

From Legion to Legion-G to OGSI.NET: Object-based Computing for Grids1

Marty Humphrey
Department of Computer Science

University of Virginia
Charlottesville, VA 22911

1 This work is supported in part by the National Science Foundation grants EIA-9974968, ANI-0222571, and ACI-
0203960; the NPACI Partnership; the NASA Information Power Grid program; and Microsoft Research.

Abstract: The object abstraction has long proven to
be an effective foundation upon which to structure
application codes; however, its application to Grid
Computing contains many challenges related to the
heterogeneous, dynamic, and cross-administrative-
domain nature of Grids. This paper contains an
overview of the succession of three projects at the
University of Virginia that provide object-based
support for Grid computing: Legion, Legion-G, and
OGSI.NET. Throughout the three projects, the
overall goal has remained to reduce the barrier for
entry to Grid applications developers, thereby
enabling next-generation Grid applications beyond
those that have been provided by today�s �heroic
programmers�. The successes of each project with
respect to this overall goal are discussed.

1 Introduction

Arguably, the most significant challenge
facing applications developers for Grid Computing
lies in the programming model. The Grid by
definition attempts to collect disparate resources into
a single logical platform by which to facilitate
resource sharing and collaborations within and across
virtual organizations. Applications executing on the
Grid must be able to accommodate heterogeneity,
satisfy cross-domain security requirements, and be
fault-tolerant, opportunistic, and adaptive;
Fundamentally, are new abstractions and
infrastructure needed for the applications developers,
or are the traditional ones that currently exist for
desktop (as well as for high-performance computing)
sufficient?

Since 1996 and the days of
�metacomputing�, we have advocated the object-
based abstraction as the core upon which to build a
Grid Computing infrastructure. Object-based design
has long proven effective as a means by which to
structure software according to sound fundamental
designs, irrespective of Grids. The challenge, of
course, is how to leverage object-based design
principles and build the necessary additions to
accommodate the challenges of Grids.

In this paper, we describe the progression of
object-based support for Grid Computing that has
resulted from our research at the University of
Virginia. In Section 2, we describe the first project,
Legion [5,6], which started from scratch to build an
object-based Grid infrastructure. As the Legion
software stabilized and hardened, and the user base
grew, there was a desire to combine the features of
Legion with the toolkit approach of Globus [3]; this
merging is represented by Legion-G, which is
roughly an applications-level port of Legion onto the
Globus infrastructure. Section 3 details the goals,
design, and successes of Legion-G. The goal of the
third (and current) project is to apply the lessons
learned with Legion and Legion-G to contribute to
the emerging community-based Open Grid Services
Architecture (OGSA) [4]. Section 4 describes the
goals, specific problems being address, and the early
successes of OGSI.NET, which is an attempt to
synergize the .NET architecture from Microsoft with
the Web-standards-based approach of OGSA.
Throughout the three projects, the overall goal has
remained to reduce the barrier for entry to Grid
applications developers, thereby enabling next-
generation Grid applications beyond those that have
been provided by today�s �heroic programmers�. The
successes of each project with respect to this overall
goal are discussed.

2 Legion

2.1 Motivation
In the mid 1990s, it was becoming

increasingly evident that emerging ubiquity in high-
speed networks unto itself was not going to provide
the increase in productivity for the sciences that
relied heavily on computers. Simply, people were
still being forced to use telnet and ftp (and their more
secure analogs over SSL) to utilize computing
resources. This required end-users to manage
information that was often idiosyncratic and
unpredictably changing: on a per-machine basis, each
user had to remember his/her account ID, the version
of the operating system on the machine, the versions

of the compiler and run-time support structure on the
machine, the amount of his/her allocations, the policy
on the use of scratch space on the machine, etc.

