
Abstract
In battery operated mobile devices there is a growing
need for flexible high-performance architectures due to
the limited amount of available energy and the increasing
demand of processing power. Course grained
reconfigurable architectures could be the key to more
energy-efficient, yet programmable systems. In this paper
a course-grained reconfigurable architecture, called
MONTIUM1, is presented. Several mappings of commonly
used digital signal processing algorithms are shown to
demonstrate the flexibility of this architecture.

1 Introduction
Performance, flexibility and energy-efficiency are the

most important requirements for the architecture of a
future 3G/4G terminal. Conventional architectures tend to
emphasize on only one of these requirements. General-
purpose processors and digital signal processors are
flexible yet inefficient whereas application specific
integrated circuits are efficient yet inflexible. A
reconfigurable architecture can obtain a better balance
between flexibility and energy-efficiency. A
reconfigurable architecture is both flexible and efficient
for a particular algorithm domain. Since there are
typically multiple algorithm domains required for future
3G/4G terminals, the system architecture should be
heterogeneous. The energy-efficiency of the system can
be improved significantly by executing computational
kernels2 on algorithm domain specific hardware.

In our CHAMELEON project a heterogeneous system-
on-chip (SoC) is being designed [7]. The architectural
template for the CHAMELEON SoC is depicted in Figure 1.
It contains a general-purpose processor (i.e. an ARM
core), a fine-grained reconfigurable part (consisting out of
FPGA tiles) and a course-grained reconfigurable part (i.e.
MONTIUM tiles). The reconfigurable parts execute highly
regular computational kernels. The irregular parts of an

1 The MONTIUM is named after the mountain chameleon, which is indigenous to

Cameroon.
2 The inner loop of a computation, where most time is spent during execution.

algorithm run on the general-purpose processor. This
paper focuses on the course-grained reconfigurable part
and in particular on the architecture of the MONTIUM
processor tile. The target algorithm domain of the
MONTIUM comprises 16-bit digital signal processing
(DSP) algorithms that contain multiply accumulate
(MAC) operations such as FFT, FIR and linear
interpolation. However, the MONTIUM is not limited to
these algorithms, as will be shown in this paper.

Figure 1: CHAMELEON heterogeneous SoC

2 MONTIUM architecture
Figure 2 depicts a single MONTIUM processor tile. The

hardware organisation within a tile is very regular and
resembles a very long instruction word (VLIW)
architecture. The five identical arithmetic and logic units
(ALU1…ALU5) in a tile can exploit spatial concurrency
to enhance performance. This parallelism demands a very
high memory bandwidth, which is obtained by having 10
local memories (M01…M10) in parallel. The small local
memories are also motivated by the locality of reference
principle. The ALU input registers provide an even more
local level of storage. Locality of reference is one of the
guiding principles applied to obtain energy-efficiency in
the MONTIUM. A vertical segment that contains one ALU
together with its associated input register files, a part of
the interconnect and two local memories is called a
processing part (PP). The five processing parts together
are called the processing part array (PPA). A relatively
simple sequencer controls the entire PPA. The
communication and configuration unit (CCU) implements

Mapping of DSP Algorithms on the MONTIUM Architecture

Paul M. Heysters, Gerard J.M. Smit
University of Twente, Department EEMCS,

PO Box 217, 7500 AE, Enschede, The Netherlands
{heysters, smit}@cs.utwente.nl

the interface with the world outside the tile. The
MONTIUM has a datapath width of 16-bits and supports
both integer and fixed-point arithmetic.

Each local SRAM is 16-bit wide and has a depth of
512 positions, which adds up to a storage capacity of 8
Kbit per local memory. A memory has only a single
address port that is used for both reading and writing. A
reconfigurable address generation unit (AGU)
accompanies each memory. The AGU contains an address
register that can be modified using base and modify
registers. A mask register is also provided, which can be
used to implement cyclic buffers (with a length that is a
power of two). It is also possible to use the memory as a
lookup table for complicated functions that cannot be
calculated using an ALU, such as sinus or division (with
one constant). A memory can be used for both integer and
fixed-point lookups.

