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Abstract: The object abstraction has long proven to 
be an effective foundation upon which to structure 
application codes; however, its application to Grid 
Computing contains many challenges related to the 
heterogeneous, dynamic, and cross-administrative-
domain nature of Grids. This paper contains an 
overview of the succession of three projects at the 
University of Virginia that provide object-based 
support for Grid computing: Legion, Legion-G, and 
OGSI.NET. Throughout the three projects, the 
overall goal has remained to reduce the barrier for 
entry to Grid applications developers, thereby 
enabling next-generation Grid applications beyond 
those that have been provided by today�s �heroic 
programmers�. The successes of each project with 
respect to this overall goal are discussed.  

1 Introduction 

Arguably, the most significant challenge 
facing applications developers for Grid Computing 
lies in the programming model. The Grid by 
definition attempts to collect disparate resources into 
a single logical platform by which to facilitate 
resource sharing and collaborations within and across 
virtual organizations. Applications executing on the 
Grid must be able to accommodate heterogeneity, 
satisfy cross-domain security requirements, and be 
fault-tolerant, opportunistic, and adaptive; 
Fundamentally, are new abstractions and 
infrastructure needed for the applications developers, 
or are the traditional ones that currently exist for 
desktop (as well as for high-performance computing) 
sufficient? 

Since 1996 and the days of 
�metacomputing�, we have advocated the object-
based abstraction as the core upon which to build a 
Grid Computing infrastructure. Object-based design 
has long proven effective as a means by which to 
structure software according to sound fundamental 
designs, irrespective of Grids.  The challenge, of 
course, is how to leverage object-based design 
principles and build the necessary additions to 
accommodate the challenges of Grids. 

In this paper, we describe the progression of 
object-based support for Grid Computing that has 
resulted from our research at the University of 
Virginia. In Section 2, we describe the first project, 
Legion [5,6], which started from scratch to build an 
object-based Grid infrastructure. As the Legion 
software stabilized and hardened, and the user base 
grew, there was a desire to combine the features of 
Legion with the toolkit approach of Globus [3]; this 
merging is represented by Legion-G, which is 
roughly an applications-level port of Legion onto the 
Globus infrastructure. Section 3 details the goals, 
design, and successes of Legion-G. The goal of the 
third (and current) project is to apply the lessons 
learned with Legion and Legion-G to contribute to 
the emerging community-based Open Grid Services 
Architecture (OGSA) [4]. Section 4 describes the 
goals, specific problems being address, and the early 
successes of OGSI.NET, which is an attempt to 
synergize the .NET architecture from Microsoft with 
the Web-standards-based approach of OGSA. 
Throughout the three projects, the overall goal has 
remained to reduce the barrier for entry to Grid 
applications developers, thereby enabling next-
generation Grid applications beyond those that have 
been provided by today�s �heroic programmers�. The 
successes of each project with respect to this overall 
goal are discussed. 

2  Legion 

2.1 Motivation 
In the mid 1990s, it was becoming 

increasingly evident that emerging ubiquity in high-
speed networks unto itself was not going to provide 
the increase in productivity for the sciences that 
relied heavily on computers. Simply, people were 
still being forced to use telnet and ftp (and their more 
secure analogs over SSL) to utilize computing 
resources. This required end-users to manage 
information that was often idiosyncratic and 
unpredictably changing: on a per-machine basis, each 
user had to remember his/her account ID, the version 
of the operating system on the machine, the versions 



 

of the compiler and run-time support structure on the 
machine, the amount of his/her allocations, the policy 
on the use of scratch space on the machine, etc.    

The core design principle of Legion is that, 
in the face of the onrush of hardware, Grid 
computing (then known as metasystems) should not 
focus on stretching an existing paradigm, interacting 
autonomous hosts, into a regime for which it was not 
designed. Extending the model of autonomous hosts 
will result is a collection of partial solutions � some 
quite good in isolation, but lacking coherence and 
scalability � that make the development of even a 
single wide-area application demanding at best. 
Instead, a software infrastructure should hide the 
underlying physical infrastructure from users and 
from the vast majority of programmers, and enable 
inter-operability of components. The software should 
support construction of larger integrated components 
using existing components, provide a secure environ-
ment for both resource owners and users, and scale to 
millions of autonomous hosts. A virtual machine 
abstraction could likely provide such a set of 
abstractions. 

