
z

Performance and Scalability of the NAS Parallel Benchmarks in Java

Michael A. Frumkin, Matthew Schultz, Haoqiang Jin, and Jerry 'fan

NASA Advanced Supercomputing (NAS) Division

NASA Ames Research Center, Moffett Field, CA 94035-1000

{frumkin, hj in, yan}_nas, nasa. gov

Abstract

Several features make Java an attractive choice for scientific applications. In order to gauge the applicability

of Java to Computational Fluid Dynamics (CFD), we have implemented the NAS Parallel Benchmarks in Java.
The performance and sealability of the benchmarks point out the areas where improvement in Java compiler tech-

nology and in Java thread implementation would position Java closer to Fortran in the competition for scientific

applications.

1 Introduction

The portability, expressiveness, and safety of the Java language, supported by rapid progress in Java compiler

technology, have created an interest in the High Performance Computing (HPC) community to evaluate Java on
computationally intensive problems [8]. Java threads, RMI, and networking capabilities position Java well for

programming on Shared Memory Parallel (SMP) computers and on computational grids. On the other hand

issues of safety, lack of light weight objects, intermediate byte code interpretation, and array access overheads

create challenges in achieving high performance for Java codes. The challenges are being addressed by work on

implementation of efficient Java compilers [10] and by extending Java with classes implementing the data types

used in HPC [9].
In this paper, we describe an implementation of the NAS Parallel Benchmarks (NPB) [1] in Java. The benchmark

suite is accepted by the HPC community as an instrument for evaluating performance of parallel computers,
compilers, and tools. Our implementation of the NPB in Java is derived from the optimized NPB2.3-serial version

[6] written in Fortran (except IS, written in C). The NPB2.3-serial version was previously used for the development
of the HPF [3] and OpenMP [6] versions of the NPB. We start with an evaluation of Fortran to Java conversion

options by comparing performance of basic Computational Fluid Dynamics (CFD) operations. The most efficient

options are then used to translate Fortran to Java. We then parallelize the resulting code by using Java threads
and the master-workers load distribution model. Finally, we profile the benchmarks and analyze the performance

on five different machines: IBM p690, SGI Origin2000, SUN Enterprise10000, Intel Pentium-III based PC, and

Apple G4 Xserver. The implementation will be available as the NPB3.0-JAV package from www.nas.nasa.gov.

2 The NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPB) were derived from CFD codes [1]. They were designed to compare the

performance of parallel computers and are recognized as a standard indicator of computer performance. The NPB
suite consists of three simulated CFD applications and five kernels. The simulated CFD applications use different

implicit algorithms to solve 3-dimensional (3-D) compressible Navier-Stokes equations which mimic data traffic and

computations in full CFD codes. The five kernels represent computational cores of numerical methods routinely

used in CFD applications.

BT isasimulatedCFDapplicationwhichusesanAlternatingDirectionhnplicit(ADI)approximatefactoriza-
tion to decouplethe z, y, and z dimensions. The resulting system is Block Tridiagonal of 5x5 blocks is solved"n
sequentially along each dimension. SP is a simulated CFD application which employs the Beam-Vvarml g approxi-
mate factorization. The resulting system of Scalar Pentadiagonal linear equations is solved sequentially along each

dimension. LU is the third simulated CFD application. It uses the symmetric successive over-relaxation (SSOR)

method to solve the discrete Navier-Stokes equations by splitting it into block Lower and Upper triangular sys-

tems. FT contains the computational kernel of a 3-D Fast Fourier Transform (FFT). MG uses a V-cycle Multi
Grid method to compute the solution of the 3-D scalar Poisson equation. CG uses a Conjugate Gradient method

to compute approximations to the smallest eigenvalues of a sparse unstructured matrix. IS performs sorting of

integer keys using a linear-time Integer Sorting algorithm based on computation of the key histogram.

3 Fortran to Java Translation

We are focused on achieving high performance of the code, hence we opted to do a literal translation of Fortran

to Java at the procedural level and we did not attempt to convert the benchmarks into an object-oriented code.

