

A P2P Approach for Global Computing

Wen Dou1 Yan Jia 2 Huai Ming Wang 3 Wen Qiang Song4 Peng Zou 5

1,2,3,5 Dept. of Computer Science, Changsha Institute of Technology, 410073, China

4 Computing Center of 3rd Military Medical University, 400038, China

Abstract
We describe a peer-to-peer self-organizing overlay net-
work for our global computing system. The preliminary
simulation results show that the network has some small-
world characteristics such as higher clustering coefficient
and short path length, which leads to an efficient heuristic
task scheduling algorithm on which any volunteer peer
with limited knowledge about the global network can dis-
patch its excrescent computation tasks to powerful nodes
globally, in a way contrary to the current global comput-
ing system in which a global broker is responsible for the
task scheduling. We argue that our approach is a starting
point to eliminate the broker component which makes
current global systems unscalable.

1 Introduction

This paper describes a peer-to-peer self-organizing over-
lay network on which we build a java based general-
purpose global computing system, Paradropper. The goal
of Paradropper project is to implement an unified compu-
ting network on which anyone can submit (contribute)
his/her computing jobs (resources) in an unified overlay
network via unified user-friendly GUI (see Figure 1). The
most desirable feature of our system is its peer-to-peer
architecture. Current global computing systems such as
Javelin++[1] and Bayanihan[2] are essentially center-
based. The centralized architecture leads to some problems
in scalability and accessibility. Firstly, in systems such as
Javelin++ and Bayanihan, there is a broker component
which is responsible for registering, task dispatching, job
submitting, load balancing, and synchronizing. When there
are many computing jobs managed by the broker, it be-
comes a bottleneck of the whole computing network and a
potential single point of failure. Though the two pro- jects
both prompt a broker network [1] (in Bayanihan, a similar
concept is called server pool) approach to avoid this
situation, we argue that the maintaining cost of the broker
network cannot be neglected. Secondly, in most other

general-purpose global computing systems (including
above two systems), there must be one or more
well-known sites to host the brokers, non-professional
clients and volunteers need firstly to know these brokers
address for submitting their computing jobs or registering
their computers. This in a sense will frustrate those
volunteers who do not want to know any troublesome
details of how to contribute their computation resources.
So how to eliminate the broker component (or weaken its
functions?) is a key issue of the system scalability and
accessibility. The peer-to-peer overlay network has been
widely used in file-sharing and data-sharing applications
[3, 4, 5], many researches [6, 7, 8, 9] has proved that a
well-designed peer-to-peer topology would make the
applications built on it more scalable and assessable. In
this paper, we investigate the possibility of using a pure
peer-to-peer network to construct computing network. Our
preliminary work show that, by constructing a small-
world network with clustering characteristic, any volunteer
peer with limited knowledge about global network can
dispatch its computation tasks to the more powerful nodes
globally, without the help of a global broker component. In
another word, our work lighten the broker’s overload by
unleashing its scheduling and registering responsibility,
and any peer can join the computing network just by
starting the (Paradropper) program without any knowledge
about broker (like the situation in some pure decentralized
file-sharing application). Our ongoing work is dealing with
eliminating other responsibility of the broker component,
such as heartbeat detecting, termination detecting, load
balancing, and synchronizing, etc. The final goal of our
project is to eliminate the whole broker component
completely.

The paper is organized as follows: in section 2 we
discuss construction of Paradropper network. In section 3
we prompt a heuristic task scheduling algorithm. In section
4 a conclusion is given.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

2 The Constructing of Paradropper Network

Many researches [10, 11, 12, 13, 14] have shown that
peer-to-peer applications such as the Kazaa decentralized
file-sharing network, have some self-organizing network
characteristics, which contribute to peer’s easily and
effectively searching for data. These characteristics

include (1) high clustering coefficient, (2) short path
length and (3) power-law distribution of node degree, etc.
All these characteristics help peers relying on limited local
knowledge to make routing decisions rather than
depending on global knowledge. After Milgram[15]
prompted the famous 6- degrees of separation notion by a
social experiment, Watts et al. [16] started by looking at
graphs and the metrics for graphs common in social
networks. Two key ideas they focused on were clustering
and path length. The first concept is a formal way to state
how "cliquish" a graph is, i.e., how tightly the links of a
node in the graph are connected to each other. For
convenience, we give the formal graph theory definitions
about these concepts:
Definition 1 The connectivity of a vertex v, kv, is the
number of attached edges.
Definition 2 Let d(i, j) be the length of the shortest path
between the vertices i and j, then the characteristic path

length, L, is d(i, j) averaged over all Cn

2
 pairs of

vertices.
Definition 3 The neighborhood of a vertex v,

v = 1),(: vidi so vv
Definition 4 The local clustering coefficient, Cv, is: Cv

=
Ck

E

v

v
2 ,where E gives a sub graph's total

number of edges.
Definition 5 The clustering coefficient, C, is Cv averaged
over all vertices.