The interconnect provides flexible routing within a tile.
The configuration of the interconnect can change every
clock cycle. There are ten busses that are used for inter-
processing part communication. These busses are called
global busses. Note that the span of global busses is only
the PPA within a single tile. The CCU is also connected
to the global busses. The CCU uses the global busses to
access the local memories and to handle data in streaming
algorithms. Communication within a PP uses the more
energy-efficient local busses.

A single ALU has four 16-bit inputs. Each input has a
private input register file that can store up to four
operands. The input register file cannot be bypassed, i.e.
an operand is always read from an input register. Input
registers can be written by various sources via a flexible
interconnect. An ALU has two 16-bit outputs, which are
connected to the interconnect. The ALU is entirely
combinatorial and consequentially there are no pipeline
registers within the ALU.

The diagram of the MONTIUM ALU in Figure 3
identifies two different levels in the ALU. Level 1
contains four function units. A function unit implements
the general arithmetic and logic operations that are
available in languages like C (except multiplication and
division). Level 2 contains the MAC unit and is optimised
for algorithms such as FFT and FIR. Levels can be
bypassed (in software) when they are not needed. If it is
known that a level is never used in the aimed algorithm

domain, then a MONTIUM can be made in which an entire
level is removed. For example, if the algorithms domain
is limited to FFT and FIR filters only, then level 1 is not
used and a MONTIUM realisation with only level 2 will
suffice. The level interface has been designed in such a
way that a level can be left out easily. It is in principle
also possible to replace a level or to insert a new one. The
exact organisation of the ALU should be optimised for the
aimed algorithm domain. The current level 1 of the
MONTIUM ALU is rather general purpose, because we did
not want to restrict the algorithm domain of our
experimental processor too much.

Neighbouring ALUs can also communicate directly on
level 2. The West-output of an ALU connects to the East-
input of the ALU neighbouring on the left (the West-
output of the leftmost ALU is not connected and the East-
input of the rightmost ALU is always zero). The 32-bit
wide East-West connection makes it possible to
accumulate the MAC result of the right neighbour to the
multiplier result (note that this is also a MAC operation).
This is particularly useful when performing a complex
multiplication, or when adding a large amount of numbers
(up to 20 in one clock cycle). The East-West connection
does not introduce a delay or pipeline, as it is not
registered.

The implementation of the MONTIUM is still ongoing
work. A prototype of the predecessor of the MONTIUM,
the field programmable function array (FPFA) [5] was
implemented. The architecture of the FPFA is virtually
similar to the architecture of the MONTIUM. Key
differences are that the datapath of the FPFA is 20-bit
wide and that the local memories have a depth of only
256 20-bit words. Also, the control structure of the FPFA
offers less flexibility in comparison with the MONTIUM. A
single FPFA tile was specified in VHDL. The FPFA was
implemented on an FPGA in order to verify the
functionality. One FPFA tile fits in a Xilinx Virtex
XCV1000 FPGA. The Virtex can run at least at 6.5 MHz.

Figure 2: MONTIUM processor tile

Figure 3: MONTIUM ALU

An ASIC implementation of one FPFA tile in CMOS
���� P�LV�SUHGLFWHG�WR�KDYH�DQ�DUHD�RI����PP2 and to run
at least at 23MHz. In this technology we can have
approximately 20 FPFA tiles in the same area as an
embedded PowerPC. The clock speeds might look a bit
disappointing at first, but the FPFA can do an impressive
amount of work in just one clock cycle. Also, the VHDL
specification of the FPFA design was not optimised in
any way.

The availability of high-level design entry tooling is
critical for the viability of any reconfigurable architecture.
The architecture of the MONTIUM has been kept simple
and regular in order to bound the complexity of a
compiler. A compiler for the MONTIUM is currently being
implemented. Until now, the mapping of algorithms has
been done by hand.

