
An Optimization Framework
for Dynamic, Distributed Real-Time Systems*
Klaus Ecked, David Juedes, Lonnie Welch, David Chelberg, Carl Bruggeman,

Frank Drews, David Fleeman, David Parrod, and Barbara P f a d

Abstract. This paper presents a model that is useful for developing resource allocation
algorithms for distributed real-time systems .that operate in dynamic environments.
Interesting aspects of the model include dynamic environments, utility and service levels,
which provide a means for graceful degradation in resource-constrained situations and
support optimization of the allocation of resources. The paper also provides an allocation
algorithm that illustrates how to use the model for producing feasible, optimal resource
allocations.

Keywords: Resource Management, Application Adaptation, QoS , Utility, Real-time

1 Introduction
The use of distributed computing technology in real-time systems is increasing rapidly. For
example, an important aspect of the NASA Earth Science vision is its sensor-web, an integrated,
autonomous constellation of earth observing satellites that monitor the condition of the planet
through a vast array of instruments. While this concept offers numerous benefits, including cost
reduction and greater flexibility, its full potential cannot be realized with today’s information
system technology. Common real-time engineering approaches use “worst-case” execution times
(WCETs) to characterize task workloads apriori (e.g., see [15, 161) and allocate computing and
network resources to processes at design time. These approaches unnecessarily limit the
functions that can be performed by spacecraft and limit the options that are available for
handling unanticipated science events and anomalies, such as overloading of system resources.
These limitations can mean loss of scientific data and missed opportunities for observing
important terrestrial events. As noted in [7, 13, 19, 201, characterizing workloads of real-time
systems using a priori worst-case execution times can lead to poor resource utilization, and is
inappropriate for applications that must execute in highly dynamic environments.

Adaptive resource management (ARM) middleware (software that resides between the
computer’s operating system and the computer’s applications) can address this problem by
dynamically reconfiguring the way in which computing and network resources are allocated to

This work was funded in part by the NASA Earth Science Technology Office Advanced Information
Systems Technology Program; by the NASA Computing, Information and Communications Technology
Program; and by the DARPA Program Composition for Embedded Systems Initiative.

Department of Computer Science, Technical University of Clausthal, 38678 Claudthal-Zellerfeld,
Germany (eckere inforxatik. t .~-cleust ;?al . de)

.c Center for Intelligent, Distributed and Dependable Systems, School of Electrical Engineering
and Computer Science, Ohio University, Athens, Ohio - 45701 (juedes I welch I chelberg I bruggema
I drews 1 david-fleeman I david.parrott @ohio.edu)

’‘ Real-Time Software Engineering Branch, NASA Goddard Space Flight Center, Baltimore, Maryland -
20771 (barbara.pfarr@gsfc.nasa.gov)

I

processes. In [151, we examined a command and control system in use by NASA, and explored
how the components of that system could be distributed across multiple processors in such a way
that the system remained as robust as before, and at least as capable of meeting its real-time
processing requirements. We found that many benefits would be realized by treating related
systems as one unified system that shares a dynamically allocatedpool ofresources. In [16], we
explored the possibilities of adaptive resource management for onboard satellite systems.
Satellites are now sophisticated enough to have multiple onboard processors, yet they generally
have processes statically assigned to each processor. Little, if any, provision to dynamically
redistribute the processing load is provided. Onboard instruments are capable of collecting far
more data than can be downloaded to the Earth, thus requiring idle times between downloads.
Although download times are known a priori, failed downloads can cause the buffer on the
satellite to overflow. To handle this situation, ARM middleware autonomously determines the
following: the allocation of resources to tasks, the fidelity of data processing algorithms (such as
a cloud cover detection algorithm [l]), the compression type to use on data, when and what to
download, whether data should be discarded, and the interval for gathering telemetry data from
various onboard subsystems. Decisions are made based on a system-level benefit optimization
that takes into account observation schedules, future and current download opportunities,
satellite health, user-defined benefit functions, and system resource utilization.

To allow future research efforts in ARM to build upon the foundation that we have established,
this paper presents our model of dynamic, distributed real-time systems. It also provides an
algorithm that shows how to employ the model to perform adaptive resource management. In
[22,23] we presented static models for resource allocation of real-time systems, and in [24, 251
we presented dynamic models. Applications of our dynamic models [26, 27, 281 showed their
effectiveness for adaptive resource management. However, our previous approaches lacked the
information needed to gracefully degrade performance in overload situations, did not support
feasibility analysis or allocation optimization, did not consider security aspects, and did not
include network hardware. This paper removes those shortcomings by extending the model to
incorporate knowledge of application profiles, network hardware, utility, and service level
constructs.