2.2 Description 

From the high-level user perspective, Legion 
provides both capability and capacity computing for 
high-performance application developers. For 
example, Legion contains support for parameter-
space studies, in which multiple independent jobs can 
be easily scheduled and executed by Legion in 
parallel. A typical use would be when an engineer is 
designing a particular product and then wants to 
perform multiple simulations but may not care where 
they execute. In this case, Legion could select 
machines (based on user-defined criteria), perform 
binary management (copying the executable binary to 
the selected machines), interact correctly with the 
selected machines (perhaps via the queuing system 
such as PBS or LSF installed on the machine), and 
transparently copy the output files back to the user's 
desktop machine.  

Legion creates the illusion of a single virtual 
machine that provides secure shared object and 
shared name spaces. Legion provides Operating 
System-like abstractions of the underlying hardware 
and provides the glue to couple diverse applications 
together. Unlike a conventional operating system that 
provides an abstraction of a single physical computer, 
Legion aggregates a large number of diverse 
computers running different operating systems into a 
single abstraction, thus vastly simplifying the task of 
writing applications in heterogeneous distributed 
systems.  

All system and application components in 
Legion are objects; the default implementation 
provided by the core developers can be overloaded 
and replaced by users, which facilitates rapid 
customization. Legion provides process management, 
inter-process communication, persistent storage, a 
file system, and security services. Legion supports 
PVM, MPI, C, Fortran (including an object-based 
parallel dialect), a parallel C++, Java, and the 
CORBA IDL. Legion is layered on top of host 
operating systems. From its inception Legion was 
designed to deal with tens of thousands of hosts and 
millions of objects�a capability lacking in other 
object-based distributed systems.  

At the core, Legion objects are logically 
address space-disjoint, active entities. Objects 
represent coarse-grained resources and entities such 
as users, hosts, storage elements, schedulers, 
metadata repositories, files, and directories. Each 
Legion object belongs to a class, and each class is 
itself a Legion object. The complete set of method 
signatures exported by an object defines its interface. 
Much of the Legion object model�s power comes 
from the role of Legion classes; much of what is 
usually considered system-level responsibility is 
delegated to user-level class objects. For instance, 
Legion classes are responsible for creating and 
locating their instances, and for selecting appropriate 
security and object placement policies. Legion 
objects may be active or inactive, and store their 
internal state on disk (either periodically or during 
deactivation).  Objects may be migrated simply by 
transferring this internal state to another host.  The 
object�s class then spawns a process that is 
instantiated with the migrated internal state.  

Legion objects are identified using a three-
level naming hierarchy.  At the highest level, objects 
are identified by user-defined text strings called 
context names. These user-level context names are 
mapped by a directory service called Context Space 
to system-level, unique, location-independent binary 
names called Legion object identifiers (LOIDs). For 
direct object-to-object communication, LOIDs must 
be bound to low-level addresses that are meaningful 
within the context of the transport protocol that will 
be used for message passing. These low-level 
addresses are called Object Addresses and the process 
by which LOIDs are mapped to Object Addresses is 
called the Legion binding process.  An Object 
Address (OA) represents an arbitrary communication 
endpoint, such   as   a   TCP socket.  Context Space 
appears to the user as a Global tree-like directory and 
enables the ability of Legion programmers to refer to 
objects in a location-independent manner. An 
important capability for fault tolerance is provided by 
LOIDs and  Class  Objects: when  a �server� object is 



 

 
migrated, current clients are transparently redirected 
to the server�s new location via a new LOID-to-OA 
binding provided by the Class Object. 

The Legion run-time library (LRTL) is the 
cornerstone of the Legion Grid infrastructure. Legion 
object implementations are linked with LRTL, which 
provides the basic mechanisms to allow Legion 
objects to communicate with one another using 
Legion-compliant mechanisms. LRTL is intended to 
be used both by Legion-targeting compilers and by 
user-level code; thus, when we refer to LRTL's 
�users�, we mean both compiler writers and 
applications programmers.  In building LRTL, we 
were driven by several sub-goals and constraints.  
First, we wanted to abstract much of the complexity 
that is inherent to heterogeneous distributed 
computing.  For example, we wanted to alleviate the 
need for LRTL's users to deal directly with the 
varying data formats on different machine 
architectures.  More importantly, in accordance with 
the overall Legion philosophy that one size does not 
fit all, we wanted LRTL to become a useful software 
tool with which users could build different policies 
and algorithms along many different dimensions, 
without having to build an entirely different library.  
Thus, we built LRTL itself to be extensible and 
configurable. 