3 Typical MONTIUM algorithms
In this section the mapping of several widely used DSP

algorithms on the MONTIUM datapath is presented. The
mapping of a standard algorithm on the standard
MONTIUM tile demonstrates the generality of the
architecture or reveals possible problems and
shortcomings. Mappings of the following algorithms are
discussed: correlation, finite impulse response (FIR)
filters, matrix and vector multiplication, Max-Log-MAP
decoding, 8x8 point Discrete Cosine Transform (DCT)
and Fast Fourier Transform (FFT).

3.1 Correlation
Correlation is a frequent operation in UMTS (universal

mobile telecommunications service) receivers [1]. The
input signal (S) is correlated with a known pseudo noise
code (PN-code) sequence (PN). The length of the PN-
code is equal to the spreading factor (SF). In UMTS
receivers (i.e. a rake receiver) both the directly
transmitted signal and several reflections of the signal are
used. As a consequence, correlations with delayed
versions of the input signal are also needed. Correlation is
similar to a FIR filter with coefficients that have a value
of +1 or –1. In pseudo code the correlation algorithm is
expressed as follows:

 for (i=1; i<SF; i++) {
 cor = cor + S[i+∆]*PN[i]};

In this algorithm ∆ denotes the delay of the input

signal for a particular correlation. A MONTIUM tile can
execute 5 correlations simultaneously using two clock-
cycles per sample. The basic operation for the correlation
can be done in two steps:

1. In the odd clock cycles the sample data (S[i]) is
written into five local memories and the PN-code
(PN) is stored in an ALU input register. At the
same time (except for the first ∆ iterations) the
five ALUs calculate five MAC operations.

2. In the even clock cycles the (delayed) input

sample (S[i+∆]) is moved from the memories
into the ALU input registers. A memory provides
a ∆-delayed version of the input signal by using
∆ as an offset in the memory address.

Crossbar-switch

level 2

ALU1: step 1
write sample to MEM

sample

PN COR

MEM

S

ALU1: step 2
read delayed version

PN-code

PN COR

MEM

S

Figure 4: Correlation

Figure 4 shows the two steps for ALU 1. Some

remarks on this mapping:

1. Steps 1 and 2 cannot be combined since the same
memory cannot be read and written (on different
addresses) in the same clock cycle.

2. Due to the local memory size of 512 entries, the

maximum delay ∆ can be at most 512/sample-
frequency.

3. For clarity in this mapping only 5 memories are

used. The ALUs are computing only during step
1. An optimised mapping that uses all 10
memories and computes a MAC operation every
clock cycle is also possible. In this way, 10
correlations can be computed using 2 clock-
cycles per sample.

3.2 Finite-impulse response filter
The finite impulse response filter (FIR) is a frequently

used algorithm in digital signal processing applications.
Figure 5 shows two implementations of a 4-tap FIR filter:
the direct form and the transposed form. Each tap contains
a multiplication, an addition and a delay. As shown in
Figure 5, the direct form FIR filter uses three inputs and
two outputs for every tap. The transposed form FIR filter
uses three inputs and one output. However, in the latter
case, the input is routed to all the taps.

u u

�

u

�

u

�

In

h3 h2 h1 h0

Out

Direct form

u u

�

u

�

In

h3 h2 h1 h0

Out

u

�

Transposed form
Figure 5: 4-tap FIR filter

5-tap FIR filter

Figure 6 shows a straightforward mapping of a five-tap
transposed for FIR filter onto one MONTIUM tile. Once the
FIR filter is started, every clock cycle an additional ALU
is used, until all five ALUs are in use. Thus, after a start-
up delay of five clock cycles, every subsequent clock
cycle returns a result. This implementation shows that
every clock cycle 5 MACs are computed and that the
overhead is negligible. This FIR filter can be used in a
streaming mode as well as in block mode. In streaming
mode the CCU provides a new sample on a bus every
clock cycle. Similarly one result value has to be read from
a bus in every clock cycle. In block mode the CCU first
writes a block of input samples to one or more memories.
Subsequently, the filter computation reads the samples
from the memory and writes the results back to another
memory. Finally, the results are read by the CCU and
forwarded to another tile. Whether streaming or block
mode is used depends on the (delay) requirements of the
application.