The remainder of the paper is organized as follows. Section 2 presents the model. In Section 2.1,
the model of the hardware resources is presented. Section 2.2 describes the model of the software
system, which consists of subsystems, end-to-end paths, and applications (tasks). Section 3
shows how to use the model to check global allocation constraints and to perform global
allocation optimization. A detailed framework for developing allocation algorithms based on the
model is provided in Section 4. An overview of related research is provided in Section 5.

2 Mathematical Modeling
A dynamic real-time system is composed of a variety of software components that function at
various levels of abstraction, as well as a variety of physical (hardware) components that govern
the real-time performance of the system.

2.1 Hardware components

The physical components of a real-time system can be described by a set of computational
resources and network resources. The computational resources are a set of host computers H =

2

{AI ,.. . , h, 1. The properties of each host h E H are specified by a set of attributes, among them
the more important ones are the identifier name(h), the size of the local read only memory
mem(h), a numerical value sec(h) that specifies the current security level of h, speed factors
int-spec(h) and jZoat-spec(h) for the integer and floating point SPEC rates respectively, and
overhead time o(h) for send and receive operations. Computational resources are off-the-shelf
general purpose machines running multitasking operating systems.

The network structure may be formalized as a directed graph N = (H J) where L is the set of
physical (undirected or directed) links between host nodes. Each link I E L has a fBed bandwidth
bandwidth(0 and operates in a mode op-mode(l) which is either hay duplex or f i l l duplex. We
describe the connections between hosts by a function link : H x H + L . It is furthermore
assumed that pairs of hosts h and h’ are connected by a fvted communication path described by a
function route: H x H + P(T) where P(T) is the set of all simple paths in T describing the basic
routing information. Associated with each pair (h , ,h ,) of hosts is a propagation delay
p-deluy(h,, h,) measured in either packets per second or bits per second. An additional queuing
delay may be considered in case of heavy communication load.

It is generally assumed that the set of resources and network topology are fixed.

2.2 Software components

While we assume that the hardware resources are fured, the parameters that effect the
performance of the software components may change dynamically. Nevertheless, we assume that
the operating conditions and parameters of the software components are constant at least for
some time interval.

To software components of a dynamic real-time system can be decomposed in several
abstraction levels: the system, consisting of several sub-systems, each being a set of paths of
application software (see Figure 1).

Figure 1 : System hierarchy

2.2.1 The System The highest level of abstraction represents the system. A system S = { SS, ,
. . . , SS,, } is considered as a collection of sub-systems. There are no specific attributes associated
with a system. It simply represents the entire set of sub-systems that are currently being executed
on a single system.

2.2.2 Subsystems The next level of abstraction is that of sub-systems. A sub-system represents
some part of the system that can be separated semantically from the total system. A sub-system

3

SS = { P I , ..., Pm2) is simply a collection (set) of paths, along with a priority prio(SS) and a
security level sec(SS). The priority is user-defined and determines the perceived priority of the
given collection of paths. The sub-system priority and security level are inherited by the paths
and applications in the sub-system.

2.2.3 Paths The next lower level of abstraction in a real-time system is the notion of a path. A
path Pi consists of a set of applications A , c A and a precedence relation +, . The precedence
relation provides information concerning the execution order of the applications in a path, as
well as their communication characteristics. We will assume that the transitive closure of the
precedence relation +, defines unique largest and smallest elements in A , . Different paths may
share the same application, as shown in Figure 2.

Figure 2: Example for Overlapping paths

There are two basic types of paths: periodic paths and event-driven paths. Each periodic path Pi
has a given period n, . Modeling a periodic path implies that the path has to be executed exactly
once in each period. Each event driven path Pi has a maximum event rate ri, which is generally
not known, and a deadline di. It is assumed that the deadlines are hard in the sense that it is not
allowed to complete a path later than the deadline. In this paper, we model event driven paths as
periodic paths where the period is the inverse of the event rate, ni = l/ri . The reason is that,
choosing l/ri as the period, covers the worst case scenario: if the paths can be scheduled feasibly
with maximum event rates, then we are sure to have a feasible situation in case of smaller event
rates. In each period there is a deadline that is di time units after the start of the period.