In order to compare efficiency of different options in the literal translation and to form a baseline for estimation of

the quality of the benchmark translation, we chose a few basic CFD operations and implemented them in Java.

• loading/storing array elements;

• filtering an array with a local kernel; (the kernel can be a first or second order star stencil as in BT, SP, and

LU, or a compact 3x3x3 stencil as in the smoothing operator in MG);

• a multiplication of a 3-D array of 5x5 matrices by a 3-D array of 5-D vectors; (a routine CFD operation);

• a reduction sum of 4-D array elements.

We implemented these operations in two ways: by using linearized arrays and by preserving the number of array
dimensions. The version that preserves the array dimension was 1.5-2 times slower than the linearized version on

the SGI Origin2000 (Java 1.1.8) and on the SUN Enterprise10000 (Java 1.1.3). So we decided to translate Fortran

arrays into linearized Java arrays. The performance of the serial and multithreaded versions are compared with

the Fortran version, Table 1.

Table 1. The execution times in seconds of the basic CFD operations on the SGI Origin2000.

The grid size is 81x81x100, the matrices are 5x5, and vectros are 5-D.

f77 I Java 1.1.8Number of Threads

Operation Serial 11 2 I 4[81 16 I 32

1. Assignment (10 iterations) 0.327 1.087 1.256 0.605 0.343 0.264 0.201 0.140
2. First Order Stencil 0.045 0.373 0.375 0.200 0.106 0.079 0.055 0.061

3. Second Order Stencil 0.046 0.571 0.572 0.289 0.171 0.109 0.082 0.072

4. Matrix vector multiplication 0.571 4.928 6.178 3.182 1.896 1.033 0.634 0.588

5. Reduction Sum 0.079 0.389 0.392 0.201 0.148 0.087 0.063 0.072

We can offer some conclusions from the profiling data:

• Java serial code is a factor of 3.3 (Assignment) to 12.4 (Second Order Stencil) slower than the corresponding

Fortran operations;

• Java thread overhead (1 thread versus serial) contributes no more than 20% to the execution time;

• The speedup with 16 threads is around 7 for the computationally expensive operations (2-4) and is around

5-6 for less intensive operations (1 and 5).

Fora moredetailedanalysisofthebasicoperationsweusedanSGIprofilingtool called perfex. The perfex

uses 32 hardware counters to count issued/graduated integer and floating point instructions, load/stores, pri-

mary/secondary cache misses, etc. The profiling with perfex shows that the Java/Fortran performance correlates
well with the ratio of the total number of executed instructions in these two codes. Also, the Java code executes

twice as many floating point instructions as the Fortran code, confirming that the Just-In-Time (JIT) compiler

does not use the "madd" instruction.

4 Using Java Threads for Parallelization

A significant appeal of Java for parallel computing stems from the presence of threads as part of the Java

language. On a shared memory multiprocessor, the Java Virtual Machine (JVM) can assign different threads to

different processors and speed up execution of the job if the work is well divided among the threads. Conceptually,
Java threads are close to OpenMP threads, so we used the OpenMP version of the benchmarks [6] as a prototype

for the multithreading.
The base class (and, hence, all other classes) of each benchmark was derived from java. lang. Thread, so all

benchmark objects are implemented as threads. The instance of the main class is designated to be the master that
controls the synchronization of the workers. The workers are switched between blocked and runnable states with

wait () and notify() methods of the Thread class. The details of our translation method and the resulting code

structure can be found in [4].

5 Performance and Scalability

We have tested the benchmarks on the classes S, W, and A; the performance is shown for class A as the largest of

the tested classes. The tests were performed on three large SMP machines: IBM p690 (1.3 GHz, 32 processors, Java

1.3.0), SGI Origin2000 (250 MHz, 32 processors, Java 1.1.8), and SUN Enterprise 10000 (333 MHz, 16 processors,
Java 1.1.3). On the SUN Enterprise we also tested Java 1.2.2, but its scalability was worse than that of Java 1.1.3.