1 2 3 4

Input sample

h4 h3 h0 h2 h1

0

5

Crossbar-switch

level 2

result

Figure 6: Five-tap finite-impulse response filter

n-tap FIR filter (using registers)

If more than 5 taps are needed, the mapping of the
transposed form FIR filter shown above can be time
multiplexed. The intermediate results and the filter
coefficients are stored in the registers. Since the number
of registers is limited, the maximum number of taps that
can be implemented in this way is also limited. Each
processing part has 16 registers. The input sample has to
be stored in one register, so there are 15 registers left for

the filter coefficients and intermediate results. Each
additional coefficient that is computed by a particular
ALU also requires an additional register for an
intermediate result. So, the registers in each processing
part can store up to 7 coefficients and 7 intermediate
results. In this manner, the processing part array can
compute a FIR filter of up to 7x5=35 taps. A 35-tap FIR
filter has a delay of 7 clock cycles. If this delay is not
acceptable the entire filter operation has to be partitioned
over more tiles.

n-tap FIR filter (using memories)

FIR filters with more than 35 taps can be implemented
by storing the delayed sample values and filter
coefficients in the local memories. In this mapping the
direct form of the FIR filter is used. The left memory of
each processing part (PP) contains one-fifth of the
(delayed) input samples and the right memory one-fifth of
the filter coefficients. An n-taps filter is divided into 5
equal parts. Each PP computes the partial sum of n/5 taps
of the filter (see Figure 7). It takes one clock cycle to load
the registers and n/5 clock cycles are needed to compute
the five partial sums in the five PPs. The five partial sums
have to be added together to produce the final output.
This requires another three clock cycles. However,
loading the registers at the beginning of the partial sum
calculation and the computation of the final output can
overlap. In general the delay of a sample is n/5+2 clock
cycles. A new input sample “streams” into the left
memory of PP1 and overwrites the oldest sample in this
memory. The oldest sample in the left memory of PP2 is
replaced by the sample that is still in an input register of
PP1 (this is the sample that was removed from the left
memory in PP1). In this way, the oldest sample of every
memory is shifted to the right. This memory shift
operation is also done in parallel with the computation of
the final output.

For the memory addressing it is required that n/5 is a
power of two. This can easily be achieved by adding
coefficients of value zero to a FIR filter. A FIR filter with
at most 5x512= 2560 taps and a delay of 512+2=514
clock cycles can be implemented. Some variants are also
possible; for example: the five PPs can also be used to
compute five 512-tap FIR filters (each with a delay of 512
clock cycles).

ALU1: step 1..n/5

C SUM

MEM
C

S

MEM
S

Figure 7: Mapping of n-tap filter using memories

3.3 Matrix/matrix multiplication and
matrix/vector multiplication

A single MONTIUM tile can compute a 64×64 element
matrix A[1..64;1..64] times a 64 element vector B[1..64].
The matrix is stored in the 8 memories of four PPs. The
vector B[1..64] and the result C[1..64] (also a 64 element
vector) is stored in the remaining two memories. Four PPs
compute the MACs for the result. For each element of the
result 64 MACs have to be computed. So, each element
requires 64/4 = 16 clock cycles. The total execution time
of a 64×64 matrix times a 64 element vector is
16x64=1024 clock cycles. The same mapping can be used
for both block mode and streaming mode. In streaming
mode a new B element has to be presented every 16 clock
cycles. At the same time a new C element will be
available. Note that the maximum size of the matrix is
determined by the size of the local memories. Two 32×32
matrices can be multiplied in 8x32x32 = 8192 clock
cycles.