There are two more attributes: Each path Pi has a dynamic workload w(P$ that is essentially
defined by the amount of input data for P i , and a priority that is inherited from the sub-system Pi
belongs to: prio(Pi) :=prio(SS).

As for the notation, the paths’ workloads and maximum event rates are collected in vectors, the
workload vector $ and event rate vector , respectively.

2.2.4 Applications At the lowest level of abstraction, the software components of a real-time
system consist of a set of applications A = {al , .. ., a,}. Each application a has some workload
wa. For simplicity we assume that applications in a path inherit the workload of the path:
application a of path P, has workload wa = w(Pi). Thus, overlapping paths (i.e. paths that have
common applications as in Figure 2) have equal workloads.

4

One of the main objectives is to find an optimal allocation of the applications to host computers.
Such an allocation, formally described by a function host : A + H , has to fulfill runtime
conditions and memory limitations on the hosts . Both, execution time and memory usage of an
application depend not only on its workload and service level parameters, but also on the
machine on which it is being executed.

We assume that there exists a set of n global sewice levels [6] S = {s, I a E A } (one for each
application), each of which may be set to an arbitrary value of R . This (potentially
multidimensional) parameter affects the level of service to the user, and therefore affects the
overall utility of the system. Service level setting is defined for each application separately. This
parameter also affects the running time of the application.

For each application a E A, each host h E H, each workload w E N a n d each service level s E

IR, we define r,,~,(w,, s,) as the processing time, Le., the amount of time that a response requires
when an application a is executed on host h with workload w, and service level parameter sa
[1 11. Similarly, mu,h(wu, sa) is the amount of memory used by application a in the same setting.
In addition, to avoid non-eligible or security violating allocations, we make the following
assumptions concerning r,,h and :

(i) ru,h(wu, sa) = 00 and mu,h(wu, sa) = OD if application a cannot be executed on h. This may occur
if h is not an eligible host for a, or if there would be a security violation if a were to be
executed on h.

(ii) Both ru,h(w,, sa) and mu,h(wu, s,) are assumed to be monotonically non-decreasing in w, and
sa , i.e.,

if w, I wup and s, I sur (component-wise),

then ra,h(wa, sa) 5 r,,h(Wa', Sa') and mu,h(w,, s,) 5 ",,h(wa', Sal) *

If applications of a path are allocated to different hosts, data transmission between the hosts will
be required. If a + i a', it is assumed that application a and application a' communicate via
interprocess communication in the local area network. The amount of communication in a path
depends on the workload of the path. Given a workload w, and a setting of the service level s, ,
application a sends c,,,~(w,, s,) bits of information to a'. We assume that c,,,~(w,, s,) is a
monotonically non-decreasing function of the workload of a.

For each a E Pi , a priority may be associated by defining pa := prio(SS) where SS is the uniquely
dejned sub-system that holds a path with application a. Priorities are useful to achieve certain
overall system objectives.

3 The Resource Manager
The resource manager (RM) is responsible for the correct operation of the whole system. As
input, it is given the static characteristics of both the hardware system and the software systems.
The resource manager can not modify these properties. However, the resource manager is
responsible for making all resource allocation decisions and has the ability to modify certain

5

performance parameters such as service levels. In this section we consider the constraints that
must be satisfied and the optimizations that a resource manager can perform.

I 3.1 Global Allocation Constraints

In all situations the resource manager must provide an allocation that meets the constraints of the
system. The proposed framework supports three constraints. First, the resource manager must
ensure that each application is assigned to a valid host, one that is capable of executing the
application. Second, the security level of each application should not be larger than the security
level of both the assigned host and any communication links used in the current path. Third, the
amount of time needed by any path to complete execution must not exceed the required deadline.
The minimum responsibility of the resource manager is to choose an allocation of applications to
hosts such that these three constraints are satisfied at a given setting for service levels,
workloads, and arrival rates. A feasible solution is the specification of a function host: A + H
that satisfies all the allocation constraints.