The core design principle of Legion is that,
in the face of the onrush of hardware, Grid
computing (then known as metasystems) should not
focus on stretching an existing paradigm, interacting
autonomous hosts, into a regime for which it was not
designed. Extending the model of autonomous hosts
will result is a collection of partial solutions � some
quite good in isolation, but lacking coherence and
scalability � that make the development of even a
single wide-area application demanding at best.
Instead, a software infrastructure should hide the
underlying physical infrastructure from users and
from the vast majority of programmers, and enable
inter-operability of components. The software should
support construction of larger integrated components
using existing components, provide a secure environ-
ment for both resource owners and users, and scale to
millions of autonomous hosts. A virtual machine
abstraction could likely provide such a set of
abstractions.

2.2 Description

From the high-level user perspective, Legion
provides both capability and capacity computing for
high-performance application developers. For
example, Legion contains support for parameter-
space studies, in which multiple independent jobs can
be easily scheduled and executed by Legion in
parallel. A typical use would be when an engineer is
designing a particular product and then wants to
perform multiple simulations but may not care where
they execute. In this case, Legion could select
machines (based on user-defined criteria), perform
binary management (copying the executable binary to
the selected machines), interact correctly with the
selected machines (perhaps via the queuing system
such as PBS or LSF installed on the machine), and
transparently copy the output files back to the user's
desktop machine.

Legion creates the illusion of a single virtual
machine that provides secure shared object and
shared name spaces. Legion provides Operating
System-like abstractions of the underlying hardware
and provides the glue to couple diverse applications
together. Unlike a conventional operating system that
provides an abstraction of a single physical computer,
Legion aggregates a large number of diverse
computers running different operating systems into a
single abstraction, thus vastly simplifying the task of
writing applications in heterogeneous distributed
systems.

All system and application components in
Legion are objects; the default implementation
provided by the core developers can be overloaded
and replaced by users, which facilitates rapid
customization. Legion provides process management,
inter-process communication, persistent storage, a
file system, and security services. Legion supports
PVM, MPI, C, Fortran (including an object-based
parallel dialect), a parallel C++, Java, and the
CORBA IDL. Legion is layered on top of host
operating systems. From its inception Legion was
designed to deal with tens of thousands of hosts and
millions of objects�a capability lacking in other
object-based distributed systems.

At the core, Legion objects are logically
address space-disjoint, active entities. Objects
represent coarse-grained resources and entities such
as users, hosts, storage elements, schedulers,
metadata repositories, files, and directories. Each
Legion object belongs to a class, and each class is
itself a Legion object. The complete set of method
signatures exported by an object defines its interface.
Much of the Legion object model�s power comes
from the role of Legion classes; much of what is
usually considered system-level responsibility is
delegated to user-level class objects. For instance,
Legion classes are responsible for creating and
locating their instances, and for selecting appropriate
security and object placement policies. Legion
objects may be active or inactive, and store their
internal state on disk (either periodically or during
deactivation). Objects may be migrated simply by
transferring this internal state to another host. The
object�s class then spawns a process that is
instantiated with the migrated internal state.

Legion objects are identified using a three-
level naming hierarchy. At the highest level, objects
are identified by user-defined text strings called
context names. These user-level context names are
mapped by a directory service called Context Space
to system-level, unique, location-independent binary
names called Legion object identifiers (LOIDs). For
direct object-to-object communication, LOIDs must
be bound to low-level addresses that are meaningful
within the context of the transport protocol that will
be used for message passing. These low-level
addresses are called Object Addresses and the process
by which LOIDs are mapped to Object Addresses is
called the Legion binding process. An Object
Address (OA) represents an arbitrary communication
endpoint, such as a TCP socket. Context Space
appears to the user as a Global tree-like directory and
enables the ability of Legion programmers to refer to
objects in a location-independent manner. An
important capability for fault tolerance is provided by
LOIDs and Class Objects: when a �server� object is

migrated, current clients are transparently redirected
to the server�s new location via a new LOID-to-OA
binding provided by the Class Object.