Methods on Legion objects are executed 
using a macro dataflow model. This model requires 
that any method invocation sent to an object include 
(in addition to its parameters) a description of where 
the results produced by the method should be 
forwarded.  For example, instead of being returned to 
the caller as in an RPC model, the result of a method 
invocation might be forwarded directly to some other 
object as a parameter to one of its methods. This 
dataflow model is called the Legion program graph. 
In a program graph, nodes represent method 
invocations on Legion objects and arcs represent data 
dependencies between the method invocations. 
Figure 1 shows a simple user program and the 
resultant data dependencies expressed as a program 

graph. Note that object A and object B can be 
executing on different machines of different 
architectures, in different parts of the world. The 
implementation of program graphs in Legion enables 
two important properties of the Legion system, (1) 
support for concurrency and parallel processing, and 
(2) support for graphs as first class objects. The latter 
aspect is important because some applications may 
require the specification of a computation in one 
object and the initiation of that computation in a 
different object.   

A more recent development of the Legion 
project is LegionFS [8], which is a peer-to-peer, 
Grid-enabled distributed file system based on Legion 
services. LegionFS is a specialization of the Context 
Space.  Unlike directories, ContextObjects may 
contain references to arbitrary objects such as hosts.  
LegionFS provides a flexible framework that can 
span the range of geographic environments, usage 
scenarios, and security requirements. The design of 
LegionFS is based on the premise that the underlying 
file systems upon which Legion executes are largely 
competent in the actual storage of data; the challenge 
is to provide a cross-architecture, cross-organization, 
and scalable file system that both exploits and 
expands the mechanisms provided by the 
heterogeneous, isolated data stores. The key features 
of LegionFS are: 

• Naming: The three-level naming system is 
used, enabling location-independent 
references to data objects and large 
repositories.  

• Security: Each component of the file system 
may exist independently, represented as an 
object.  Each object is its own security 
domain, controlled by fine-grained Access 
Control Lists (ACLs). The security 
mechanisms can be easily configured on a 
per-client basis to meet the dynamic 
requirements of the request. 

• Scalability: Individual files within a 
directory sub-tree can be distributed 
throughout the storage resources in an 
organization and I/O operations on the files 
can be conducted in a peer-to-peer manner, 
which is a natural consequence of the 
LegionFS object-based system. This holds 
also for the directory service and eliminates 
centralized components that can be 
performance bottlenecks.   

• Extensibility: Every object publishes an 
interface, which may be inherited, 
extended, and specialized to provide an 
object supporting additional semantics, 
alternate policies, or a novel 
implementation.  

ba 

A.op3 

To invoking object

A.op1 B.op3

Figure 1: Example Legion Program Graph 

Main() { 
  int a=10, b=15, x,y,z; 
  MyObject A,B; 
   
  x=A.op1(a); 
  y=B.op2(b); 
  z=A.op3(x,y); 
  printf(�%d\n�, z); 
} 



 

• Adaptability:  LegionFS maintains a rich set 
of system-wide metadata that may be used 
by objects to tailor their behavior to 
environmental changes.  

The core of LegionFS functionality is 
provided at the user-level by Legion�s distributed 
object-based system.  As such, the file and directory 
abstractions of LegionFS may be accessed 
independently of any kernel file system 
implementation through libraries that encapsulate 
Legion communication primitives.  This approach 
provides flexibility as interfaces are not required to 
conform to standard UNIX system calls. To support 
existing applications, a modified user-level NFS 
daemon, lnfsd, has been implemented to interpose an 
NFS kernel client and the objects constituting 
LegionFS.  This implementation provides legacy 
applications with seamless access to LegionFS.  