3.2 Global Allocation Optimizations

In addition to constraint-satisfaction, a resource manager should have the ability to perform
various allocation optimizations. The objective is to find an allocation and setting of unknown
performance parameter values such that all applications can be scheduled feasibly and the overall
utility is maximized. The proposed model supports three performance parameters: maximum
workload, maximum event rate, and service level. The workload and maximum event rate of an
application are generally unknown. For this reason, the resource manager attempts to maximize
the arrival rate and workload that can be handled by a particular allocation according to some
heuristic. In addition the service level of an application is a knob that the resource manager can
use to adjust both the resource usage and the overall utility.

The overall utility of a system can be determined from the maximum workloads, maximum event
rates and service levels that are computed by the optimization heuristic. We formalize the overall

utility as a function U(S, = u(z, $, 3. Depending on the given characteristics of the system,
there are many ways to specify such a function. An example system requiring fair distribution of
resources is Dynbench [need reference], a shipboard missile detection and guidance system. The
following product utility functions are able to handle such scenarios:

u,(s) = O(z, G, 3 = ~(3. min(W,}. min{ru)
a e A a e A

These functibns can be used to prevent the resource starvation of lower priority applications. A
weighted sum utility function does not prevent resource starvation, but allows higher priority
Applications to obtain as many resources as needed for critical operation. These are example
weighted sum utility functions:

U , (S) = U(?, G, T') = c,-U(s') + C2'min{WU) + c3.min{ra)
aEA aEA

6

Some systems may require more complex utility functions. For example, we could combine the
functions defined above in the following way:

U,(S) = a * U,(S) + (1 -a) *U,(S),

where a E [O,l] can be used as a control parameter to mix the strategies explained above.

The considerations and algorithmic approach presented in the remainder of this paper require

monotonicity as an important property of the overall optimization function U(S) = u(;, 6, ?),
which can be described as follows:

s ’ I s” 3 U (3 I U(?) [s’ I s” means component-wise] ,

f~ f’ 3 min(3) ~ r n i n (f ’) [or min
E A

3.3 Considerations on Constraints and Optimizations

The following considerations are helpful in understanding our algorithmic approach defined in
the next section. Assume for simplicity that instead of s‘, 6, 3 there are only two system
parameters, p1 andp2. Each may attain integer values 2 0. So the question is for which pairs ($1,

p2) the system behaves correctly and utility has a maximum. From the monotonicity
assumption we conclude that we need only to look for pairs (PI, p2) that are maximal: (PI, p2) is
maximal if each pair (PI’, p2’) z @I, p2) with p1‘ 2 p1 and p$ 2 p2, does not allow a feasible
solution. Feasibility is checked by means of a heuristic algorithm such as threshold accepting, or
simulated annealing, by directly finding an allocation of applications to host.

Maximal pairs can be determined by a systematic search: First one would find upper limits
separately for p1 and p2 , while keeping the other value at minimum. Let p y i f and fl the
respective maximum values. This can be done by a doubling strategy, by starting with 1 forpl
resp. p2. With known values p1 and p y , an off-line algorithm could determine maximum

pairs @I, p2) with 0 5 p1 I p 1 and 0 5 p2 I p2 , Since we assume non-negative integer

parameters, the number of pairs to check is limited by (Py + 1)(p y + 1). Figure 3 illustrates
the maximum parameter pairs (black dots). The pairs lying below and left of each maximum
parameter pair allow feasible solutions.

limit

limit limit

7

3

2

1

0
6 P2 0 1 2 3 4 s

Figure 3: Determining the Boundary of the Feasible Region.

The generalization to the general parameter set s', G, ? is straightforward. Knowing the
parameter area with feasible solutions is useful for on-line algorithms; if the running system
requires certain parameter settings, the feasibility of the settings can be checked easily.

4 A Framework for Allocation Algorithms
In this chapter a framework for allocation algorithms is presented with the objective to maximize
overall utility. The utility of an allocation is a function of the service levels, calculated maximum
workloads and calculated maximum event rates. The utility function does not depend on the
particular structure of a solution, but assumes that the schedule is feasible.

Before discussing allocation algorithms, we must explore the differences between off-line and
on-line algorithms. 08-line algorithms are performed before a system has been started, and thus
are not limited by tight time constraints. For this reason, these algorithms may be brute force
algoritbms that are capable of finding optimal allocations and performance parameter settings.
On-line a2gorithm.s on the other hand are executed simultaneously with the dynamic systems for
which they are responsible for allocating resources. These types of algorithms operate under
strict timing constraints and are typically used for making fast, intelligent reallocation decisions.

