
Abstract 
In battery operated mobile devices there is a growing 
need for flexible high-performance architectures due to 
the limited amount of available energy and the increasing 
demand of processing power. Course grained 
reconfigurable architectures could be the key to more 
energy-efficient, yet programmable systems. In this paper 
a course-grained reconfigurable architecture, called 
MONTIUM1, is presented. Several mappings of commonly 
used digital signal processing algorithms are shown to 
demonstrate the flexibility of this architecture. 
 

1 Introduction 
Performance, flexibility and energy-efficiency are the 

most important requirements for the architecture of a 
future 3G/4G terminal. Conventional architectures tend to 
emphasize on only one of these requirements. General-
purpose processors and digital signal processors are 
flexible yet inefficient whereas application specific 
integrated circuits are efficient yet inflexible. A 
reconfigurable architecture can obtain a better balance 
between flexibility and energy-efficiency. A 
reconfigurable architecture is both flexible and efficient 
for a particular algorithm domain. Since there are 
typically multiple algorithm domains required for future 
3G/4G terminals, the system architecture should be 
heterogeneous. The energy-efficiency of the system can 
be improved significantly by executing computational 
kernels2 on algorithm domain specific hardware. 

In our CHAMELEON project a heterogeneous system-
on-chip (SoC) is being designed [7]. The architectural 
template for the CHAMELEON SoC is depicted in Figure 1. 
It contains a general-purpose processor (i.e. an ARM 
core), a fine-grained reconfigurable part (consisting out of 
FPGA tiles) and a course-grained reconfigurable part (i.e. 
MONTIUM tiles). The reconfigurable parts execute highly 
regular computational kernels. The irregular parts of an 

                                                 
1 The MONTIUM is named after the mountain chameleon, which is indigenous to 

Cameroon. 
2 The inner loop of a computation, where most time is spent during execution. 

algorithm run on the general-purpose processor. This 
paper focuses on the course-grained reconfigurable part 
and in particular on the architecture of the MONTIUM 
processor tile. The target algorithm domain of the 
MONTIUM comprises 16-bit digital signal processing 
(DSP) algorithms that contain multiply accumulate 
(MAC) operations such as FFT, FIR and linear 
interpolation. However, the MONTIUM is not limited to 
these algorithms, as will be shown in this paper.  
 

 

 
 

Figure 1: CHAMELEON heterogeneous SoC 

2 MONTIUM architecture 
Figure 2 depicts a single MONTIUM processor tile. The 

hardware organisation within a tile is very regular and 
resembles a very long instruction word (VLIW) 
architecture. The five identical arithmetic and logic units 
(ALU1…ALU5) in a tile can exploit spatial concurrency 
to enhance performance. This parallelism demands a very 
high memory bandwidth, which is obtained by having 10 
local memories (M01…M10) in parallel. The small local 
memories are also motivated by the locality of reference 
principle. The ALU input registers provide an even more 
local level of storage. Locality of reference is one of the 
guiding principles applied to obtain energy-efficiency in 
the MONTIUM. A vertical segment that contains one ALU 
together with its associated input register files, a part of 
the interconnect and two local memories is called a 
processing part (PP). The five processing parts together 
are called the processing part array (PPA). A relatively 
simple sequencer controls the entire PPA. The 
communication and configuration unit (CCU) implements 
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the interface with the world outside the tile. The 
MONTIUM has a datapath width of 16-bits and supports 
both integer and fixed-point arithmetic. 

Each local SRAM is 16-bit wide and has a depth of 
512 positions, which adds up to a storage capacity of 8 
Kbit per local memory. A memory has only a single 
address port that is used for both reading and writing. A 
reconfigurable address generation unit (AGU) 
accompanies each memory. The AGU contains an address 
register that can be modified using base and modify 
registers. A mask register is also provided, which can be 
used to implement cyclic buffers (with a length that is a 
power of two). It is also possible to use the memory as a 
lookup table for complicated functions that cannot be 
calculated using an ALU, such as sinus or division (with 
one constant). A memory can be used for both integer and 
fixed-point lookups.  

The interconnect provides flexible routing within a tile. 
The configuration of the interconnect can change every 
clock cycle. There are ten busses that are used for inter-
processing part communication. These busses are called 
global busses. Note that the span of global busses is only 
the PPA within a single tile. The CCU is also connected 
to the global busses. The CCU uses the global busses to 
access the local memories and to handle data in streaming 
algorithms. Communication within a PP uses the more 
energy-efficient local busses. 