The Legion run-time library (LRTL) is the
cornerstone of the Legion Grid infrastructure. Legion
object implementations are linked with LRTL, which
provides the basic mechanisms to allow Legion
objects to communicate with one another using
Legion-compliant mechanisms. LRTL is intended to
be used both by Legion-targeting compilers and by
user-level code; thus, when we refer to LRTL's
�users�, we mean both compiler writers and
applications programmers. In building LRTL, we
were driven by several sub-goals and constraints.
First, we wanted to abstract much of the complexity
that is inherent to heterogeneous distributed
computing. For example, we wanted to alleviate the
need for LRTL's users to deal directly with the
varying data formats on different machine
architectures. More importantly, in accordance with
the overall Legion philosophy that one size does not
fit all, we wanted LRTL to become a useful software
tool with which users could build different policies
and algorithms along many different dimensions,
without having to build an entirely different library.
Thus, we built LRTL itself to be extensible and
configurable.

Methods on Legion objects are executed
using a macro dataflow model. This model requires
that any method invocation sent to an object include
(in addition to its parameters) a description of where
the results produced by the method should be
forwarded. For example, instead of being returned to
the caller as in an RPC model, the result of a method
invocation might be forwarded directly to some other
object as a parameter to one of its methods. This
dataflow model is called the Legion program graph.
In a program graph, nodes represent method
invocations on Legion objects and arcs represent data
dependencies between the method invocations.
Figure 1 shows a simple user program and the
resultant data dependencies expressed as a program

graph. Note that object A and object B can be
executing on different machines of different
architectures, in different parts of the world. The
implementation of program graphs in Legion enables
two important properties of the Legion system, (1)
support for concurrency and parallel processing, and
(2) support for graphs as first class objects. The latter
aspect is important because some applications may
require the specification of a computation in one
object and the initiation of that computation in a
different object.

A more recent development of the Legion
project is LegionFS [8], which is a peer-to-peer,
Grid-enabled distributed file system based on Legion
services. LegionFS is a specialization of the Context
Space. Unlike directories, ContextObjects may
contain references to arbitrary objects such as hosts.
LegionFS provides a flexible framework that can
span the range of geographic environments, usage
scenarios, and security requirements. The design of
LegionFS is based on the premise that the underlying
file systems upon which Legion executes are largely
competent in the actual storage of data; the challenge
is to provide a cross-architecture, cross-organization,
and scalable file system that both exploits and
expands the mechanisms provided by the
heterogeneous, isolated data stores. The key features
of LegionFS are:

• Naming: The three-level naming system is
used, enabling location-independent
references to data objects and large
repositories.

• Security: Each component of the file system
may exist independently, represented as an
object. Each object is its own security
domain, controlled by fine-grained Access
Control Lists (ACLs). The security
mechanisms can be easily configured on a
per-client basis to meet the dynamic
requirements of the request.

• Scalability: Individual files within a
directory sub-tree can be distributed
throughout the storage resources in an
organization and I/O operations on the files
can be conducted in a peer-to-peer manner,
which is a natural consequence of the
LegionFS object-based system. This holds
also for the directory service and eliminates
centralized components that can be
performance bottlenecks.

• Extensibility: Every object publishes an
interface, which may be inherited,
extended, and specialized to provide an
object supporting additional semantics,
alternate policies, or a novel
implementation.

ba

A.op3

To invoking object

A.op1 B.op3

Figure 1: Example Legion Program Graph

Main() {
 int a=10, b=15, x,y,z;
 MyObject A,B;

 x=A.op1(a);
 y=B.op2(b);
 z=A.op3(x,y);
 printf(�%d\n�, z);
}

• Adaptability: LegionFS maintains a rich set
of system-wide metadata that may be used
by objects to tailor their behavior to
environmental changes.

The core of LegionFS functionality is
provided at the user-level by Legion�s distributed
object-based system. As such, the file and directory
abstractions of LegionFS may be accessed
independently of any kernel file system
implementation through libraries that encapsulate
Legion communication primitives. This approach
provides flexibility as interfaces are not required to
conform to standard UNIX system calls. To support
existing applications, a modified user-level NFS
daemon, lnfsd, has been implemented to interpose an
NFS kernel client and the objects constituting
LegionFS. This implementation provides legacy
applications with seamless access to LegionFS.