The performance results are summarized in Tables 2-4. For comparison, we include Fortran-OpenMP results in
Tables 2 and 3. For a reference we ran the benchmarks on a Linux PC (933 MHz, 2 PIII processors, Java 1.3.0)

and on 1 node of Apple Xserver (1GHz, 2 G4 processors, Java 1.3.1), Tables 5,6.

Table 2. Benchmark times in seconds on IBM p690 (1.3 GHz, 32 processors).

I

BT.A Javal.3.0

BT.A f77-OpenMP

SP.A Javal.3.0

SP.A f77-OpenMP

LU.A Javal.3.0

LU.A f77-OpenMP

FT.A Javal.3.0

FT.A f77-OpenMP

IS.A Javal.3.0

IS.A C-OpenMP

Number of Threads

511.5 614.4 307.1 160.2 80.8 41.5 22.4]

161.4 254.1 129.5 66.1 34.8 17.6 10.5J

407.1 427.5 214.2 111.1 58.7 30.8 33.2

142.6 141.2 72.3 37.8 18.7 10.2 6.2 J

6t5.9 645.8 322.5 168.5 90.5 46.2 28.5 I

144.0 145.9 70.0 32.9 16.7 8.9 6.0]

54.4 46.9 28.8 15.0 8.6 5.61 4.83

10.8 11.0 5.5 2.7 1.4 0.76 0.55]

1.60 1.70 1.04 0.83 0.76 0.79 2.50

1.36 1.87 1.02 0.55 0.35 0.27 0.40

CG.A Javal.3.0 8.75 8.16 4.55 2.44 1.50 1.37 1.79J

CG.A f77-OpenMP 6.22 6.21 3.13 1.64 0.83 0.41 0.46 I

MG.A Java1.3.0 14.55 14.44 7.76 4.15 2.39 1.80 1.70

MG.A f77-OpenMP 6.95 6.84 3.34 1.56 0.86 0.55 0.44

Table 3. Benchmark times in seconds on SGI Origin2000 (250 MHz, 32 processors).

Number of Threads

BT.A Java 1.1.8

BT.A f77-OpenMP

SP.A Java 1.1.8

SP.A f77-OpenMP

LU.A Java 1.1.8

LU.A f77-OpenMP

FT.A Java 1.1.8

FT.A f77-OpenMP

IS.A Java 1.1.8

9136.3 8332.5 4806.0 2645.7 1413.7 1278.0 838.4

1028.0 983.6 519.5 275.4 143.7 133.0 81.4

7137.4 7111.0 3789.8 2333.8 1705.2 1581.2 1188.2 1

944.7 850.8 504.5 259.9 147.6 133.0 88.5 '/

9686.8 9967.4 5600.9 3475.8 2247.8 - 1502.2

1104.8 926.9 439.7 236.4 132.5 121.1 75.72

656.0 630.8 361.1 174.9 110.6 - 63.8

82.3 74.8 41.1 21.1 11.7 10.9 7.1]

IS.A C-OpenMP

CG.A Java 1.1.8 105 0 112.4 114.2 53.9 52.6 - 23.1]

CG.A f77-OpenMP 39.7 35.6 21.8 10.2 3.6 3.2 I 2.7]

MG.A Java 1.1.8 254.0 263.7 189.3 108.4 70.8 - 45.0

MG.A f77-OpenMP 36.4 36.8 23.0 12.7 7.7 6.4 4.1]

Table 4. Benchmark times in seconds on SUN Enterprisel0000 (333 MHz, 16 processors).

