnologie
abilitanti e applicazioni per eScience”.

References

[1] M. Cannataro, D. Talia, P. Trunfio, KNOWLEDGE GRID:

High Performance Knowledge Discovery Services on the
Grid, Proceedings GRID 2001, LNCS, pp.38-50,
Springer-Verlag, 2001.

[2] I. Foster, C. Kesselman, The Anatomy of the Grid:
Enabling Scalable Virtual Organizations, S. Tuecke, Intl.
J. Supercomputer Applications, 15(3), 2001.

[3] Reagan W. Moore, Persistent Archives for Data
Collections SDSC, UC San Diego SDSC TR-1999-2,
October 1999.

[4] W. Johnston, NASA’s Information Power Grid:
Production Grid Experience with Distributed Computing
and Data Management, In Second Global Grid Forum
Workshop (GGF2), Washington, D.C., 2001.

[5] The Globus Project. The Monitoring and Discovery
Service. http://www.globus.org/mds.

[6] RFC 2251 - Lightweight Directory Access Protocol (v3).
[7] M. Cannataro, A. Congiusta, D. Talia and P. Trunfio, A

Data Mining Toolset for Distributed High-Performance
Platforms, Proceedings 3rd Int. Conference Data Mining
2002, Bologna, WIT Press, pp. 41-50, September 2002.

[8] XML Schema. http://www.w3.org/XML/Schema.
[9] XML Query. http://www.w3.org/XML/Query.
[10] Xerces library. http://xml.apache.org.
[11] P. Cheeseman and J. Stutz, Bayesian Classification

(AutoClass): Theory and Results, Advances in Knowledge
Discovery and Data Mining, U. M. Fayyad, G. Piatetsky-
Shapiro, P. Smyth, & R. Uthurusamy, (Eds.) AAAI
Press/MIT Press, pp. 61-83, 1996.

[12] M.S. Chen, J. Han, and P.S. Yu, Data Mining: An
Overview from a Database Perspective, IEEE
Transactions on Knowledge and Data Engineering, 8(6):
866-883, 1996.

[13] R. L. Grossman, M. F. Hornick, G. Meyer, Data Mining
Standard Initiatives, Communications of the ACM, Vol.
45, N. 8, August 2002.

[14] PMML 2.0 - DTD for Clustering Models
http://www.dmg.org/pmmlspecs_v2/ClusteringModel.htm.

[15] The Globus Project. The Globus Resource Allocation
Manager. http://www.globus.org/gram.

[16] The Globus Project. The Globus Resource Specification
Language. http://www.globus.org/gram/rsl_spec1.html.

[17] V. Curcin, M. Ghanem, Y. Guo, M. Kohler, A. Rowe, J.
Syed, P. Wendel. Discovery Net: Towards a Grid of
Knowledge Discovery. ACM KDD 2002.

[18] R. Grossman, S. Bailey, S. Kasif, D. Mon, A. Ramu and
B. Malhi, The preliminary design of papyrus: a system for
high performance, distributed data mining over clusters,
meta-clusters and super-clusters, International KDD’98
Conference, 1998, pp. 37-43.

[19] O.F. Rana, D.W. Walker, M. Li, S. Lynden and M. Ward,

PaDDMAS: parallel and distributed data mining
application suite, Proc. International Parallel and
Distributed Processing Symposium (IPDPS/SPDP), IEEE
Computer Society Press, 2000, pp. 387-392.

[20] I. Foster, J. Vöckler, M. Wilde, Y. Zhao, Chimera: a
Virtual Data System for Representing, Querying, and
Automating Data Derivation, SSDBM 2002, pp. 37-46.

[21] S.J. Stolfo, A.L. Prodromidis, S. Tselepis, W. Lee, D.W.
Fan, P.K. Chan, JAM: Java agents for meta-learning over
distributed databases, International KDD’97 Conference,
1997, pp. 74-81.

[22] H. Kargupta, B. Park, D. Hershberger and E. Johnson,
Collective data mining: a new perspective toward
distributed data mining, In H. Kargupta and P. Chan (eds.)
Advances in Distributed and Parallel Knowledge
Discovery, AAAI Press 1999.

[23] E. Houstis, A. Catlin, N. Dhanjani, J. Rice, J. Dongarra, H.
Casanova, D. Arnold, G. Fox, Problem-Solving
environments, in The Parallel Computing Sourcebook, M.
Kaufmann Publishers, 2002.

Biographies

Carlo Mastroianni obtained his PhD in Computer
Engineering in 1999 from the University of Calabria,
Italy. He had a fellowship at the Politecnico of Turin
(Italy) and worked as a Software Engineer at the
Computer Department of the Italian Government, in
Rome. He is currently a researcher at the ICAR-CNR -
Institute for High Performance Computing and Networks
of the Italian National Research Council. His research
interests include grid computing, multicast and
multimedia networks, mobile communication systems.

Domenico Talia is a professor of computer science at the
Faculty of Engineering at the University of Calabria, Italy.
He received his Laurea degree in Physics from the
University of Calabria, Italy. From 1997 to 2001, he was a
senior researcher at the ISI-CNR - Institute of Systems
Analysis and Information Technology of the Italian
National Research Council. His main research interests
include parallel computing, parallel data mining, grid
computing, parallel programming languages,
computational science, and cellular automata.
Talia is a member of the editorial boards of the IEEE
Computer Society Press, the Parallel and Distributed
Practices journal, the Future Generation Computer
Systems journal, and the INFORMATION journal, in
addition he a member of the advisory board of Euro-Par
conference series and a member of the advisory
committee of the IEEE Task Force on Cluster Computing
(TFCC). He served as a distinguished speaker in the IEEE
Computer Society Chapter Tutorials Program and in the
IEEE Computer Society Distinguished Visitors Program.
He was guest editor of special issues of IEEE Transactions
on Software Engineering, Parallel Computing and Future
Generation Computer Systems and he is serving as a

http://www.npaci.edu/DICE/Pubs/sdsc-tr-1999-2.pdf
http://www.npaci.edu/DICE/Pubs/sdsc-tr-1999-2.pdf
http://www.globus.org/gram/rsl_spec1.html
http://ex.doc.ic.ac.uk/new/documents/kdd-DNET.pdf
http://ex.doc.ic.ac.uk/new/documents/kdd-DNET.pdf

 program committee member of several conferences. He
published three books and more than 120 papers in
international journals and conference proceedings. He is
member of the ACM and the IEEE Computer Society.

 Paolo Trunfio since 2001 is a PhD student in Computer

Engineering at the University of Calabria, Italy. He
collaborates with the ICAR-CNR - Institute for High
Performance Computing and Networks of the Italian
National Research Council, in the area of grid computing.
His current research interest include parallel and
distributed computing, and peer-to-peer systems.