2.3 Assessment  

There are number of ways in which to gauge 
Legion�s impact in the community, broadly covering 
four areas. First, Legion has been deployed in a 
number of early Grid prototypes, most notably across 
the NASA information Power Grid, across the DoD 
Major Shared Resource Centers (MSRCs), and across 
NPACI resources. This deployment has been crucial 
in establishing a concrete dialogue of expectations 
and requirements between the computer science 
community and the end-users. Second, the origins of 
the Global Grid Forum (GGF) lie in the desire to 
standardize Grid computing �best practices�, 
protocols, and interfaces. Without the experiences of 
Legion users and Globus users largely motivating the 
creation of this organization, arguably, Grids would 
not be experiencing the successes they are today. 
Third, a large number of research papers utilizing the 
Legion infrastructure have been written and appear in 
the top HPC workshops, conferences, and journals 
(see http://legion.virginia.edu for a subset of these 
papers). Fourth, the Legion technology has been 
successfully transferred to private industry; the 
Boston-based Avaki bases its commercial grid 
offering on the Legion technology (although it has 
changed significantly from Legion�s roots). 

Perhaps the biggest challenge associated with 
Legion is its complexity. That is, the Legion goals 
were ambitious, requiring a sophisticated software 
solution. As a result, it took a relatively long amount 
of time to get the first version of Legion to the 
general public. At times, it also required a substantial 
knowledge to administer a Legion network. 
However, we believe the broader impacts of Legion 
outweigh these difficulties. 

3 Legion-G 

3.1 Motivation 
During the time that Legion was being 

hardened and being deployed at a number of sites, the 
Globus approach to Grid computing was also 
experiencing tremendous visibility and success. But 
deployers, Grid programmers, and end-users were 
finding that Legion and Globus were each uniquely 
geared for different problems. The combination of 
Legion and Globus would represent a truly state-of-
the-art Grid computing paradigm. The Legion user 
would benefit from a higher-performance cross-
machine MPI implementation available from the 
Globus toolkit (MPICH/G2), be able to utilize the 
years of development of the GRAM protocols, and in 
general gain all the benefits of an arguably more 
standards-based approach (such as the Globus 
security model, Grid Security Infrastructure, or GSI). 
The Globus user would gain access to LegionFS, be 
able to utilize Legion�s graphical tools for parameter-
space studies, use the Legion general-purpose 
scheduler, and in general have access to a Grid-
enabled object model. Both Legion users and Globus 
users would benefit from the immediate redundancy 
of certain Grid services (such as the information 
services). The Legion and Globus development teams 
would benefit from a closer working relationship, for 
example to more quickly foster the identification of 
Grid computing requirements (and subsequent, 
shared solutions). Clearly, the motivation existed to 
attempt to combine the Legion approach and the 
Globus approach into a unified Grid infrastructure 
solution. 

3.2 Description 

Legion-G is, in essence, Legion running on top 
of Globus. The design of Legion-G is shown in 
Figure 2, which shows that the Legion-G object 
model ultimately relies on the four key protocols or 
components of the Globus Toolkit: GSI, GRAM, 
GRIP, and GridFTP. Figure 2 shows the integration 
with other key Grid technologies such as the Network 
Weather Service (NWS) and the Storage Resource 
Broker (SRB). Also shown is the support for a 
particular user application, CHARMM [2]. 

Our initial work focused on the integration of 
LegionFS with the Globus toolkit. A key value added 
in our desire to utilize LegionFS was to capitalize on 
the flexibilities provided by location-independent 
naming. Globus is a powerful toolkit but lacks 
location transparency in its naming system, due to a 
reliance on URLs. In practical terms, this means that 
a Grid user (or software running on behalf of the 
user)   must know  precisely where  Grid  entities are. 



 

 
For example, if a particular user�s computation reads 
input from some file, that user is generally required 
to know not only the name of the file but the location 
as well. This requirement extends to all �Grid 
services� that may be engaged. The problem with 
URLs is that hardware reconfiguration, file system 
reorganization, and changes in organizational 
structure can often result in dangling links. All users 
of the World Wide Web have inevitably encountered 
this problem, resulting in a cryptic �document not 
found� error message that often leads to increased 
frustration. To a certain extent, organizationally, 
transparency can be achieved via virtual frontends, of 
which requests are then dynamically farmed out to 
back end servers. This is often the case for large 
corporations. However, this does not work if the 
entity moves across organizational boundaries, as can 
occur in Grid computing. 