The framework proposed in this section is decomposed into several modules. An off-line
algorithm could take advantage of all the functionality provided by these modules. In contrast an
on-line algorithm may require the use of only a subset of the modules presented due to strict
timing requirements. For this reason, we will look at each of the modules in the context of an off-
line algorithm. The structure of such an algorithm is 'shown in Figure 4.

8

yes

Figure 4: Structure and Modules of an Off-line Allocation Algorithm.

Initially, the define-inteflace module uses the hardware and software specifications to determine

the initial settings for the triplet (?, $, i?) and the corresponding overall utility o(?, $, 3). The
initial-allocation module constructs an allocation of applications to hosts subject to the
conditions of the triplet (z, $, 3). Thefeasibility-test module determines whether the allocation
is feasible. If the allocation is feasible and stopping-criterion1 has not been satisfied, then the
rnodzfigarameters(+) module increases the performance parameter settings resulting in a new
setting for (3, 6, ;) thus increasing the overall utility. However, if the allocation found was not
feasible and stopping-criterion2 has not been satisfied, then the optimize-allocation module
modifies the allocation subject to the triplet (?, $, 9 by using optimization procedures such as
general local search procedures, and greedy heuristics. This step continues until a feasible
allocation is found or stopping-criterion2 is satisfied. If stopping-criterion2 is satisfied and the
allocation is still not feasible, then the rnodz$garameters(-) module decreases the performance
parameter settings resulting in a new setting for (?, G, a causing the overall utility to decrease.
After either the rnodzfigurarnteres(+) or rnodziflqararnters(-) has been executed, the algorithm
reenters the initial-ullocation module and the process continues. We will now look at each of
these modules in more detail.

4.1 Module define-interface

The module define-interface provides interfaces between the resource manager and the
allocation algorithm and provides the data structures to store the needed information for the
operation of the allocation algorithm. The resource manager provides the module with the static
characteristics of both the hardware and software systems as described in section 2. The module
uses this information to produce initial settings for the unknown performance parameters and the
service level of each application. These initial settings are represented by the triplet (;, 6, ;).
The module returns this triplet and the corresponding initial overall utility o(?, 6, 3). Figure 5
provides more detail about this module. For example, the latency function in Figure 5 represents
the actual amount of time the task will take to complete processing due to the resource needs of

9

the application, the resource characteristics, and the contention for the needed resources. We do
not provide a complete listing of all the functions that should appear in this module, but include
some of the more essential and understandable functions.

module define-integace
defines initial settings for service levels, workloads, event rates,

andreturnsatriplet(s , w , r)

for a m p l e :

initialworkloads w =(l , ..., 1)

initial event rates r = (0, . . ., 0)
provides modules for computing
runtime ra h(Wa, sa) of application a
latency Aa,h(w, sa) of application a
memory requirement ma,h(wa, sa) of application a
communication time C ~ , ~ I (wa, sa) for applications a 4 a’

Vstem benefit U(s , w , r)

+ + +
+

initial service level setting s = (1 , . . .,l)
+
+

- + + +
L

Figure 5: Module define-interface.

4.2 Module initial-allocation

The module initiul_aZlocation constructs an allocation of applications to hosts such that their
runtimes are minimized. However, runtime minimization cannot be expected to be fully achieved
due to limited processor power and memory. It is important to realize that the minimization of
runtimes is not the overall objective of an allocation algorithm, but a mechanism for producing a
reasonable initial allocation. Figure 6 contains the heuristic used by this module. The allocation
is represented as a function host : A + H , and the heuristic strategy follows a two-dimensional
bin-packing approach.

module initial-allocation
- + + +

Input:parameters s , w , r
Output: function host : A + H
implementation
procedure host;
initialize cpu-availabile(h) := 0.7; mem-mailabile(h) := mem(h);
for each pathp do

for each applicationaonp do
assign a to host h such that Aa,h(W0 sa) is minimum

subject to ra f h(Wa, sJnP < cpu-mailable(h)
and ma,h(wa, sa) 2 mem- available@);

reduce cpu-muilable(h) by ra,h(wa, sa)/np;
reduce mem- available(h) by m,,h(wa, sa);

-- latency Aa,h(Wm sa) := ra,h(wa, sa) + queuing delay

Figure 6: Module initial-allocation.

