

An Object Oriented Framework for an

Associative Model of Parallel Computation

M. Scherger, J. Potter, and J. Baker
{ mscherge, potter, jbaker} @cs.kent.edu

Department of Mathematics and Computer Science
Kent State University

Kent, Ohio 44242

Abstract

An object oriented description and framework of the

Multiple ASsociative Computing (MASC) model of parallel
computation is presented. This description identifies
MASC objects and specifies various object and inter-object
relationships, dependencies, and behaviors. This was
achieved by describing various views of the MASC model
by using many of the UML structural and behavioral
diagrams. This object oriented framework has been highly
useful in designing an implementation of a runtime
environment for the MASC model. Also the object oriented
framework has been highly effective for further parallel
modeling techniques, comparisons to other parallel
models, MASC parallel system software research, and
MASC algorithm development.

Keywords: parallel models, object oriented, parallel
architectures.

1 Introduction

Abstract models of parallel computation are
important vehicles for the design and development of
parallel architectures, algorithms, and programming
languages [4]. As research continues in the development
of these abstract models of parallel computation, so do
advances in the implementation a model using both
software and hardware. To assist in the design and
development of models of parallel computation, often a
more detailed model is needed in describe the static and
dynamic components of the model.

This paper presents an object oriented description and
framework for an associative model of parallel
computation. This object oriented framework is useful
for the development of parallel system software, such as
compilers, interpreters, and runtime environments. Also
the object oriented framework is useful in determining
predictability parameters reflected in the model.

The MASC (for Multiple ASsociative Computing)

model for parallel computation supports a generalized
version of an associative style of computing that has been
in use since the introduction of the associative SIMD
computers (STARAN, MPP) in the early 1970s and
1980s. The MASC model includes the well-known data
parallel-programming paradigm and extends this
paradigm to a complete computational model. The
associative features of the model allow data in the local
memories of the processors (PE’s) to be located by
content rather than by address. A complete description of
MASC (a renaming of the original ASC model to
emphasize multiple instruction streams) can be found in
[6] and [7].

The original description in [7], however, provides a
conceptual view of the principal components and basic
component interactions of the MASC model. This
conceptual description of MASC is primarily used to
introduce the model and not for research and
development. By creating an object framework to
describe MASC transforms this conceptual description
into one that is not only object oriented, but provides
several views for further MASC research in algorithm
development and predictability, system software design
and implementation, and hardware simulation and
modeling. This object-oriented description of MASC
details the principal objects and inter-object behaviors by
using class inheritance, structural, and behavior diagrams.
This common set of object and behaviors in the model
allow MASC application developers, MASC system
software designers and MASC hardware designers to
establish a common reference point for interfacing system
software to hardware components. Also the MASC
object oriented framework provides a reference for
hardware and algorithmic predictability analysis.

The remainder of this paper will first give a
conceptual description of the MASC model of parallel
computation and also present the MASC predictability

parameters used in algorithm predictability analysis.
Next, an overview and research motivation of the MASC
object model is discussed. The basic objects of the
MASC model are presented and organized into classes for
basic structural modeling. Once the structural elements
are defined, the object interactions are presented for a
discussion of model predictability.

2 The MASC Model

The following is a conceptual description of the
MASC model of parallel computation. As shown in
figure 1, the MASC model consists of an array of
processor-memory pairs called cells and an array of
instruction streams.

Instruction
Stream

Instruction
Stream

Instruction
Stream

C
el

l I
nt

er
co

nn
ec

tio
n

N
et

w
or

k

Instruction S
tream

 Interconnection N
etw

ork

B
roadcast / R

eduction N
etw

ork

. . .

PEMemory

PEMemory

PEMemory

PEMemory

PEMemory

PEMemory

. . .

T_local

T_route

T_I/O T_bcast

T_reduce T_sync

Figure 1: Conceptual view of the MASC model of
parallel computation.

A MASC machine with n cells and j instruction

streams is denoted as MASC(n, j). It is expected that the
number of instruction stream processors be much less
than the number of cells. The model also includes three
virtual networks:

1. A cell network used for cell-to-cell communication.

This network is used for the parallel movement of
data between cells. This network could be a linear
array, mesh, hypercube, or a dynamic interconnection
network.

2. A broadcast/reduction network used for
communication between an instruction stream and a
set of cells. This network is also capable of
performing common reduction operations.

3. An instruction stream network used for inter-
instruction stream communication.

Cells can receive their next set of instructions to

execute from the instruction stream broadcast network.
Cells can send and receive messages to each other using
some communication pattern via the cell network. Each
instruction stream processor is also connected to two
interconnection networks. An instruction stream
processor broadcasts instructions to the cells using the
instruction stream broadcast network. The instruction
streams also may need to communicate and may do so
using the instruction stream network. Any of these
networks may be virtual and be simulated by whatever
network is present.