3.4 Max-Log MAP algorithm
In [6] the SISO Max-Log-MAP algorithm that can be

used for (UMTS) turbo decoding is mapped onto the
FPFA/MONTIUM datapath. This algorithm only uses level
1 of the ALU. Calculation of the forward state metric is of
O(2m) clock cycles. Calculation of the backward state
metric and the soft output is of O(7m) clock cycles. The
total execution time for the Max-Log-MAP algorithm on
a single Montium tile is approximately 9m clock cycles.
The Montium memory depth of 512 positions limits the
maximum block size m to 510 (the forward state metric
requires m+1 positions and the initialisation of the
backward state metric requires one more position).
However, Dielissen and Huisken [3] suggested a way to
circumvent this memory restriction, at the expense of
using more tiles. They show that it is feasible to divide the
input block into smaller portions of e.g. 510 bits. In this
way larger block sizes can be handled and more work can
be done in parallel. This approach can also be used to
speed up the algorithm.

3.5 8u8 point DCT algorithm
An 8×8 point discrete cosine transform (DCT) can be

computed by eight iterations of an 8-point 1d-DCT
algorithm. We used the fixed-point 1d-DCT
implementation from [4]. A control dataflow graph
(CDFG) was (automatically) generated from the
unmodified C code. This CDFG was (manually) mapped
onto the MONTIUM architecture. This algorithm comprises
a mixture of multiplications, additions, subtractions and
shift operations. Consequently, both level 1 and level 2
are used. The DCT algorithm is not as regular as the other
algorithms discussed in this paper and needs all the
flexibility of the ALUs. The 8-point 1d-DCT can be

executed on the MONTIUM architecture in 6 clock cycles.
The complete 8×8 DCT requires 8x6= 48 clock cycles.

3.6 Fast Fourier Transform
The Fourier transform enables the conversion of

signals from the time domain to the frequency domain
(and vice versa). For digital signal processing, the
Discrete Fourier Transform (DFT) is of particular interest.
The Fast Fourier Transform (FFT) can be used to
calculate a DFT efficiently [2]. The FFT recursively
divides a DFT into smaller DFTs. Eventually only basic
DFTs remain. These DFTs have a number of inputs that is
equal to the radix of the FFT. This is illustrated in the left
(“bit reversal”) part of Figure 8 for a radix 2 FFT with 8
input signals.

The resulting basic DFTs can be calculated by a
structure called a butterfly. The butterfly is the basic
element of a FFT. An n-point FFT (in which n is a power
of 2) requires (n/2)log2(n) butterfly operations.

Figure 9 depicts the radix 2 butterfly; a and b are
complex inputs and A and B are complex outputs. W is a
complex constant called the twiddle factor. The radix 2
butterfly consists of a complex multiplication, a complex
addition and a complex subtraction.

The FFT butterfly depicted in Figure 9 can be written
as equations Eq. 1 and Eq. 2. A hardware algorithm for
the radix 2 FFT butterfly has six inputs (are, aim, bre, bim,
Wre, Wim) and four outputs (Are, Aim, Bre, Bim). Each input
is used two times. Three subtraction, four multiplication
and three addition operations are used.

� u

� A

B

a

b

W
Figure 9: The radix 2 FFT butterfly

Figure 8: Recursion of a radix 2 FFT with 8 inputs

))((()() imreimimreimimrereimre bWbWbWbWaa

bWaA

⋅+⋅+⋅−⋅++≡
⋅+=

Eq. 1

))((()() imreimimreimimrereimre bWbWbWbWaa

bWaB

⋅+⋅+⋅−⋅++≡
⋅−=

Eq. 2

)(imbWbWaA imrererere ⋅−⋅+= Eq. 3
)(imbWbWaB imrererere ⋅−⋅−= Eq. 4
)(rebWbWaA imimreimim ⋅+⋅+= Eq. 5
)(rebWbWaB imimreimim ⋅+⋅−= Eq. 6