Watts et al. have discovered that almost all the
self-organizing networks have two basic characteristics:(1)

higher clustering coefficient than the random network (2)
short path length, and the (2) lead to the famous
small-world phenomenon in social network and many
self-organizing networks. Unfortunately, Watts’s network
constructing approaches are based on regular network
(lattice), and not suitable for dynamic network
constructing and maintaining. There are other researches
[17] also prompt some approaches which are more suitable
for dynamic network constructing, but these approaches
seem to be dedicated to constructing only low diameter
network without more concerning about clustering
characteristic which is important in our system. In this
paper, we prompt a very simple construction approach, and
the simulation show that our approach is very suitable for
constructing small-world network with clustering
characteristic.

2.1 The Construction of Paradropper Computing
Network

We use the following approach to construct
Paradropper network:

At bootstrapping stage, every new volunteer
computer interacts with an entry point cache, which
randomly selects an in-network volunteer (we call it
network entry point) as response to the new participator.
(1) The new volunteer then send a message to the entry

point, if the entry point’s neighbor number is beyond
the upper bound Z, it will accept the new node as its
new neighbor, otherwise, refuse it. In the later
situation, the new node will ask the cache again for a
new entry point.

(2) If the entry point accepts the new node, it will send
notify messages to part of his old neighbors. Let the
number is K.

(3) These K neighbors who received the notify message
will also try to build a neighbor relationship with the
new node.
In social terms, when you have a new friend, you

would likely introduce him (her) to part of your old friends.
We argue that it is the main reason why in social network
the probability of our friends know each other is very high.
The clustering characteristic emerges when we introduce
new friends to our old friends. The re-wiring behavior
described by Watts [16] can also be explained by our mo-
del: some nodes have friends in several clusters. These
nodes play the re-wiring roles just like those nodes
selected randomly in Watts’s lattice network.

Practically, a volunteer computer can only have
limited neighbors. Suppose when an entry point accepts a
new node as a new neighbor, it will introduce the new
node to maximum K number of his old neighbors. In
Paradropper, we let the upper bound of a volunteer can
have neighbors is 2K, i.e., Z=2K. Sometimes, not all the K

Figure 1. Paradropper screenshot

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

neighbors notified will accept the new node as a new
neighbor because of the upper bound Z. Let us suppose
every in-network volunteer computer knows how many
neighbors his neighbors have. The notify message will first
send to neighbors whose neighbor number is below the
upper bound Z. The reason why we take Z as 2K is
empirically: we find when 1<K<Z-1(If K = Z-1, the
network will become a complete graph and stop to grow as
the nodes number in network reach Z), the constructed
network appears almost the same properties with slightly
decreasing in clustering coefficient when K Z-1 and
slightly increasing in path length when K 1. More
details about K and Z are discussed in our technical report
[18].The Figure 2 illustrate the construction of 5 nodes
network.

2.2 Paradropper Network Simulation

We use simulation approach to investigate the pro-
perties of Paradropper network, i.e. clustering coefficient
and path length. A simulator (Figure 3) was build with
java. We use undirected graph to represent Paradropper
network and vertex to represent volunteer computer. A
failure simulation thread make some links disable (every
500ms) randomly, and another recovery thread
periodically check if there is node with no neighbor (every
1000ms), if so, give it an entry point randomly and make it

re-connect to the network again. We have tried scale of
100,400, 600, 1000 nodes, with K = 2, 4, 8, 10, 20. The
results are shown in Figure 4, 5. The simulation result
show that our construction approach leads to a self-
organizing overlay network, with the clustering coefficient

is very high and the path length decrease sharply with
limited K. For example, when scale is 100, K=4, the
clustering coefficient C 0.65, and when the scale
became 1000, C just has some slight change(C 0.67).