MASC provides one or more instruction streams.
Each is assigned to a unique dynamic partition of cells.
This allows a task that is being executed in a data parallel
fashion to be partitioned into two or more tasks using of
control parallelism. The multiple IS’s supported by the
MASC model allows for greater efficiency, flexibility,
and reconfigurability than is possible with only one
instruction stream. While SIMD architectures can
execute data parallel programs very efficiently and
normally can obtain near linear speedup, data parallel
programs in many applications are not completely data
parallel and contain several non-trivial regions where
significant branching occurs.

In these regions, only a subset of traditional SIMD
processors can be active at the same time. With MASC,
control parallelism can be used to execute these different
branches simultaneously. Other MASC properties
include:

• The cells of the MASC model consist of a processing

element (PE) and local memory. The accumulated
memory of the MASC model consists of an array of
cells. There is no shared memory between cells.

• Each instruction stream is a processor with a bus or

broadcast/reduction network to all cells. Each cell
listens to only one instruction stream and initially, all
cells listen to the same instruction stream. The cells
can switch to another instruction stream in response
to commands from the current instruction stream.

• An active cell executes the commands it receives

from its instruction stream, while an inactive cell

listens to but does not execute the command from its
instruction stream. Each instruction stream has the
ability to unconditionally activate all cells listening to
it.

• Cells without further work are called idle cells and

are assigned to a specified instruction stream, which
among other tasks manages the idle cells.

• The average time for a cell to send a message through

the cell network to another cell is characterized by
the parameter troute. Each cell also can read or write a
word to an I/O channel. The maximum time for a
cell to execute a command is given by the parameter
tlocal. The time to perform a broadcast of either data
or instructions is given by the predictability
parameter tbcast. The time to perform a reduction
operation is given by the predictability parameter
treduce. The time for a cell to perform this I/O transfer
is characterized by the parameter ti/o. The time to
perform instruction stream synchronization is
characterized by the parameter tsynch.

• An instruction stream can instruct its active cells to

perform an associative search in time tbcast + tlocal
+treduce. Successful cells are called responders, while
unsuccessful cells are called non-responders.

• The instruction stream can activate either the set of

responders or the set of non-responders. It can also
restore the previous set of active cells in tbcast + tlocal
time.

• Each instruction stream has the ability to select an

arbitrary responder from the set of active cells in tbcast
+ tlocal time.

• An active instruction stream can compute the OR,

AND, GLB, or LUB of a set of values in all active
cells in treduce time [3].

• An idle cell can be dynamically allocated to an

instruction stream in tsynch + tbcast time.

3 MASC Object Model

This section will present an overview and research
motivations for the MASC Object Model (MASCOM).
The MASC Object Model is a set of parallel associative
model component descriptions (classes) and object
behaviors (messages). MASCOM was designed to be a
reference of the abstract model for continuing MASC
design, development, and implementation research. A

MASCOM design goal is that the framework is to be
portable when implemented across different classes of
parallel computing architectures. Another design goal is
that the framework should reflect the costs of
implementing (overhead) MASC in a particular runtime
environment for algorithm and performance
predictability.

For an implementation of hardware and system
software components of an abstract model of parallel
computation progresses, hardware designers and software
developers can now have discussions using a common set
of classes and objects. Consider the model diagram
shown in figure 2. When discussing a “cell” in the
MASC model, a hardware designer may view a cell as a
FPGA or ASIC component containing an ALU and a
small memory. A system software engineer may discuss
the interactions of a “cell” in terms of dynamic activation,
or controlling which instruction stream to listen. The end
result is that different types of developers now have a
common reference point to perform research and
development while maintaining a common dialog with
researchers in other areas.

Figure 2: MASCOM framework viewpoints.

4 MASCOM Class Structure

The structural classes of MASCOM provide the
model with a foundation of classes, objects, aggregations,
and inheritance. The fundamental base classes of the
MASCOM model are shown in figure 3.

At the abstract parallel model level, parallel data is

stored in fields. Beginning with the memory in a cell, the
basic class for storage element is the field class. The field
class is an abstract base class in which other concrete field

types are derived (integer fields, string fields, real fields,
Boolean fields, etc).

To manage the fields, the field manager class

maintains the collection of fields. The purpose of this
collection is to provide the memory addressing capability
for the cell and instruction stream classes.

Figure 3: Fundamental base classes of
MASCOM.

The field manager shown in figure 4 is identified

with a cell; however, the functionality of the Field
Manager could be associated with an instruction stream if
the cell does not have any memory addressing
capabilities.

Field

Field Manager Field ALU

Cell

1

n 1

1

n

1

Figure 4: MASCOM cell aggregation diagram.