2.3 Assessment

There are number of ways in which to gauge
Legion�s impact in the community, broadly covering
four areas. First, Legion has been deployed in a
number of early Grid prototypes, most notably across
the NASA information Power Grid, across the DoD
Major Shared Resource Centers (MSRCs), and across
NPACI resources. This deployment has been crucial
in establishing a concrete dialogue of expectations
and requirements between the computer science
community and the end-users. Second, the origins of
the Global Grid Forum (GGF) lie in the desire to
standardize Grid computing �best practices�,
protocols, and interfaces. Without the experiences of
Legion users and Globus users largely motivating the
creation of this organization, arguably, Grids would
not be experiencing the successes they are today.
Third, a large number of research papers utilizing the
Legion infrastructure have been written and appear in
the top HPC workshops, conferences, and journals
(see http://legion.virginia.edu for a subset of these
papers). Fourth, the Legion technology has been
successfully transferred to private industry; the
Boston-based Avaki bases its commercial grid
offering on the Legion technology (although it has
changed significantly from Legion�s roots).

Perhaps the biggest challenge associated with
Legion is its complexity. That is, the Legion goals
were ambitious, requiring a sophisticated software
solution. As a result, it took a relatively long amount
of time to get the first version of Legion to the
general public. At times, it also required a substantial
knowledge to administer a Legion network.
However, we believe the broader impacts of Legion
outweigh these difficulties.

3 Legion-G

3.1 Motivation
During the time that Legion was being

hardened and being deployed at a number of sites, the
Globus approach to Grid computing was also
experiencing tremendous visibility and success. But
deployers, Grid programmers, and end-users were
finding that Legion and Globus were each uniquely
geared for different problems. The combination of
Legion and Globus would represent a truly state-of-
the-art Grid computing paradigm. The Legion user
would benefit from a higher-performance cross-
machine MPI implementation available from the
Globus toolkit (MPICH/G2), be able to utilize the
years of development of the GRAM protocols, and in
general gain all the benefits of an arguably more
standards-based approach (such as the Globus
security model, Grid Security Infrastructure, or GSI).
The Globus user would gain access to LegionFS, be
able to utilize Legion�s graphical tools for parameter-
space studies, use the Legion general-purpose
scheduler, and in general have access to a Grid-
enabled object model. Both Legion users and Globus
users would benefit from the immediate redundancy
of certain Grid services (such as the information
services). The Legion and Globus development teams
would benefit from a closer working relationship, for
example to more quickly foster the identification of
Grid computing requirements (and subsequent,
shared solutions). Clearly, the motivation existed to
attempt to combine the Legion approach and the
Globus approach into a unified Grid infrastructure
solution.

3.2 Description

Legion-G is, in essence, Legion running on top
of Globus. The design of Legion-G is shown in
Figure 2, which shows that the Legion-G object
model ultimately relies on the four key protocols or
components of the Globus Toolkit: GSI, GRAM,
GRIP, and GridFTP. Figure 2 shows the integration
with other key Grid technologies such as the Network
Weather Service (NWS) and the Storage Resource
Broker (SRB). Also shown is the support for a
particular user application, CHARMM [2].

Our initial work focused on the integration of
LegionFS with the Globus toolkit. A key value added
in our desire to utilize LegionFS was to capitalize on
the flexibilities provided by location-independent
naming. Globus is a powerful toolkit but lacks
location transparency in its naming system, due to a
reliance on URLs. In practical terms, this means that
a Grid user (or software running on behalf of the
user) must know precisely where Grid entities are.