Serial 1[

BT.A Javal.l.3 13609.5 14671.3

SP.A Javal.l.3 10235.8 11108.1

LU.A Javal.l.3 12344.5 13578.9

FT.A Javal.l.3 1104.6 1318.8

IS.A Javal.l.3 22.9 29.4

CG.A Javal.l.3 203.8 215.3

MG.A Javal.2.2 438.9 494.7

Number of Threads

21 4 t 8 I 9[12 I 16
7381.7 3846.3 2305.0 2042.7 1782.7 1762.2

5692.9 3409.3 2095.5 1899.1 1862.1 1671.2

6843.3 3765.7 2077.3 1892.7 1730.2 1745.4
674.7 384.2 342.7 353.4 363.3

15.7 9.0 8.4 8.9 13.6

111.6 69.0 47.6 40.8 36.4

244.8 138.5 87.1 72.6 68.7

5.1 Comparison to Fortran Performance

We offer the following conclusions from the performance results. There are two groups: benchmarks BT, SP, LU,

FT, and MG working on structured grids; and benchmarks IS and CG involving unstructured computations. For

the first group, on the Origin 2000 the serial Java/Fortran execution time ratio is within the interval 8.3-10.8, which
is within the 8.2-12.5 intervals for the computationally intensive basic CFD operations, Table 1, indicating that

our implementation of the benchmarks adds little performance overhead to the overhead of the basic operations.

On the p690 the ratio for this group is within interval 2.1-5.1. For the second group, the Java/Fortran execution
time ratio is within the 3.11-7.2 and 1.1-1.3 interval for Origin 2000 and p690 respectively. The separation into

two groups may be explained by the fact that the f77 compiler optimizes regular-stride computations much better

than the Java compilers.
The benchmarks working on structured grids heavily involve the basic CFD operations and any performance

improvement of the basic operations would directly affect performance of the benchmarks. Such improvement can
be achieved in three ways. First, JIT needs to reduce the ratio of Java/Fortran instructions (which for Origin

2000 is a factor of 10) for executing the basic operations. Second, the Java rounding error model should allow

the "madd" instruction to be used. Third, in the codes where the array sizes and loop bounds are constants, a

compiler optimization should be able to lift bounds checking out of the loop without compromising code safety [8].

Our performance results apparently are in sharp contrast with the results of the Java Grande Benchmarking

Group [2] reporting that on almost all Java Grande Benchmarks, the performance of a Java version is within a

Table5. Benchmark times in seconds on

Linux PC (933 MHz, 2 Pill processors).

Javal.3.0

BT.A

SP.A

LU.A

FT.A

IS.A

CG.A

MG.A

Number of Threads

Serial 1 f 2

8007.8 8007.7 8083.2

3543.9 4198.7 4201.9

5887.9 7151.7 7140.7

411.0 493.0 494.4

9.1 9.4 9.8

116.8 75.8 77.0

195.0 170.3 188.2

Table 6. Benchmark times in seconds on

Apple Xserver (1 GHz, 2 G4 processors).

Number of Threads

Java1.3.0 Serial

BT.A 2043.15

SP.A 1377.56

LU.A 17779.24

FT.A 179.71

IS.A 7.08

CG.A 51.62

MG.A 59.94

1 2

2120.87 1185.97

1487.30 845.91

19075.83 9883.85

161.31 95.93

7.59 6.00

48.69 28.08

60.12 36.07

factor of 2 of the corresponding C or Fortran versions. To resolve the performance gap we obtained the jgf_2.0

from the www. epcc. ed. ac.uk/java_grande website. Since the Fortran version was not available on the website

we literally translated the Java version to Fortran and ran both versions on multiple platforms, Table 7. We have
also included results of the LINPACK version of the LU decomposition. From the table we can conclude that the

algorithm used in lufact benchmark performs poorly relative to LINPACK. The reason for this is that lufact
is based on BLAS1, having poor cache reuse. As a result, the computations always wait for data (cache misses),

which obscures the performance comparison between Java and Fortran. Note that our Assignment base operation

exhibits about the same Java/Fortran performance ratio as the lufact benchmark.

Table 7. Java Grande LU benchmark [2]. The Fortran version was directly derived from lufact.

The performance of the LINPACK version of the LU decomposition (DGETRF, based on

MMULT, and having good cache reuse) is shown for reference. The classes A, B and C employ

500x500, 1000xl000 and 2000x2000 matrices respectively. The execution time is in seconds.