The path length decrease sharply with the increasing of
upper bound Z, while the clustering coefficient seems get

(a) add a new
 volunteer B

(b) add a new volunteer C
from entry point A, A
introduce it to B

(c) add a new
volunteer D from
entry point B, B
introduce it to A, C

(d) add a new volunteer E
from entry point C, C
introduce it to A, D

Figure 2. A Simple illustration of
Paradropper Network Construction

Figure 3.. (a) a Paradropper simulation network with
K=10, Z =20, 100 nodes; (b) a Paradropper simulation
network with K=10, Z =20, 400 nodes

0
0.2
0.4
0.6
0.8

1

2 4 8 10 20
K

cl
us

te
ri

ng
 c

oe
ffi

ce
nt

100 nodes 400 nodes

600 nodes 1000 nodes

Figure 4. SSimulation result of clustering
coefficient

0

50

100

150

200

250

2 4 8 10 20
K

pa
th

 le
ng

th

100 nodes 400 nodes

600 nodes 1000 nodes

Figure 5. Simulation result of path length

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

little affected. In fact, the C gets slightly increased when
the nodes have a higher upper bound Z. This phenomenon
can be explained easily: when Z becomes larger, the whole
network gets more tightly. In an extreme situation, when
Z=N-1(N is the scale of the network) and K=Z, the whole
network will become a complete graph gradually with C=1
and the path length L=1. The failure simulation thread and

recovery thread are used to investigate the robustness of
Paradropper network in an ad-hoc environment, which is
the nature of internet. The simulation results are shown in
Figure 6, 7. With the interaction between the failure thread
and recovery thread, the clustering coefficient waves at a
slight scope, and the network partitioned occasionally but
could be repaired at last. The explanation is intuitive: when
a node lost some of its neighbors, the local clustering
efficient Cv will decrease and the global clustering
coefficient C trends to decrease with a lot of nodes lost
their neighbors. But as we discuss in section 2.1, when a
node finds itself lost all its neighbors, it will asks the entry
point cache to give it a new entry point to re-join to the
network, so its Cv will increase and the global C will
recovery with the work of the recovery thread. The path
length is in the same situation, when a node lost some of
its neighbors, it means that node lost some possible
shortest path to some other nodes. In an extreme situation,

this will make the whole graph “partition”. But the
recovery algorithm will merge these partitions as long as
there is enough running time.

3 Scheduling Algorithm

Here scheduling means routing tasks to volunteer
peer efficiently, i.e., with a high probability, tasks are more
likely to be routed to the powerful peers in Paradropper
network. In a random network, deciding to whom to send
the task is sightless. Because Paradropper network is close
to a self-organizing network with high clustering
coefficient and short path length, we could implement a
very simple but efficient heuristic scheduling algorithm.

As we discuss above, every Paradropper peer has
limited neighbors. In each routing hop, the idlest neighbor
is selected as the target. In every peer, there is a variable
WorkLoad recording the current workload of the peer.
Whenever the peer accepts a task, its Workload increase
by 1, and whenever the peer finishes a task, its Workload
decreases by 1. Here we use the number of tasks the peer
accepted to represent the workload of a peer. It’s a coarse
granularity workload representation, but we thought it is
enough to explain our scheduling algorithm here.

A new volunteer has the workload 0. When the work-
load of a peer gets changed (accept a task or finish a task),
the peer will notify all its neighbor using Load Change
Report Message (LCRM). We give the scheduling
algorithm as follow:
Algorithm (pseudocode)
(1) receive a task (or the sponsor who first schedule the task);
(2) if(ttl>0){

Select a neighbor whose workload is the smallest in its
neighbors;

(3) if the selected neighbor ‘s workload low than the
peer’s

(4) ttl decrease by 1;
(5) Send the task to the neighbor;
(6) else
(7) Accept itself;
(8) endif
(9) else
(10) Accept it itself.
(11) endif

The ttl is used to limit the hops of a task message.
Because Paradropper network has a short path length, in
most case, a peer could reach any peer in limited hops (in
our system, we set the ttl to 11). The procedure is shown in
Figure 8-a.

Can a random network do the same thing? No. For
example, a random network can not deal with the
following case shown in Figure 8-b. In figure 8-b, when
node A accepts a task, according to our scheduling
algorithm, the task will be send to node D, while the node
E has the lowest workload. In Paradropper network,
because the clustering coefficient is very high, which

0
0.2
0.4
0.6
0.8

1

0
577

1273
1834

2457
3116

failed links

cl
u

st
e

ri
n

g
 c

o
e

ffi
ce

n
t

 Figure 6. Simul Simulation result of clustering
coefficient in random links failure, 1000
nodes

0
2
4
6
8

10

0
312

577
732

1273
1790

1834
2199

2457
2784

3116

failed links

pa
th

 le
ng

th

 Figure 7. Simulation result of path length
in random links failure, 1000 nodes

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

means the probability of a peer’s neighbors knowing each
other is very high. Suppose the clustering coefficient is P,
then the probability of B and C have a neighbor
relationship is P, and the probability of which E and C
have a relationship is P2. Consider our simulation results,
the average clustering coefficient is 0.8, then the
probability that there is an edge between E and C is
0.5+0.5x0.64=0.82. So the task is likely to be sent to C
with a high probability (see Figure 8-c).