For example, if a particular user�s computation reads
input from some file, that user is generally required
to know not only the name of the file but the location
as well. This requirement extends to all �Grid
services� that may be engaged. The problem with
URLs is that hardware reconfiguration, file system
reorganization, and changes in organizational
structure can often result in dangling links. All users
of the World Wide Web have inevitably encountered
this problem, resulting in a cryptic �document not
found� error message that often leads to increased
frustration. To a certain extent, organizationally,
transparency can be achieved via virtual frontends, of
which requests are then dynamically farmed out to
back end servers. This is often the case for large
corporations. However, this does not work if the
entity moves across organizational boundaries, as can
occur in Grid computing.

In December, 2001, we demonstrated the
ability of an MPI application running across the
NASA Information Power Grid to access information
contained in LegionFS. We modified a simple MPI
code to use a Legion-G BasicFileObject (a
component of LegionFS) as input. The simplified
MPI code is shown in Figure 3. The code on the left
represents a style of computation in which the input
file is staged to the computing platform before the
process is spawned. This is appropriate for small
input files, and is supported by Legion and Globus.
This style can be inefficient when files are large
and/or only a portion of the file is to be read. In the
right of Figure 3, the code has been modified to read
its input from LegionFS. The boldface indicates
changes to lines that exist in the original version,
while the boldface-italicized represent lines that had
to be added to the source code. Note that it is not
strictly necessary to change the source code in order
to access LegionFS�the use of lnsfd obviates the

need to recompile. Modified source code is shown in
this example for clarity of presentation.

The following describes the nature of the
experiment in more detail. A small Legion-G
network was booted across two linux machines at the
University of Virginia, deneb-uva and algol-uva. A
BasicFileObject was instantiated on algol-uva, and
given the context name input.dat. (The code shown in
the right of Figure 3 works because in Legion there is
a �current working context� similar to the UNIX
�current working directory�, facilitating the use of
relative context names.) The code in the right of
Figure 3 was compiled and executed using an
unmodified Globus installation on two NASA IPG
SGI machines at NASA Langley, whitcomb-nasa and
rogallo-nasa. To allow the MPI jobs to access
LegionFS, it was necessary to link against certain
Legion libraries. A two-node MPI job was executed,
with one of the MPI instances on rogallo-nasa and
one on whitcomb-nasa. Each of the computations
were designed to first read some data from the
input.dat Legion-G object, perform some
computation, exchange MPI messages, read more
data from input.dat, perform more simple
calculations, and then terminate. In the baseline case,
the invocation of BasicFiles_open causes the
operations of Figure 3 to take place. That is, the
Legion Run-Time Library (LRTL) engages the
appropriate Legion-G objects to determine the object
address of the Legion-G BasicFileObject that
encapsulates input.dat. The invocation of
BasicFiles_read uses this binding and retrieves the

Legion-G: Grid-Enabled Object Model

GSI GRAM GRIP GridFTP

Security in and
across
Legion-G Objects

Legion-G Object
Instantiation

Information
Services for
Legion-G Objects

Integration
with LegionFS

LegionFSGUIs for
P-Space
Studies

SRB

NWS

Tools for Creating and
Invoking Grid

Services

Figure 2: Legion-G Architecture

CHARMM

original Legion-G version

Figure 3: MPI Code Modified to Read Input
from LegionFS

main () {
 MPI_Init();
 MPI_Comm_rank(�);
 MPI_Comm_init (�);
 BasicFiles_init();

fp = BasicFiles_open(
 �input.dat�, �r�);

 BasicFiles_read(fp, buf,10);
 /* compute */

 MPI_Send(�);
 MPI_Recv(�);

/*
 * read more data
 * from file, compute
 */
 BasicFiles_close(fp);
 BasicFiles_done();
 MPI_Finalize(�);
}

main () {
 MPI_Init();
 MPI_Comm_rank(�);
 MPI_Comm_init (�);

fp = fopen(�input.dat�,
 �r�);

 read(fp, buf, 100);
 /* compute */

 MPI_Send(�);
 MPI_Recv(�);

 /*
 * read more data

* from file, compute
*/

 fclose(fp);

MPI_Finalize(�);
}

data. Each MPI instance reads data from this Legion-
G object, computes, and then retrieves more
information from this Legion-G BasicFileObject. The
MPI program then terminates successfully.