Java f77 LINPACK

Machine/Platform A B C A B C A B C
3.13 27.78 250.3 0.36 8.11 104.0 0.423 3.448 29.93

3.05 28.10 266.7 0.70 7.94 86.3 0.207 1.710 13.78

3.86 48.92 512.0 1.41 29.90 395.6 0.522 4.411 48.55

0.27 2.60 21.3 0.17 2.19 17.6 0.031 0.237 1.74

SUN UltraSparc/Java 1.4.0

SGI Origin2000/Java 1.1.8

Sun E10000/Java 1.1.3

IBM POWER4/Java 1.3.0

5.2 Scalability of Multithreaded Java Codes

Some singlethreaded Java benchmarks run faster than the serial versions. That can be explained by the fact
that in these singlethreaded versions the data layout is more cache friendly. Overall the multithreading introduces
an overhead of about 10%-20%. The speedup of BT, SP, and LU with 16 threads is in the range of 6-12 (efficiency

0.38-0.75). The low efficiency of FT on SUN Enterprise is explained by the inability of the JVM to use more than

4 processors to run applications requiring significant amounts of memory (FT.A uses about 350 MB). An artificial
increase in the memory use for other benchmarks also resulted in a drop of scalability. The lower scaiability of LU

can be explained by the fact that it performs the thread synchronization inside a loop over one grid dimension, thus

introducing higher overhead. The low scalability of IS was expected since the amount of work performed by each
thread is small relative to other benchmarks, hence, the data movement overheads eclipse the gain in processing

time.
Our tests of CG (and IS) benchmark on the SGI Orgin2000 showed virtually no performance gain until 8

processors were used. Even with 10-16 requested threads, only 2-4 processors were used. To investigate this

problem,weused"top -T" commandto monitortheindividualPosixthreadsandfoundthat theJVMranall
thethreadsin 1-2Posixthreads.Thefact that all theotherbenchmarksraneachthreadin a separatePosix
threadsuggestedthat theproblemwaspeculiarto CG.CG'sworkloadismuchsmallerthantheworkloadofthe
computationallyintensivebenchmarksandweassumedthat theJVMwasattemptingto optimizeCPUusageby
runningthethreadsseriallyonafewprocessors.In orderto testthisassumption,weput aninitializationsection
performinga largeworkin eachthread.ThisforcedtheJVM to assignall requestedthreadsto differentCPUs.
Whentheactualcomputationsdidstart,JVMindeedusedaseparateCPUforeachthread.Hence,by initializing
thethreadload,wewereableto getavisiblespeedupof CG,Table3. OntheLinuxPIII PCwedidnotobtain
anyspeeduponanybenchmarkwhenusing2threads.Thereasonforthiswillbefartherinvestigated.

6 Related Work

In our implementationweparallelizedtheNASParallelBenchmarksusingJavathreads.ThePerformance
EngineeringGroupat the Schoolof ComputerScienceof theUniversityof Westminsterusedthe JavaNative
Interfaceto createasystemdependentJavaMPIlibrary.Theyalsousedthislibraryto implementtheFT andIS
benchmarksusingjavaMPI[5].

TheDistributedandHighPerformanceComputingGroupoftheUniversityofAdelaide,hasalsoreleasedthe
EPandISbenchmarks(FT, CG,andMGareunderdevelopment)[7],alongwithanumberofotherbenchmarks
in orderto testJava'ssuitabilityforgrandchallengeapplications.

TheJavaGrandeForumhavedevelopeda setof benchmarks[2]reflectingvariouscomputationallyintensive
applicationswhichlikelywill benefitfromuseof Java.Theperformanceresultsreportedin [2]relativeto C and
Fortranaresignificantlymorefavorableto Javathanours.

7 Conclusions

Althoughtheperformanceof theimplementedNASParallelBenchmarksin Javais laggingfarbehindFortran
andC at this time,byusingtheperformanceenhancingmethodsdetailedin [8,10],theserialperformancecan
beimprovedto nearFortran-likeperformance.Efficiencyofparallelizationwith threadsisabout0.5for upto 16
threadsandis lowerthantheefficiencyofparallelizationwithOpenMP,MPI,andHPFonSGIandSUNmachines.
However,ontheIBM machine,thescalabilityof theJavacodeisasgoodasthat of OpenMP,andin averagethe
performanceof theJavacodeiswithinafactorof3of thatof Fortran.WithseveralgroupsworkingonMPIand
OpenMPforJava,improvementsinparallelperformanceandscalabilityseemlikelyaswell.