In December, 2001, we demonstrated the 
ability of an MPI application running across the 
NASA Information Power Grid to access information 
contained in LegionFS. We modified a simple MPI 
code to use a Legion-G BasicFileObject (a 
component of LegionFS) as input. The simplified 
MPI code is shown in Figure 3. The code on the left 
represents a style of computation in which the input 
file is staged to the computing platform before the 
process is spawned. This is appropriate for small 
input files, and is supported by Legion and Globus. 
This style can be inefficient when files are large 
and/or only a portion of the file is to be read. In the 
right of Figure 3, the code has been modified to read 
its input from LegionFS. The boldface indicates 
changes to lines that exist in the original version, 
while the boldface-italicized represent lines that had 
to be added to the source code. Note that it is not 
strictly necessary to change the source code in order 
to  access  LegionFS�the  use  of  lnsfd  obviates the 
 

need to recompile. Modified source code is shown in 
this example for clarity of presentation.  

The following describes the nature of the 
experiment in more detail. A small Legion-G 
network was booted across two linux machines at the 
University of Virginia, deneb-uva and algol-uva.  A 
BasicFileObject was instantiated on algol-uva, and 
given the context name input.dat. (The code shown in 
the right of Figure 3 works because in Legion there is 
a �current working context� similar to the UNIX 
�current working directory�, facilitating the use of 
relative context names.) The code in the right of 
Figure 3 was compiled and executed using an 
unmodified Globus installation on two NASA IPG 
SGI machines at NASA Langley, whitcomb-nasa and 
rogallo-nasa. To allow the MPI jobs to access 
LegionFS, it was necessary to link against certain 
Legion libraries. A two-node MPI job was executed, 
with one of the MPI instances on rogallo-nasa and 
one on whitcomb-nasa. Each of the computations 
were designed to first read some data from the 
input.dat Legion-G object, perform some 
computation, exchange MPI messages, read more 
data from input.dat, perform more simple 
calculations, and then terminate. In the baseline case, 
the invocation of BasicFiles_open causes the 
operations of Figure 3 to take place. That is, the 
Legion Run-Time Library (LRTL) engages the 
appropriate Legion-G objects to determine the object 
address of the Legion-G BasicFileObject that 
encapsulates input.dat. The invocation of 
BasicFiles_read uses this binding and retrieves the 
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main () { 
  MPI_Init(); 
  MPI_Comm_rank(�); 
  MPI_Comm_init (�); 
  BasicFiles_init(); 
 

fp = BasicFiles_open( 
               �input.dat�, �r�); 

  BasicFiles_read(fp, buf,10);
  /* compute */ 
 
 MPI_Send(�); 
 MPI_Recv(�); 
 
/*  
 * read more data   
 * from file, compute  
 */ 
 BasicFiles_close(fp); 
 BasicFiles_done(); 
 MPI_Finalize(�); 
} 

main () { 
  MPI_Init(); 
  MPI_Comm_rank(�);
  MPI_Comm_init (�);
 
   

fp = fopen(�input.dat�, 
                  �r�); 

  read(fp, buf, 100); 
  /* compute */ 
 
  MPI_Send(�); 
  MPI_Recv(�); 
 
 /*  
   * read more data   

* from file, compute  
*/ 

 fclose(fp); 
 
MPI_Finalize(�); 
} 



 

data. Each MPI instance reads data from this Legion-
G object, computes, and then retrieves more 
information from this Legion-G BasicFileObject. The 
MPI program then terminates successfully.  

The baseline experiment illustrates the 
flexibility that LegionFS offers computations through 
its naming system and naming resolution 
infrastructure. In this case, the MPI program running 
across rogallo-nasa and whitcomb-nasa never 
realized that it was pulling its input from a non-local 
machine. Two other experiments were executed to 
test the functionality of the binding and re-binding 
mechanisms. In the first experiment, the 
BasicFileObject was migrated from algol-uva to 
deneb-uva after the first file access. It is possible to 
migrate a BasicFileObject at any point, perhaps 
because the resource on which it currently resides has 
suddenly become overloaded. Other reasons include 
moving closer to clients or moving to a more 
physically secure server. This experiment also 
completed successfully, with a minor delay due to the 
rebinding process. That is, after the first file access, 
both MPI computations (in their LRTLs) believe that, 
upon invoking the second file access, that the 
BasicFileObject is on algol-uva. A message is sent to 
the old address; after a timeout occurs (either there is 
nothing at that port on algol-uva or there is a new 
process that does not understand the message from 
the MPI client), the LRTL asks the BasicFileClass for 
the new location of the input.dat BasicFileObject. 
The BasicFileClass has this new address, because the 
BasicFileObject reported in upon (re-starting) on 
deneb-uva. Upon receiving this new binding, the MPI 
computations re-try their requests to read the data, 
this time successfully ending to a particular port on 
deneb-uva. In the second experiment, input.dat is 
first configured as a redundant server (the �Simple K-
Copy Class� functionality of Legion), with the 
primary copy on deneb-uva and the secondary copy 
on algol-uva. After the first access, we simulated the 
loss of a machine or of network connectivity but 
manually killing the process on algol-uva that was 
the encapsulation of input.dat. Again, upon the 
second access by each of the MPI jobs, the message 
fails to the server process on algol-uva, which causes 
the rebinding process. The MPI computations again 
experience a short delay but are ultimately able to 
complete their functionality. 