The baseline experiment illustrates the
flexibility that LegionFS offers computations through
its naming system and naming resolution
infrastructure. In this case, the MPI program running
across rogallo-nasa and whitcomb-nasa never
realized that it was pulling its input from a non-local
machine. Two other experiments were executed to
test the functionality of the binding and re-binding
mechanisms. In the first experiment, the
BasicFileObject was migrated from algol-uva to
deneb-uva after the first file access. It is possible to
migrate a BasicFileObject at any point, perhaps
because the resource on which it currently resides has
suddenly become overloaded. Other reasons include
moving closer to clients or moving to a more
physically secure server. This experiment also
completed successfully, with a minor delay due to the
rebinding process. That is, after the first file access,
both MPI computations (in their LRTLs) believe that,
upon invoking the second file access, that the
BasicFileObject is on algol-uva. A message is sent to
the old address; after a timeout occurs (either there is
nothing at that port on algol-uva or there is a new
process that does not understand the message from
the MPI client), the LRTL asks the BasicFileClass for
the new location of the input.dat BasicFileObject.
The BasicFileClass has this new address, because the
BasicFileObject reported in upon (re-starting) on
deneb-uva. Upon receiving this new binding, the MPI
computations re-try their requests to read the data,
this time successfully ending to a particular port on
deneb-uva. In the second experiment, input.dat is
first configured as a redundant server (the �Simple K-
Copy Class� functionality of Legion), with the
primary copy on deneb-uva and the secondary copy
on algol-uva. After the first access, we simulated the
loss of a machine or of network connectivity but
manually killing the process on algol-uva that was
the encapsulation of input.dat. Again, upon the
second access by each of the MPI jobs, the message
fails to the server process on algol-uva, which causes
the rebinding process. The MPI computations again
experience a short delay but are ultimately able to
complete their functionality.

3.3 Assessment

The integration of Legion and Globus (through
focusing on LegionFS) in December 2001
represented a major success of Legion-G and, we
believe, was strongly indicative of the successes to
come. However, as we were just beginning to show

the value of the object model itself to the Globus
community, the Open Grid Services Architecture
(OGSA) was created [2]. OGSA was a major break-
through and quickly became the focus of the Grid
community. After a careful and detailed analysis, it
was determined that the planned �added value� of
Legion-G could be attained through an
implementation based on OGSA, so the resources of
the Legion-G development were re-directed at an
OGSA-compliant effort. In other words, the goals of
Legion-G remain, but, instead of addressing these
goals through a �Legion-port-onto-Globus�, we were
instead compelled to create solutions for these
goals/problems in an OGSA-compliant software
setting, which Legion-G unto itself would not have
achieved. Making Legion-G itself OGSA-compliant
was deemed too difficult.

4 OGSI.NET

4.1 Motivation
By many accounts, the Open Grid Services
Architecture (OGSA), and more properly the Open
Grid Services Infrastructure (OGSI),
endorses/conveys an object-based Grid computing
infrastructure, albeit in the terminology of Web
Services (i.e., portTypes and �Grid Services�).
However, there were two problems. First, the
development model of OGSI itself was largely
influenced by Java/AXIS/Tomcat, and it was not
clear if the underlying heterogeneity of the Grid
would be accommodated/embraced through the
development work centered at ANL. Second, and
more importantly, we believed that OGSA/OGSI
represents a great step forward for the community,
but the very difficult problems of scheduling,
debugging, scalability, manageability and especially
programming grid applications remain unsolved. We
had made progress with Legion and then Legion-G,
but there were many challenging issues remaining.