Theattractionof Javaasalanguagefor scientificapplicationsisprimarilydrivenby its easeofuse,universal
portability,andhighexpressivenesswhich,in particular,allowsexpressingparallelism.If Javacodeismadeto run
fasterthroughmethodsthat havealreadybeenresearchedextensively,suchashighorderlooptransformations,
semanticexpansion,togetherwithanimplementationof multidimensionalarraysandcomplexnumbers,it could
beanattractiveprogrammingenvironmentforHPCapplications.

References

[1]D. Bailey, J. Barton, T. Lasinski, and H. Simon (Eds.). The NAS Parallel Benchmarks.
NAS Technical Report RNR-91-002, NASA Ames Research Center, Moffett Field, CA, 1991,

http ://www. nas. nasa. gov/Software/NPB/.

[2] J.M. Bull, L.A. Smith, L. Pottage, R. Freeman. Benchmarking Java against C and Fortran /or Scientific

Applications. Joint ACM Java Grande - ISCOPE 2001 Conference, Palo Alto, CA, pp. 975-105. Tes source

code: http ://www. epcc. ed. ac. uk/computing/reseaxch_activities/j ava_grande/index_ 1. html.

[3] M. Frumkin, H. Jin, J. Yah. Implementation of NAS Parallel Benchmarks in High Performance Fortran.
CDROM version of IPPS/SPDP 1999 Proceedings, April 12-16, 1999, San Juan, Puerto Rico, 10 pp.

[4] M. Frumkin, M. Sehultz, H. Jin J. Yan. Implementation o/NAS Parallel Benchmarks in Java. To be pub-
lished as NAS Technical Report RNR-02-XXX, NASA Ames Research Center, Moffett Field, CA, 2002,

http ://www. nas. nasa. gov/Software/NPB/.

[5] V. Getov, S. Flynn-Hummel, S. Mintchev. High-Performance Parallel Programming in Java: Exploiting Native
Libraries. Proceedings of the 1998 ACM Workshop on Java for High-Performance Network Computing, 10

pp., http ://perun. hscs. _ain. ac. uk/JavaMPI.

[6] H. Jin, M. Frumkin, J. Yah. The OpenMP Implementation of NAS Parallel Benchmarks and Its Per-
formance. NAS Technical Report RNR-99-011, NASA Ames Research Center, Moffett Field, CA, 1999,

http ://www. nas. nasa. gov/Software/NPB/.

[7] J.A. Mathew, P.D. Coddington and K.A. Hawick. Analysis and Development of Java Grande Bench-
marks. Proc. of the ACM, 1999 Java Grande Conference, San Francisco, June 1999, 9 pp.,

http ://www. cs. ucsb. edu/conf erences/j ava99/program, html.

[8] S.P. Midkiff, J.E. Moreira, M. Snir. Java]or Numerically Intensive Computing: from Flops to Gigaftops.
Proceedings of FRONTIERS'99, pp. 251-257, Annapolis, Maryland, February 21-25, 1999.

[9] P. W'u, S. Midkiff, J. Moreira and M. Gupta. Efficient Support for Complex Numbers in
Java. Proc. of the ACM 1999 Java Grande Conference, San Francisco, June 1999, 10 pp.,

http ://www. cs. ucsb. edu/conf erences/j ava99/program, html.

[10] J. E. Moreira, S. P. Midkiff, M. Gupta, P. V. Artigas, M. Suit, and R. D. Lawrence. Java pro-
gramming for high-performance numerical computing. IBM Systems Journal, Vol. 39, n. 1, 2000.

http://www, research, ibm. com/j ournal/sj/391/more ira. html.