Each cell also has a field ALU class capable of

performing basic arithmetic and logical operations on
fields. The functionality of the field ALU class is not

specified to allow for different types of processing
elements to be "plugged-in" the MASC model. The
cardinality of to cell to a Field ALU is 1:1. The field
ALU can be implemented as a singleton pattern to reflect
that when a parallel model of computation (or
implementation of a model) is supporting virtual
parallelism, there are fewer physical processing elements
than data to be processed. As illustrated in figure 5,
allowing a virtual cell manager class to maintain a
collection of field managers supports virtual parallelism.

Field Manger

Fields

Field Manger

Fields

Field Manger

Fields

Virtual
Cell

Manager
Field ALU

Figure 5: MASCOM Virtual cell organization.

A MASCOM instruction stream class has the

same basic components and functionality of a MASC cell;
i.e. it has the capability of performing computations on
local (scalar) fields and communicates with other
instruction streams. Since instruction streams must also
be able to broadcast instructions to its partition of cells,
and perform reductions from a partition of cells.
Therefore, it is natural for the properties and
functionalities of the instruction stream class to be derived
from a cell class. Since the properties of an instruction
stream can be derived from a cell, it is natural for an
instruction stream to inherit the properties and
functionality of a cell and this is illustrated in figure 6.

Cell

Instruction Stream

Figure 6: MASCOM Instruction stream / cell
inheritance.

An interconnection network class is a class used
for communication between cells and/or instruction
streams. This is an abstract base class to allow for
different interconnection network class implementations
to be plug-in compatible with the existing MASC
architecture. Thus, it will be possible to design and
specify different types of networks used in MASC for
different deployments of the model. For example, the cell
network could be implemented using a grid mesh
network, the broadcast reduction network could be
implemented using a bus based network, while the
instruction stream network could be implemented as a
type of intelligent shared memory with basic network
functionality.

Now that the basic structural components are
defined, the MASCOM aggregation diagram of MASC is
illustrated in figure 7.

FieldField ManagerField ALU

Cell

Instruction Stream

Interconnection Network

Interconnection Network

Interconnection Network

FieldField ManagerField ALU

n

0

1

1

n

1

n

1

n
1

n
1

1

1

n

1

n

1

n

1

Instruction stream communication
network.
Ordinary network, bus, mesh, or dyanmic.
Intellegent shared memory.

Instruction streams have the same
architecture as cells.
Different operations
(i.e. broadcast and reduction operations)

Broadcast / reduction interconnection
network.
Connects instruction streams to cells.
Buss, tree, crossbar, dynamic, etc.
Time multiplexed
Frequency multiplexed

Cell interconnection network. (Cell only)
Static: bus, mesh
Dynamic: crossbar, omega, shuffle-exchange.

Figure 7: MASCOM class structure and
aggregation diagram.

The top Interconnection Network class is used for an
object to allow for Instruction Stream communication and
synchronization. The aggregation of an Instruction

Stream is identical to that of a Cell, each allowing for
Fields, Field Managers, and Field ALU classes. The
middle Interconnection Network object is used for
instruction stream broadcast and cell reductions. Finally
the lower Interconnection Network class is used for inter-
cell communication.

5 MASCOM Object Interactions and

Predictability

The MASCOM object interactions and behavioral
diagrams define the predictability in the MASC model
[5]. The MASC predictability parameters can be
illustrated using sequence diagrams; four are presented in
this paper. The Troute is a measurement of cell-to-cell
communication. Since the communication network and
protocol are not specified however, the sequence diagram
in figure 8 illustrates that the time Troute is bounded by the
completion of all sends from one cell to another cell
(sends to multiple cells are acknowledged by the *
symbol).

Cell1 Cell Network Cell*2

Send
Send*

Complete

Complete

Troute

Figure 8: MASCOM predictability parameter Troute
sequence diagram.

 The next predictability parameter in the MASC
model is Tbcast. This parameter measures the maximum
time for performing a broadcast of data or instructions
from an instruction stream to a cell or partition of the set
of cells. Again, figure 9 illustrates that the time Tbcast is
bounded by the completion of the broadcast to the

interconnection object and the completion of all sends
from the network to a partition of cells.

Broadcast /
Reduction
Network

Cell ArrayInstruction Stream

Create message
(inst / data)

Copy to network
object

Xmit Message to
Cell 1

Xmit Message to
Cell n

Complete

Tbcast Troute

Figure 9: MASCOM predictability parameter Tbcast
sequence diagram.

Another sequence diagram is for the MASC
predictability parameter Tlocal that measures the maximum
time a local cell operation requires. This is illustrated in
figure 10. The time Tlocal is bounded by the time from
when an instruction stream broadcasts the instruction to
the cell to the time the instruction sequence is complete.
Since not all instructions are arithmetic, the ALU request
and complete sequence is optional. This sequence
diagram also considers that an instruction stream may
broadcast a series of instructions to a cell to execute
instead of broadcasting each instruction individually.