4.2 Description

OGSI.NET is an attempt to utilize the .NET
Framework (and its support for Web Services) to
provide Grid-specific tools and programming models.
The overall goal is to integrate e-science with e-
business by merging OGSA with the Global XML
Web Services Architecture (GXA) [1]. A key
difference between OGSA and GXA is that OGSA is
service-centric, and GXA is, instead, focused on the
protocols on the wire that are necessary to facilitate a
global computing infrastructure. A careful analysis
shows that the two approaches are not necessarily
consistent.

The baseline capabilities of .NET, independent

of OGSA, are impressive. .NET has multi-language
support (e.g., C#, C++, COBOL, Fortran, Python,
Scheme, Visual Basic, etc.), via mappings to the
Common Language Runtime (CLR). The CLR also
contains sophisticated support for security
enforcement, memory, process, and thread
management, life-cycle management, strong type
naming, cross-language exception handling, and
dynamic binding. The Microsoft ADO.NET data
classes support persistent data management and
include SQL classes for manipulating persistent data
stores through a standard SQL interface. The
Microsoft ASP.NET classes support the development
of Web-based applications and XML Web services.
The Windows Forms classes support the
development of Windows-based smart client
applications. The plan is to provide client-side
support for GSI in .NET, integrate OGSI security
with .NET security, capitalize on the Visual Studio
IDE in creating Grid applications, provide server-side
support for GSI in .NET, and integrate with the .NET
Compact Framework.

We have recently prototyped this work and used
it as the basis of a demonstration in the NPACI booth
at Supercomputing 2002 in Baltimore. As shown in
Figure 4, this represents an integration of many of the

emerging approaches for Grid computing. Because
domain scientists want easy access to high-end
computing resources, we have constructed the
necessary infrastructure by which a biologist can
submit a CHARMM execution on NPACI resources
via a PocketPC (shown at the left of the diagram).
The user specifies the input URI, output URI,
username, password, and �Sink URI�. (The �Sink
URI� is a Web Service that receives notification
events regarding the status of the CHARMM job.)
Upon hitting �SUBMIT�, the Web Service on the
upper right of the screen fetches a credential from the
MyProxy server; this credential will ultimately be
used to authenticate to the back-end computing
resource (Centurion or Blue Horizon, although only
Centurion is enabled at this time). After retrieving the
credential (based on the username and password), the
Web Service spawns a GlobusRun, which is actually
a precedence-related pair of CHARMM tasks. These
tasks are executed via DAGMan, which is a Condor-
G-enabled mechanism. In the demo in the NPACI
booth, we had one person submit the CHARMM job
from his/her PocketPC and had multiple people
subscribe to the Notification Sink. That is, one person
submitted, and multiple people received
asynchronous notifications on their PocketPCs
regarding the status of the job (�job submitted�, �job
in queue�, �job transitioned to running�, �phase 1

Job
Monitor

Job Manager
Web Service

Based on OGSI TP 4

Job
Monitor

Centurion Blue Horizon

Globus

Run

MyProxy
Server

Auditing
Service

OGSI
Notification

Sink WS

Fetch
Cred

DAGMan

Username / password

Input / output URIs

https

Poll
request

Retrieve
credentials

DAG URI, Sink URI

Start job, send
URIs

DAG file

Input files

Retrieve
DAG file

GridFTP

GridFTP

Status
updates

UNIX.NET

Asynch.
message
delivery

Figure 4: Executing CHARMM via OGSI.NET

SRB
Archive

complete�, �phase 2 complete�, etc.) The nature of
the PocketPC is that the person could be mobile or in
some meeting away from their desk and still receive
important status updates. This is a new way to
collaborate, as the scientists need not be co-located
and instead could be receiving real-time notifications
around the country or around the world. If the user
does not have a PocketPC handy (say that she is
traveling home from work), then the job can even be
configured to send a text message to their phone
when the job is done!