Equations Eq. 1 and Eq. 2 can be rewritten to

equations Eq. 3, Eq. 4, Eq. 5 and Eq. 6. The latter
equations can be mapped to the MONTIUM ALU directly.
Figure 10 shows how the FFT butterfly can be calculated
on four MONTIUM ALUs. The FFT butterfly is calculated
in one clock cycle. There is only one clock cycle
overhead per stage, i.e. an n-point FFT is computed in
(n/2)(log2(n)+1) clock cycles. The loading of the registers
at the beginning of each stage causes the extra cycle. In
all subsequent cycles loading the data from memory,
storing the intermediate results and executing the
butterflies are done in parallel.

The computation of the FFT is very regular. The ALUs
need to execute only one instruction. The input register
files in a PP also need only one instruction, since always
the same input registers are loaded. (Two instructions are
needed for the input registers if, for energy-efficiency
reasons, we do not want to load the registers in the last
clock cycle of a stage.) The crossbar requires at most 8
instructions; an input value can be read from two possible
memories, a result can be written to two possible
memories and the read and write memories exchange
every stage. The address generation is also very regular.
This is accomplished by computing the butterflies within
a stage in a particular order. The memory addressing of
the twiddle factors is the most complicated and requires
11 different memory instructions for a 1024-point FFT. A
1024-point FFT is the largest FFT that can be computed
within one MONTIUM tile (a 1024-point FFT is computed
in 5130 clock cycles.). The maximum size is determined
by the size of the local memories.

Figure 10: The radix 2 FFT butterfly

4 Conclusion
In this paper the MONTIUM course-grained

reconfigurable architecture is outlined. Performance,
flexibility and energy-efficiency are the most important
design goals for the CHAMELEON heterogeneous SoC
architectural template. A high performance can be
obtained by the parallelism in a tiled architecture. The
design of the MONTIUM tile focuses on a trade-off
between flexibility and (energy-) efficiency. We believe
that the MONTIUM architecture is energy-efficient,
because the locality of reference principle is used
extensively. In this paper, however, the focus is on the
flexibility of the architecture. Mappings of a variety of
DSP algorithms onto the MONTIUM architecture were
presented. These mappings show the flexibility of the
MONTIUM architecture.

Acknowledgements
This research is supported by PROGRESS, the

embedded systems research program of the Dutch
organisation for Scientific Research NWO, the Dutch
Ministry of Economic Affairs and the Technology
Foundation STW.

References
[1] 3GPP TSG RAN WG1: “TS 25.212 Multiplexing and

Channel Coding (FDD) V3.1.1 (1999-12)”,
http://www.3GPP.org.

[2] Cooley J. W., Tukey J. W. : "An Algorithm For the
Machine Calculation of Complex Fourier Series",
Mathematics of Computation, Vol. 19, pages 297-301,
April 1965.

[3] Dielissen J., Huisken J.: “Implementation issues of 3rd
generation mobile communication Turbo decoding”,
Proceedings 21st symposium on information theory in the
Benelux, 2000.

[4] http://www.ee.ucla.edu/~schaum/ee201a/jpeg_c_fix/dct_8c
-source.html.

[5] Heysters P.M., Bouma H., et al.: “A Reconfigurable
Function Array Architecture for 3G and 4G Wireless
Terminals”, Proceedings of World Wireless Congress,
pages 399-404, San Francisco, USA, May 2002.

[6] Heysters P.M., Smit L.T., et al.: “Max-Log-MAP Mapping
on an FPFA”, Proceedings of Engineering of
Reconfigurable Systems and Algorithms, pages 90-96, Las
Vegas, USA, June 2002.

[7] Smit G.J.M., Havinga P.J.M., et al.: “Dynamic
Reconfiguration in Mobile Systems”, Proceedings of Field-
Programmable Logic and Applications, pages 171-181,
Montpellier, Fance, September 2002.