A single ALU has four 16-bit inputs. Each input has a 
private input register file that can store up to four 
operands. The input register file cannot be bypassed, i.e. 
an operand is always read from an input register. Input 
registers can be written by various sources via a flexible 
interconnect. An ALU has two 16-bit outputs, which are 
connected to the interconnect. The ALU is entirely 
combinatorial and consequentially there are no pipeline 
registers within the ALU.  

The diagram of the MONTIUM ALU in Figure 3 
identifies two different levels in the ALU. Level 1 
contains four function units. A function unit implements 
the general arithmetic and logic operations that are 
available in languages like C (except multiplication and 
division). Level 2 contains the MAC unit and is optimised 
for algorithms such as FFT and FIR. Levels can be 
bypassed (in software) when they are not needed. If it is 
known that a level is never used in the aimed algorithm 

domain, then a MONTIUM can be made in which an entire 
level is removed. For example, if the algorithms domain 
is limited to FFT and FIR filters only, then level 1 is not 
used and a MONTIUM realisation with only level 2 will 
suffice. The level interface has been designed in such a 
way that a level can be left out easily. It is in principle 
also possible to replace a level or to insert a new one. The 
exact organisation of the ALU should be optimised for the 
aimed algorithm domain. The current level 1 of the 
MONTIUM ALU is rather general purpose, because we did 
not want to restrict the algorithm domain of our 
experimental processor too much.  

Neighbouring ALUs can also communicate directly on 
level 2. The West-output of an ALU connects to the East-
input of the ALU neighbouring on the left (the West-
output of the leftmost ALU is not connected and the East-
input of the rightmost ALU is always zero). The 32-bit 
wide East-West connection makes it possible to 
accumulate the MAC result of the right neighbour to the 
multiplier result (note that this is also a MAC operation). 
This is particularly useful when performing a complex 
multiplication, or when adding a large amount of numbers 
(up to 20 in one clock cycle). The East-West connection 
does not introduce a delay or pipeline, as it is not 
registered. 

The implementation of the MONTIUM is still ongoing 
work. A prototype of the predecessor of the MONTIUM, 
the field programmable function array (FPFA) [5] was 
implemented. The architecture of the FPFA is virtually 
similar to the architecture of the MONTIUM. Key 
differences are that the datapath of the FPFA is 20-bit 
wide and that the local memories have a depth of only 
256 20-bit words. Also, the control structure of the FPFA 
offers less flexibility in comparison with the MONTIUM. A 
single FPFA tile was specified in VHDL. The FPFA was 
implemented on an FPGA in order to verify the 
functionality. One FPFA tile fits in a Xilinx Virtex 
XCV1000 FPGA. The Virtex can run at least at 6.5 MHz. 

Figure 2: MONTIUM processor tile 

Figure 3: MONTIUM ALU 



An ASIC implementation of one FPFA tile in CMOS 
���� P�LV�SUHGLFWHG�WR�KDYH�DQ�DUHD�RI����PP2 and to run 
at least at 23MHz. In this technology we can have 
approximately 20 FPFA tiles in the same area as an 
embedded PowerPC. The clock speeds might look a bit 
disappointing at first, but the FPFA can do an impressive 
amount of work in just one clock cycle. Also, the VHDL 
specification of the FPFA design was not optimised in 
any way. 

The availability of high-level design entry tooling is 
critical for the viability of any reconfigurable architecture. 
The architecture of the MONTIUM has been kept simple 
and regular in order to bound the complexity of a 
compiler. A compiler for the MONTIUM is currently being 
implemented. Until now, the mapping of algorithms has 
been done by hand. 

3 Typical MONTIUM algorithms 
In this section the mapping of several widely used DSP 

algorithms on the MONTIUM datapath is presented. The 
mapping of a standard algorithm on the standard 
MONTIUM tile demonstrates the generality of the 
architecture or reveals possible problems and 
shortcomings. Mappings of the following algorithms are 
discussed: correlation, finite impulse response (FIR) 
filters, matrix and vector multiplication, Max-Log-MAP 
decoding, 8x8 point Discrete Cosine Transform (DCT) 
and Fast Fourier Transform (FFT). 