3.3 Assessment  

The integration of Legion and Globus (through 
focusing on LegionFS) in December 2001 
represented a major success of Legion-G and, we 
believe, was strongly indicative of the successes to 
come. However, as we were just beginning to show 

the value of the object model itself to the Globus 
community, the Open Grid Services Architecture 
(OGSA) was created [2]. OGSA was a major break-
through and quickly became the focus of the Grid 
community. After a careful and detailed analysis, it 
was determined that the planned �added value� of 
Legion-G could be attained through an 
implementation based on OGSA, so the resources of 
the Legion-G development were re-directed at an 
OGSA-compliant effort. In other words, the goals of 
Legion-G remain, but, instead of addressing these 
goals through a �Legion-port-onto-Globus�, we were 
instead compelled to create solutions for these 
goals/problems in an OGSA-compliant software 
setting, which Legion-G unto itself would not have 
achieved. Making Legion-G itself OGSA-compliant 
was deemed too difficult. 

4 OGSI.NET 

4.1 Motivation 
By many accounts, the Open Grid Services 
Architecture (OGSA), and more properly the Open 
Grid Services Infrastructure (OGSI), 
endorses/conveys an object-based Grid computing 
infrastructure, albeit in the terminology of Web 
Services (i.e., portTypes and �Grid Services�). 
However, there were two problems. First, the 
development model of OGSI itself was largely 
influenced by Java/AXIS/Tomcat, and it was not 
clear if the underlying heterogeneity of the Grid 
would be accommodated/embraced through the 
development work centered at ANL. Second, and 
more importantly, we believed that OGSA/OGSI 
represents a great step forward for the community, 
but the very difficult problems of scheduling, 
debugging, scalability, manageability and especially 
programming grid applications remain unsolved. We 
had made progress with Legion and then Legion-G, 
but there were many challenging issues remaining.  

4.2 Description 

OGSI.NET is an attempt to utilize the .NET 
Framework (and its support for Web Services) to 
provide Grid-specific tools and programming models. 
The overall goal is to integrate e-science with e-
business by merging OGSA with the Global XML 
Web Services Architecture (GXA) [1]. A key 
difference between OGSA and GXA is that OGSA is 
service-centric, and GXA is, instead, focused on the 
protocols on the wire that are necessary to facilitate a 
global computing infrastructure. A careful analysis 
shows that the two approaches are not necessarily 
consistent.  



 

  
The baseline capabilities of .NET, independent 

of OGSA, are impressive. .NET has multi-language 
support (e.g., C#, C++, COBOL, Fortran, Python, 
Scheme, Visual Basic, etc.), via mappings to the 
Common Language Runtime (CLR).  The CLR also 
contains sophisticated support for security 
enforcement, memory, process, and thread 
management, life-cycle management, strong type 
naming, cross-language exception handling, and 
dynamic binding. The Microsoft ADO.NET data 
classes support persistent data management and 
include SQL classes for manipulating persistent data 
stores through a standard SQL interface. The 
Microsoft ASP.NET classes support the development 
of Web-based applications and XML Web services. 
The Windows Forms classes support the 
development of Windows-based smart client 
applications. The plan is to provide client-side 
support for GSI in .NET, integrate OGSI security 
with .NET security, capitalize on the Visual Studio 
IDE in creating Grid applications, provide server-side 
support for GSI in .NET, and integrate with the .NET 
Compact Framework. 