Note that we recognize that some scientists
prefer the �traditional� look-and-feel of the Web
Browser instead of the PocketPC platform. While the
demos were meant to illustrate the secure �Grid
plumbing� and experimental use of the PocketPC, we
are currently working with researchers at The Scripps
Research Institute (TSRI) to develop the appropriate
look-and-feel (rendered through Internet Explorer)
that CHARMM users want to see from their desktop.
This front end will utilize the entire Grid plumbing
(the right side of the slide) we have constructed for
the NPACI booth demos. Of course, the user can
submit via the Browser, and then receive
notifications on their PocketPC, thus combining the
best of stationary and mobile computing.
 The next steps, specifically with regard to
the software of Figure 4, are to create the Web-based
front-end submission, integrate with more NPACI
back-end resources, and address some of the security
issues still unresolved (most notably, we are crossing
between traditional Grid techniques and more
cutting-edge Web Services techniques; there is not
currently a mechanism by which authentication and
authorization credentials easily translate between the
two worlds.)

4.3 Assessment

The potential impact of OGSI.NET is substantial. We
have shown a prototype that works, and we have
even more recently demonstrated the .NET hosting
environment at GlobusWorld 2003 (January, San
Diego). Once the hosting environment stabilizes, we
intend to focus on two other projects: [2] Continuous
Scheduling in OGSI.NET, by which scheduling
decisions for components on Grid computations are
repeatedly and opportunistically rescheduled; and [3]
the Grid Debugging Visualizer (GDV), by which
system administrators and users can more easily
determine the errors (and performance
characteristics) of Grid computations. OGSI.NET is
the groundbreaking new approach for Grid
computing and provides the foundation on which to
support Continuous Scheduling and GDV. The

research leverages and greatly extends our
experiences and philosophy of Legion and Legion-G.

5 Conclusions
Throughout our Grid research, we have

attempted to provide the Grid system administrator,
the Grid programmer, and the Grid end-user with
highly-usable, efficient abstractions given the
complexities of the operating environment. First with
Legion and then with Legion-G, we believe that the
object foundation has proven extremely effective for
Grids. With OGSI.NET, we believe that we will
continue to provide the infrastructure necessary for
next-generation, complex software systems.

Acknowledgments
This work would not be possible without the support
and collaboration of Andrew Grimshaw, who created
Legion and has provided many insights that we have
utilized in Legion-G and OGSI.NET. Glenn Wasson,
Norm Beekwilder, and Shaun Arnold have been
instrumental in the development of many of these
ideas described in this paper, particularly on
OGSI.NET.

References
[1] Box, Don. Understanding GXA. Microsoft

Corporation, July 2002. Available for download at
http://msdn.microsoft.com/library/default.asp?url=/libr
ary/en-us/dngxa/html/gloxmlws500.asp

[2] Brooks, B. R., Bruccoleri, R. E., Olafson, B. D.,
States, D. J., Swaminathan, S., Karplus, M.,
CHARMM: A Program for Macromolecular Energy,
Minimization, and Dynamics Calculations, Journal of
Computational Chemistry, Vol. 4, 1983.

[3] Foster, I. and C. Kesselman, �Globus: A
Metacomputing Infrastructure Toolkit�, International
Journal of Supercomputing Applications, 1997.

[4] Foster, I., Kesselman, C., Nick, J., Tuecke, S. The
Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration.
Open Grid Service Infrastructure WG, Global Grid
Forum, June 22, 2002.

[5] Grimshaw, A. S, A. Ferrari, F. Knabe, and M.
Humphrey. Wide-Area Computing: Resource Sharing
on a Large Scale. Computer, 32(5):29-37, May 1999.

[6] Grimshaw, A.S., W. Wulf, and the Legion team. �The
Legion Vision of a Worldwide Virtual Computer�,
Communications of the ACM, 40:1, pp. 39-45, January
1997.

[7] National Partnership for Advanced Computational
Infrastructure, http://www.npaci.edu

[8] White, B., M. Walker, M. Humphrey, and A.
Grimshaw. LegionFS: A Secure and Scalable File
System Supporting Cross-Domain High-Performance
Applications. In Proceedings of Supercomputing
2001, Denver, CO, November 2001. Best Student
Paper Finalist.