3.1 Correlation 
Correlation is a frequent operation in UMTS (universal 

mobile telecommunications service) receivers [1]. The 
input signal (S) is correlated with a known pseudo noise 
code (PN-code) sequence (PN). The length of the PN-
code is equal to the spreading factor (SF). In UMTS 
receivers (i.e. a rake receiver) both the directly 
transmitted signal and several reflections of the signal are 
used. As a consequence, correlations with delayed 
versions of the input signal are also needed. Correlation is 
similar to a FIR filter with coefficients that have a value 
of +1 or –1. In pseudo code the correlation algorithm is 
expressed as follows: 

 
  for (i=1; i<SF; i++) { 
       cor = cor + S[i+∆]*PN[i]}; 

 
In this algorithm ∆ denotes the delay of the input 

signal for a particular correlation. A MONTIUM tile can 
execute 5 correlations simultaneously using two clock-
cycles per sample. The basic operation for the correlation 
can be done in two steps: 
 
 
 

1. In the odd clock cycles the sample data (S[i]) is 
written into five local memories and the PN-code 
(PN) is stored in an ALU input register. At the 
same time (except for the first ∆ iterations) the 
five ALUs calculate five MAC operations.  

 
2. In the even clock cycles the (delayed) input 

sample (S[i+∆]) is moved from the memories 
into the ALU input registers. A memory provides 
a ∆-delayed version of the input signal by using 
∆ as an offset in the memory address.  
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Figure 4: Correlation 

 
Figure 4 shows the two steps for ALU 1. Some 

remarks on this mapping: 
 

1. Steps 1 and 2 cannot be combined since the same 
memory cannot be read and written (on different 
addresses) in the same clock cycle. 

 
2. Due to the local memory size of 512 entries, the 

maximum delay ∆ can be at most 512/sample-
frequency. 

 
3. For clarity in this mapping only 5 memories are 

used. The ALUs are computing only during step 
1. An optimised mapping that uses all 10 
memories and computes a MAC operation every 
clock cycle is also possible. In this way, 10 
correlations can be computed using 2 clock-
cycles per sample. 

3.2 Finite-impulse response filter 
The finite impulse response filter (FIR) is a frequently 

used algorithm in digital signal processing applications. 
Figure 5 shows two implementations of a 4-tap FIR filter: 
the direct form and the transposed form. Each tap contains 
a multiplication, an addition and a delay. As shown in 
Figure 5, the direct form FIR filter uses three inputs and 
two outputs for every tap. The transposed form FIR filter 
uses three inputs and one output. However, in the latter 
case, the input is routed to all the taps. 
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Figure 5: 4-tap FIR filter 

5-tap FIR filter 

Figure 6 shows a straightforward mapping of a five-tap 
transposed for FIR filter onto one MONTIUM tile. Once the 
FIR filter is started, every clock cycle an additional ALU 
is used, until all five ALUs are in use. Thus, after a start-
up delay of five clock cycles, every subsequent clock 
cycle returns a result. This implementation shows that 
every clock cycle 5 MACs are computed and that the 
overhead is negligible. This FIR filter can be used in a 
streaming mode as well as in block mode. In streaming 
mode the CCU provides a new sample on a bus every 
clock cycle. Similarly one result value has to be read from 
a bus in every clock cycle. In block mode the CCU first 
writes a block of input samples to one or more memories. 
Subsequently, the filter computation reads the samples 
from the memory and writes the results back to another 
memory. Finally, the results are read by the CCU and 
forwarded to another tile. Whether streaming or block 
mode is used depends on the (delay) requirements of the 
application. 
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Figure 6: Five-tap finite-impulse response filter 

n-tap FIR filter (using registers) 

If more than 5 taps are needed, the mapping of the 
transposed form FIR filter shown above can be time 
multiplexed. The intermediate results and the filter 
coefficients are stored in the registers. Since the number 
of registers is limited, the maximum number of taps that 
can be implemented in this way is also limited. Each 
processing part has 16 registers. The input sample has to 
be stored in one register, so there are 15 registers left for 

the filter coefficients and intermediate results. Each 
additional coefficient that is computed by a particular 
ALU also requires an additional register for an 
intermediate result. So, the registers in each processing 
part can store up to 7 coefficients and 7 intermediate 
results. In this manner, the processing part array can 
compute a FIR filter of up to 7x5=35 taps. A 35-tap FIR 
filter has a delay of 7 clock cycles. If this delay is not 
acceptable the entire filter operation has to be partitioned 
over more tiles. 

n-tap FIR filter (using memories) 