We have recently prototyped this work and used 
it as the basis of a demonstration in the NPACI booth 
at Supercomputing 2002 in Baltimore. As shown in 
Figure 4, this represents an integration of many of the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

emerging approaches for Grid computing. Because 
domain scientists want easy access to high-end 
computing resources, we have constructed the 
necessary infrastructure by which a biologist can 
submit a CHARMM execution on NPACI resources 
via a PocketPC (shown at the left of the diagram). 
The user specifies the input URI, output URI, 
username, password, and �Sink URI�. (The �Sink 
URI� is a Web Service that receives notification 
events regarding the status of the CHARMM job.) 
Upon hitting �SUBMIT�, the Web Service on the 
upper right of the screen fetches a credential from the 
MyProxy server; this credential will ultimately be 
used to authenticate to the back-end computing 
resource (Centurion or Blue Horizon, although only 
Centurion is enabled at this time). After retrieving the 
credential (based on the username and password), the 
Web Service spawns a GlobusRun, which is actually 
a precedence-related pair of CHARMM tasks. These 
tasks are executed via DAGMan, which is a Condor-
G-enabled mechanism. In the demo in the NPACI 
booth, we had one person submit the CHARMM job 
from his/her PocketPC and had multiple people 
subscribe to the Notification Sink. That is, one person 
submitted, and multiple people received 
asynchronous notifications on their PocketPCs 
regarding the status of the job (�job submitted�, �job 
in queue�, �job transitioned to running�, �phase 1 
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complete�, �phase 2 complete�, etc.) The nature of 
the PocketPC is that the person could be mobile or in 
some meeting away from their desk and still receive 
important status updates. This is a new way to 
collaborate, as the scientists need not be co-located 
and instead could be receiving real-time notifications 
around the country or around the world.  If the user 
does not have a PocketPC handy (say that she is 
traveling home from work), then the job can even be 
configured to send a text message to their phone 
when the job is done!  

Note that we recognize that some scientists 
prefer the �traditional� look-and-feel of the Web 
Browser instead of the PocketPC platform. While the 
demos were meant to illustrate the secure �Grid 
plumbing� and experimental use of the PocketPC, we 
are currently working with researchers at The Scripps 
Research Institute (TSRI) to develop the appropriate 
look-and-feel (rendered through Internet Explorer) 
that CHARMM users want to see from their desktop. 
This front end will utilize the entire Grid plumbing 
(the right side of the slide) we have constructed for 
the NPACI booth demos. Of course, the user can 
submit via the Browser, and then receive 
notifications on their PocketPC, thus combining the 
best of stationary and mobile computing. 
  The next steps, specifically with regard to 
the software of Figure 4, are to create the Web-based 
front-end submission, integrate with more NPACI 
back-end resources, and address some of the security 
issues still unresolved (most notably, we are crossing 
between traditional Grid techniques and more 
cutting-edge Web Services techniques; there is not 
currently a mechanism by which authentication and 
authorization credentials easily translate between the 
two worlds.)  

4.3 Assessment  

The potential impact of OGSI.NET is substantial. We 
have shown a prototype that works, and we have 
even more recently demonstrated the .NET hosting 
environment at GlobusWorld 2003 (January, San 
Diego). Once the hosting environment stabilizes, we 
intend to focus on two other projects: [2] Continuous 
Scheduling in OGSI.NET, by which scheduling  
decisions for components on Grid computations are 
repeatedly and opportunistically rescheduled; and [3] 
the Grid Debugging Visualizer (GDV), by which 
system administrators and users can more easily 
determine the errors (and performance 
characteristics) of Grid computations. OGSI.NET is 
the groundbreaking new approach for Grid 
computing and provides the foundation on which to 
support Continuous Scheduling and GDV. The 

research leverages and greatly extends our 
experiences and philosophy of Legion and Legion-G. 

5 Conclusions 
Throughout our Grid research, we have 

attempted to provide the Grid system administrator, 
the Grid programmer, and the Grid end-user with 
highly-usable, efficient abstractions given the 
complexities of the operating environment. First with 
Legion and then with Legion-G, we believe that the 
object foundation has proven extremely effective for 
Grids. With OGSI.NET, we believe that we will 
continue to provide the infrastructure necessary for 
next-generation, complex software systems. 
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