10

Module feasibilify-tesf

The modulefeasibiliiy_test implements a test to analyze the feasibility of a solution. A feasible
solution is a function host: A + H that satisfies all the allocation constraints identified in section
3.1. The test requires invoking functions provided by the define-interjke module and using the
returned estimations to determine the feasibility of the allocation. If the feasibility test fails, then
the allocation must be modified. If stopping-criteria2 is not true, then the optimize-allocation
module is invoked to move applications to different hosts. If stopping-criteria2 is true, then the
parameters (z, $, 3) are changed such that the overall utility is decreased. Since we assume
montonicity, decreasing these parameters results in lower resource needs. Once a feasible
solution is found, the parameters (z, $, 3) are changed such that overall utility is increased
unless stopping-criteria1 is true.

At this level we have to deal with resource contention for all resources. In our proposed model
we have considered the processor, memory, and network links. For the processor and memory,
the feasibility test must determine if the utilization thresholds are not violated. Since contention
is present, the latency, defined as the time to complete processing, .for a path must be less than
the required deadline minus the start time. Contention is encountered in both the processor and
the network link. For the processor on a time-shared operating system like UNIX, direct analysis
of the response time due to dynamic priority round-robin scheduling can be performed to
determine the latency of a single application. For communication delays each pair of dependent
applications a < a' on different hosts gives rise to a communication task cu,ur . The size of cqUt is
specified as the number of output bits or packets produced by application a. The latency of
transmission depends on the technical network properties and the queuing delays due to the
current network traffic. The latency of a path is defined as the summation of the latencies of all
the applications and communication tasks belonging to the path.

4.3 Module optimize-allocation

The module optimize-allocation is entered when an allocation has failed to pass the feasibility
test and stopping-criteria2 is not satisfied. This module implements functions for modifying the
allocation under the conditions of the given parameter settings s', $ and F. This is done by
creating a neighborhood of allocations. For defining a neighborhood allocation we provide the
operator defined below:

move(host, a, h) = host'

The operator requires the current solution host, an application a, and a target host h as parameters
and returns a new solution host' that is equal to host except for moving application a to host h if
possible. The operator results in the assignment of application a to host h. For a given allocation
function host : A + H, the neighborhood N(host) can be defined as the allocation function.

N(host) = { rnove(host, a, h) I a E A, h E H 1.
Other neighborhoods might be necessary to further improve the efficiency and performance of
the optimization technique. The neighborhood functions are the basis for heuristic optimization
algorithms to improve the allocation for given parameter settings. General purpose local search
optimization heuristics such as simulated annealing, tabu search, and evolutionary algorithms
can be implemented as swappable components within this module.

11

Module modify_parameters

The module modfiyurumeters is responsible for modifying the performance parameters s',
and 7. When notified that a feasible solution exists for the current parameter settings (s,w,r),
this module will find new parameter settings (s",;',33 that results in a higher system utility. We
write this condition as:

+ + +

> U(&G,3)

Due to the monotonicity assumption made in section 3.2, such a selection of parameters results
in higher resource requirements. The algorithm must attempt to find a new allocation subject to
new parameter settings.

The module modzfiyurumters may also be notified when a feasible solution can not be found
for the current parameter settings (s,w,T). The module proceeds to find new parameter settings
(s ',w',r 3 that results in a lower system utility. We write this condition as:

+ + +

- + + +

This selection of parameters results in lower resource requirements due to the monotonicity
assumption. This implies that a feasible solution may exist for the new parameters.

5 Related Research
The framework we have presented has been influenced by many growing fields of research in the
real-time community. In particular, we have designed our model to allow dynamic resource
allocations, permit dynamic profiling, incorporate utility models, and utilize application service
levels. In this section, we discuss some of the research that most influenced our model.

DQM [2] uses QoS levels (service levels in our model) to adapt multimedia applications to
overload situations. The use of QoS levels enables DQM to gracefully degrade to overload
situations. However, DQM uses a worse case execution time, as in [Liu, WCET], to determine
application resource usage. It does not reallocate tasks at run-time, only considers one resource,
and does not guarantee the optimal, or even near-optimal, set of choices have been made for
every situation.