FIR filters with more than 35 taps can be implemented 
by storing the delayed sample values and filter 
coefficients in the local memories. In this mapping the 
direct form of the FIR filter is used. The left memory of 
each processing part (PP) contains one-fifth of the 
(delayed) input samples and the right memory one-fifth of 
the filter coefficients. An n-taps filter is divided into 5 
equal parts. Each PP computes the partial sum of n/5 taps 
of the filter (see Figure 7). It takes one clock cycle to load 
the registers and n/5 clock cycles are needed to compute 
the five partial sums in the five PPs. The five partial sums 
have to be added together to produce the final output. 
This requires another three clock cycles. However, 
loading the registers at the beginning of the partial sum 
calculation and the computation of the final output can 
overlap. In general the delay of a sample is n/5+2 clock 
cycles. A new input sample “streams” into the left 
memory of PP1 and overwrites the oldest sample in this 
memory. The oldest sample in the left memory of PP2 is 
replaced by the sample that is still in an input register of 
PP1 (this is the sample that was removed from the left 
memory in PP1). In this way, the oldest sample of every 
memory is shifted to the right. This memory shift 
operation is also done in parallel with the computation of 
the final output. 

For the memory addressing it is required that n/5 is a 
power of two. This can easily be achieved by adding 
coefficients of value zero to a FIR filter. A FIR filter with 
at most 5x512= 2560 taps and a delay of 512+2=514 
clock cycles can be implemented. Some variants are also 
possible; for example: the five PPs can also be used to 
compute five 512-tap FIR filters (each with a delay of 512 
clock cycles).  
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Figure 7: Mapping of n-tap filter using memories 



3.3 Matrix/matrix multiplication and 
matrix/vector multiplication 

A single MONTIUM tile can compute a 64×64 element 
matrix A[1..64;1..64] times a 64 element vector B[1..64]. 
The matrix is stored in the 8 memories of four PPs. The 
vector B[1..64] and the result C[1..64] (also a 64 element 
vector) is stored in the remaining two memories. Four PPs 
compute the MACs for the result. For each element of the 
result 64 MACs have to be computed. So, each element 
requires 64/4 = 16 clock cycles. The total execution time 
of a 64×64 matrix times a 64 element vector is 
16x64=1024 clock cycles. The same mapping can be used 
for both block mode and streaming mode. In streaming 
mode a new B element has to be presented every 16 clock 
cycles. At the same time a new C element will be 
available. Note that the maximum size of the matrix is 
determined by the size of the local memories. Two 32×32 
matrices can be multiplied in 8x32x32 = 8192 clock 
cycles. 

3.4 Max-Log MAP algorithm 
In [6] the SISO Max-Log-MAP algorithm that can be 

used for (UMTS) turbo decoding is mapped onto the 
FPFA/MONTIUM datapath. This algorithm only uses level 
1 of the ALU. Calculation of the forward state metric is of 
O(2m) clock cycles. Calculation of the backward state 
metric and the soft output is of O(7m) clock cycles. The 
total execution time for the Max-Log-MAP algorithm on 
a single Montium tile is approximately 9m clock cycles. 
The Montium memory depth of 512 positions limits the 
maximum block size m to 510 (the forward state metric 
requires m+1 positions and the initialisation of the 
backward state metric requires one more position). 
However, Dielissen and Huisken [3] suggested a way to 
circumvent this memory restriction, at the expense of 
using more tiles. They show that it is feasible to divide the 
input block into smaller portions of e.g. 510 bits. In this 
way larger block sizes can be handled and more work can 
be done in parallel. This approach can also be used to 
speed up the algorithm. 

3.5 8u8 point DCT algorithm 
An 8×8 point discrete cosine transform (DCT) can be 

computed by eight iterations of an 8-point 1d-DCT 
algorithm. We used the fixed-point 1d-DCT 
implementation from [4]. A control dataflow graph 
(CDFG) was (automatically) generated from the 
unmodified C code. This CDFG was (manually) mapped 
onto the MONTIUM architecture. This algorithm comprises 
a mixture of multiplications, additions, subtractions and 
shift operations. Consequently, both level 1 and level 2 
are used. The DCT algorithm is not as regular as the other 
algorithms discussed in this paper and needs all the 
flexibility of the ALUs. The 8-point 1d-DCT can be 

executed on the MONTIUM architecture in 6 clock cycles. 
The complete 8×8 DCT requires 8x6= 48 clock cycles. 