A feature of parallel associative computing is to
perform an associative search and process all the
responding cells. This is a typical operation performed
often using a basic parallel selection programming
structure along with program iteration [10]. The basic
associative search-process-retrieve cycle is illustrated in
figure 11. Note that "Cell*" is used to illustrate that all
cells of an instruction stream are used. The instruction
stream would first instruct all cells to perform a parallel
search by broadcasting the datum and fields to search.
Once complete, the first responder cell is identified,
selected, and processed. This is repeated iteratively for
the remaining responding cells.

Instruction Stream Cell Field Manger Field ALU

Broadcast
Instructions

Complete

Decode

Field Request
Field Read

ALU Request

ALU Complete

Field Update

Repeat
Next

Instruction

Tlocal

Figure 10: MASCOM predictability parameter
Tlocal sequence diagram.

Instruction
Stream

Cell*

Broadcast Instruction
for Parallel Search

Perform Search
Set Responder Flag

Select First/Next
Responder

Repeat Until
All Responders
Are Processed

Execute
Instructions

Clear
Responder Flag

Broadcast
Instructions

Return
Result

Figure 11: MASC description of the associative
search-process-retrieve cycle.

6 Conclusions

This paper has presented an object oriented description
and software framework for the MASC model of parallel
computation. This framework provides a basis for many
types of hardware and software developers to
communicate and share ideas and concepts in an object
oriented manner. The MASC model is a model of parallel
computation that supports an associative style of parallel
computation that allows memory to be addressed by
content rather than by address. By using the various
MASCOM structural and behavioral diagrams and views,
the same model can be used for various disciplines of
parallel computing research such as parallel architecture,
parallel algorithm development, and implementations of
parallel runtime environments. The class and structural
diagrams of MASCOM provided the foundation classes
and class aggregations. The object interactions and
behavioral diagrams of MASCOM provided the
responsibilities and requirements of the classes in the
model. The object interactions led to the development of
various sequence diagrams for computational
predictability. The development of the MASC object
model was instrumental in identifying duplicate
responsibilities and classes among the various
components of MASCOM; such as clarifying that an
instruction stream and a cell have the same basic
functionality, which is not illustrated in the MASC
conceptual diagram.

The future of the MASC object model is currently
being used as a development reference for implementing
the MASC model using a cluster of workstations.
However implementing MASC on other parallel
computing hardware can use this same description as a
reference. The MASCOM description can also be used
as a common reference for comparing MASC with other
models of parallel computation.

7 References

[1] Grady Booch, James Rumbaugh, and Ivar Jacobson, The

Unified Modeling Language User Guide, Addison Wesley,
Reading, MA, 1999.

[2] Bruce Powel Douglass, Real-Time UML: Developing

Efficient Objects for Embedded Systems, Addison Wesley,
Reading, MA, 1998.

[3] Falkoff, A. D., “Algorithms for Parallel-Search Memories” ,

Journal of the ACM, Vol. 9, Issue 4 (October 1962), pp.
488-511.

[4] Todd Heywood and Claudia Leopold, "Models of
Parallelism", Abstract Machine Models for Highly Parallel
Computers, John R. Davy and Peter M. Dew, Eds., Oxford
Science Publications, Oxford, England, 1995, pp. 1-16.

[5] Jin, Mingxian, Johnnie Baker, and Kenneth Batcher,

“Timings for Associative Operations on the MASC
Model” , Proceedings of the 15th International Parallel and
Distributed Processing Symposium (Workshop in
Massively Parallel Processing), abstract on page 193, full
text on CDROM, April 2001.

[6] Potter, Jerry L., Associative Computing: A Programming

Paradigm for Massively Parallel Computers, Plennum
Press, New York, NY, 1992.

[7] Potter, Jerry, Johnnie Baker, Stephen Scott, Arvind Bansal,

Chokchai Leangsuksun, and Chandra Asthagiri, “ASC: An
Associative Computing Paradigm”, IEEE Computer, Nov.,
1994, pp. 19-25.

[8] Scherger, Michael C. Johnnie Baker, and Jerry Potter, “On

Using the UML to Describe the MASC Model of Parallel
Computation” , Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and
Applications (PDPTA 2000), Las Vegas, NV, June 2000,
pp. 2639-2645.

[9] Scherger, Michael C. , Johnnie Baker, and Jerry Potter,

“Using the UML to Describe the BSP Model of Parallel
Computation” , Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and
Applications (PDPTA 2002), Las Vegas, NV, June 2002,
pp. 578-583.

[10] Wu, Meiduo, Robert Walker, and Jerry Potter,

“ Implementing Associative Search and Responder
Resolution” , Proceedings of the 16th International Parallel
and Distributed Processing Symposium (Workshop in
Massively Parallel Processing), abstract on page 246, full
text on CDROM, April 2002.