Q-RAM [14] uses a utility function approach to dynamically determine what service levels to
choose for a group of applications. Utility can be nearly optimized at run-time by dynamically
allocating multiple finite resources to satisfy multiple service levels. A drawback to the model is
the use of profiles determined a priori that are associated with each service level. In [SI, a similar
problem is addressed, but the notion of utility is simpler. The same drawback is present in [SI as

In QUO [lS], applications adjust their own service levels to improve performance and adjust to
their environment. The model has many drawbacks for dynamic environments. It does not treat
all resources within the system as a single set of resources, so reallocations do not occur.

in [14].

12

Applications react to the environment on their accord, so there is no way to optimize the set of
choices made for all applications.

Burns et a1 [3] present an explanation on the need for utility-based scheduling in dynamic, real-
time environments. Their model includes a set of different service levels, alternatives, for tasks.
They also present a manner for elicitation of utility preferences. However, they characterize
resource usage on worst case execution time and they do not take many dynamic measures into
account, such as workload and event arrival rate.

In [7, 8, 91, Kalegoraki et a1 use dynamic object profiling techniques to determine resource
usage, and resource reallocation techniques are implemented as cooling and heating algorithms
to ensure load balancing. A utility function is used to determine what applications to replicate for
fault tolerance. Application relations are defined by a graph and referred to as a task. The
approach does not include much in the way of a utility optimizationfor resource allocations,
except for fault tolerance, and does not include service levels of any type.

In other works, we were mostly concerned with notions of service levels. Liu et a1[17], use a
notion of service levels where tasks are defined by a mandatory task and an optional task. The
optional task’s operation may be cut off at anytime to get an output and save resources for other
tasks. The optional task’s utility increases with time, until it reaches a maximum. In the Elastic
Scheduling technique [4 1, applications are modeled as springs with associated elastic
coefficients, The service level for an application is lowered by compressing the application, and
the service level is raised by allowing the application to expand. The FLEX language [101 allows
programmers to define performance polymorphism to allow a set of alternate algorithms to be
executed for one function.

6 Conclusions
In this paper, we have presented a model that characterizes distributed real-time systems
operating in dynamic environments. Distributed resources are treated as a pool of resources to be
used by the real-time system as a whole. Dynamic environment characteristics are modeled by
event arrival rates, workloads, and service levels. The notions of utility and service levels
provide a means for graceful degradation and give a manner to optimize the allocation of
resources. A framework is presented to produce feasible, optimal allocations even when
applications receive unknown event arrival rates and process dynamic amounts of workload.

Future work includes producing a more practical service level parameter defmition, integrating
fault tolerance into the utility functions as done in [9], and allowing for load sharing techniques
among replicas.

References

[l] Ballou, K. and Miller, J., “On-board Cloud Contamination Detection with Atmospheric
Correction,” NASA ‘s Earth Science Technology Conference 2002, Pasadena, CA, June 2002.

[2] Brandt, S., and Nutt G., “Flexible Soft Real-Time Processing in Middleware,” Real-Time Systems,
pp. 77-1 18,2002.

13

[3]

[4]

[5]

Burns, A., et al, “The Meaning and Role of Value in Scheduling Flexible Real-Time Systems,”
Journal of Systems Architecture, vol. 46, pp. 305-325,2000.
Buttazzo, G., et al., “Elastic Scheduling for Flexible Workload Management”, IEEE Transactions
on Computers, Vol. 51, No. 3, pp. 289-302, March 2002.
Chen, L., et al, ”Building an Adaptive Multimedia System Using the Utility Model” International
Workshop on Parallel & Distributed Real-Time Systems, San Juan, Puerto Rico, pp 289-298, April
1999.

[6] Jain, S., et al, “Collaborative Problem Solving Agent for On-Board Real-time Systems,”
Proceedings of 16th International Parallel and Distributed Processing Symposium, pp.15-19, Ft.
Lauderdale, FA, April 2002.
Kalogeraki, V., Melliar-Smith, P., and Moser, L., “Dynamic Scheduling for Soft Real-Time
Distributed Object Systems”, Proceedings of the Third IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, pp. 114-12 1, Newport Beach, California, 2000.
V. Kalogeraki, P. M. Melliar-Smith and L. E. Moser, “Using Multiple Feedback Loops for Object
Profiling, Scheduling and Migration in Soft Real-Time Distributed Object Systems,” In the
Proceedings of the Second IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing, Saint Malo, France, May 1999.