3.6 Fast Fourier Transform 
The Fourier transform enables the conversion of 

signals from the time domain to the frequency domain 
(and vice versa). For digital signal processing, the 
Discrete Fourier Transform (DFT) is of particular interest. 
The Fast Fourier Transform (FFT) can be used to 
calculate a DFT efficiently [2]. The FFT recursively 
divides a DFT into smaller DFTs. Eventually only basic 
DFTs remain. These DFTs have a number of inputs that is 
equal to the radix of the FFT. This is illustrated in the left 
(“bit reversal”) part of Figure 8 for a radix 2 FFT with 8 
input signals. 

The resulting basic DFTs can be calculated by a 
structure called a butterfly. The butterfly is the basic 
element of a FFT. An n-point FFT (in which n is a power 
of 2) requires (n/2)log2(n) butterfly operations. 

Figure 9 depicts the radix 2 butterfly; a and b are 
complex inputs and A and B are complex outputs. W is a 
complex constant called the twiddle factor. The radix 2 
butterfly consists of a complex multiplication, a complex 
addition and a complex subtraction.  

The FFT butterfly depicted in Figure 9 can be written 
as equations Eq. 1 and Eq. 2. A hardware algorithm for 
the radix 2 FFT butterfly has six inputs (are, aim, bre, bim, 
Wre, Wim) and four outputs (Are, Aim, Bre, Bim). Each input 
is used two times. Three subtraction, four multiplication 
and three addition operations are used. 
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Figure 9: The radix 2 FFT butterfly 

 
 

Figure 8: Recursion of a radix 2 FFT with 8 inputs 
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Eq. 1 

))((()( ) imreimimreimimrereimre bWbWbWbWaa

bWaB
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Eq. 2 

)( imbWbWaA imrererere ⋅−⋅+=  Eq. 3 
)( imbWbWaB imrererere ⋅−⋅−=  Eq. 4 
)( rebWbWaA imimreimim ⋅+⋅+=  Eq. 5 
)( rebWbWaB imimreimim ⋅+⋅−=  Eq. 6 

 
Equations Eq. 1 and Eq. 2 can be rewritten to 

equations Eq. 3, Eq. 4, Eq. 5 and Eq. 6. The latter 
equations can be mapped to the MONTIUM ALU directly. 
Figure 10 shows how the FFT butterfly can be calculated 
on four MONTIUM ALUs. The FFT butterfly is calculated 
in one clock cycle. There is only one clock cycle 
overhead per stage, i.e. an n-point FFT is computed in 
(n/2)(log2(n)+1) clock cycles. The loading of the registers 
at the beginning of each stage causes the extra cycle. In 
all subsequent cycles loading the data from memory, 
storing the intermediate results and executing the 
butterflies are done in parallel. 

The computation of the FFT is very regular. The ALUs 
need to execute only one instruction. The input register 
files in a PP also need only one instruction, since always 
the same input registers are loaded.  (Two instructions are 
needed for the input registers if, for energy-efficiency 
reasons, we do not want to load the registers in the last 
clock cycle of a stage.) The crossbar requires at most 8 
instructions; an input value can be read from two possible 
memories, a result can be written to two possible 
memories and the read and write memories exchange 
every stage. The address generation is also very regular. 
This is accomplished by computing the butterflies within 
a stage in a particular order. The memory addressing of 
the twiddle factors is the most complicated and requires 
11 different memory instructions for a 1024-point FFT. A 
1024-point FFT is the largest FFT that can be computed 
within one MONTIUM tile (a 1024-point FFT is computed 
in 5130 clock cycles.). The maximum size is determined 
by the size of the local memories.  

 

 
Figure 10: The radix 2 FFT butterfly 

4 Conclusion 
In this paper the MONTIUM course-grained 

reconfigurable architecture is outlined. Performance, 
flexibility and energy-efficiency are the most important 
design goals for the CHAMELEON heterogeneous SoC 
architectural template. A high performance can be 
obtained by the parallelism in a tiled architecture. The 
design of the MONTIUM tile focuses on a trade-off 
between flexibility and (energy-) efficiency. We believe 
that the MONTIUM architecture is energy-efficient, 
because the locality of reference principle is used 
extensively. In this paper, however, the focus is on the 
flexibility of the architecture. Mappings of a variety of 
DSP algorithms onto the MONTIUM architecture were 
presented. These mappings show the flexibility of the 
MONTIUM architecture. 
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