[7]

[8]

[91 Kalogeraki, V., Moser, L. and Melliar-Smith, P. “Dynamic Modeling of Replicated Objects for
Dependable Soft Real-Time Distributed Object Systems”, Fourth IEEE International Workshop on
Object-Oriented Real-time Dependable Systems, Santa Barbara, CA, 1999.
Kenny, K. and Lin, K., “Building Flexible Real-Time Systems using the FLEX Language”, IEEE
Computer, Vo1.24, No.5, pp.70-78, May 1991.
Klein, M., et al., “A Practitioner’s Handbook for Real-Time Analysis” Kluwer, 1993.
Krishnamurthy, et al, “Integration of QoS-Enabled Distributed Object Computing Middleware for
Developing Next-Generation Distributed Applications,” Proceedings of the ACM SIGPLAN
Workshop on Optimization of Middleware and Distributed Systems, Snowbird, Utah, June 2001,
Kuo, T. and Mok, A., “Incremental reconfiguration and load adjustment in adaptive real-time
systems,” IEEE Transactions on Computers, 46(12), pp. 13 13-1324, December 1997.
Lee, C., et al, ”A Scalable Solution to the Multi-Resource QoS Problem,” Proceedings of the 20th
IEEE Real-Time Systems Symposium, December 1999.
Lehoczky, J., “Real-time queueing theory,” Proceedings of the 1 7th IEEE Real-Time Systems
Symposium, pp. 186-195, IEEE Computer Society Press, 1996.
Liu, C. and Layland, J., “Scheduling algorithms for multiprogramming in a hard-real-time
environment,” Journal of the ACM 20, pp. 46-61,1973.
Liu, J., et al, “Algorithms for Scheduling Imprecise Computations,” IEEE Computer, vol. 24 (5),
pp. 58-68, May 1991.
Loyall, J., et al, “Emerging Patterns in Adaptive, Distributed Real-Time Embedded Middleware,”
9th Conference on Pattern Language of Programs, Monticello, Illinois, Sept. 2002.
Sha, L., Klein, M., and Goodenough, J., “Rate monotonic analysis for real-time systems,” in
Scheduling and Resource Management, Kluwer, pp. 129-156, eA. M. van Tilborg and G. M. Koob,
1999.
Stewart, D. and Khosla, P., “Mechanisms for detecting and handling timing errors,” CACM, 40(l),
pp. 87-93, Jan. 1997.

14

[21] Tia, T., et ai., “Probabilistic performance guarantee for real-time tasks with varying computation
times,” Proceedings of the I“‘ IEEE Real-Time Technology and Applications Symposium, pp. 164-
173, IEEE Computer Society Press, 1995.

[22] Verhoosel, J., et al., ‘&A Model for Scheduling of Object-Based, Distributed Real-Time Systems,”
Journal ofReal-Time Systems, 8(1), pp. 5-34, Kluwer Academic Publishers, January 1995.

[23] Welch, L., Stoyenko, A., and Marlowe, T., “Modeling Resource Contention Among Distributed
Periodic Processes Specified in CaRT-Spec,” Control Engineering Practice, 3(5), pp. 65 1-664,
May 1995.

[24] Welch, L., et al, “Adaptive QoS and Resource Management Using A Posteriori Workload
Characterizations,” The IEEE Real-Time Technology and Applications Symposium, pp. 266-275,
June 1999.

[25] Welch, L., et al, “Speciiication and Modeling Of Dynamic, Distributed Real-Time Systems,” The
IEEE Real-Time Systems Symposium, IEEE Computer Society Press, pp. 72-81, December 1998.

[26] Welch, L. and Shirazi, B., “A Dynamic Real-Time Benchmark for Assessment of QoS and
Resource Management Technology,” The IEEE Real-Time Technology and Applications
Symposium, pp. 36-45, June 1999.

E271 Welch, L., Pfarr, B. and Tjaden, B., “Adaptive Resource Management Technology for Satellite
Constellations,” The Second Earth Science Technolog): Conference (ESTC-ZOOI?), Pasadena, CA,
June 2002.

[28] Welch, L., et al., “Adaptive Resource Management for On-board Image Processing Systems,”
Journal. of Parallel & Distributed Computing Practices- issue on parallel & distributed real-time
systems, Nova Science Publishers (to appear).

15