A simulation is done to show a large scale scheduling
result. In our simulation, we setup a 1000 nodes network
(K=10), every node has a superfactor. When a node
accepts a task, it increases its workload by its superfactor.
More powerful node has the smaller super- factor. The
distribution of the nodes is shown in Figure 9(which is
close to a Zipf distribution). A thread every t1 (1-200) ms
randomly submit a random number of tasks, and hold t2
(1-2000) ms to mimick the executing procedure. After t2
ms, the workloads of these nodes decrease by their
superfactor. After enough time, we randomly select 4
sampling point to check the accepted tasks of different
kinds of nodes, the result is shown in Figure 10. As the
result indicated, those powerful nodes (with lower
superfactor) have got more tasks than those weaker nodes.

It implies that our scheduling algorithm can not only be
used to dispatch tasks, but also can be used to balance
loading of the whole computing network. When a node get
overload, it can re-send its excrescent computation tasks to
the network. With high probability, the re-sent tasks will be
accepted by those powerful nodes (nodes with low
workload). Someone may argue that even if in a random
network we could do the same thing. As we discuss above,
because of the poor clustering characteristic, scheduling in
a random network will miss many nodes which are more
suitable for those tasks. For a more accurate discussion, we
prompt the concept of scheduling efficiency to evaluate
and compare the scheduling capability between our
network and random network. From figure 11 we can
conclude that the scheduling efficiency with our network is
far superior to random network.

Suppose that there is a super node in the Paradropper
network, its initialized workload and superfactor are
always 0, and the initialized workload and superfactor of
other nodes are value large then 1. We randomly submit N
tasks to the network and count the number of tasks
accepted by the super node, let the number is W. We define
E=W/N as the scheduling efficiency. In scales of 100, 600
and 1000 nodes, we get the scheduling efficiency E which
is shown in Figure 11.

Superfactor distribution Superfactor distribution
1 1 9 81
2 4 10 100
3 9 11 121
4 16 12 144
5 25 13 169
6 36 14 181
7 49
8 64

As we see in Figure 11, the E can reach very high level

in Paradropper network with limited TTL, compared to the
low level in random network. Figure 10 and 11 shows that,
even if without any global knowledge of the computing
network, the topology of Paradropper network and our
heuristic scheduling algorithm make it possible for any
volunteer to route tasks anywhere and anytime to the most
powerful nodes in the network with high probability. This
means that we need not a global broker to schedule the
tasks dispatching or node registering in our computing
network expressly.
4. Conclusion

In this paper, we prompt a simple and practical approach
to build our peer-to-peer global computing net- work, the
simulation results show that, our approach lead to a

(a) task scheduling in
Paradropper network

(b) in a random network,
scheduling is sightless

probability

probability

(c) in a network with high
clustering coefficient, tasks
will be routed to those
powerful nodes with high
probability

Figure 8. Ta. Task scheduling in Paradropper
network

Figure 9.. Node distribution with different
“superfactor”

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

network with higher clustering coefficient and short path
length, which has been used to implement our heuristic
scheduling algorithm. Our experimental results also
suggest that the global broker component existing in
current global computing system could be eliminated (or
be weakened) from our peer-to-peer computing network in
order to make system more scalable and accessible. Our
current work proves that at least the scheduling and
registering responsibility of broker component could be
unleashed.

5. References
[1] M. O. Neary, S. P. Brydon, P. Kmiec, S. Rollins, P. Capello,
"Javelin++: Scalability Issues in Global Computing," Pro-
ceedings of the ACM Java Grande 1999 Conference, June 12-14,
1999, San Francisco, California.
[2] Luis F. G. Sarmenta, "Volunteer Computing", Ph.D. Thesis,
MIT Department of Electrical Engineering and Computer
Science, March 2001.
[3] http://www.gnutella.co.uk.
[4] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong. Freenet: A
distributed anonymous information storage and retrieval system

in designing privacy enhancing technologies. Inter- national
Workshop on Design Issues in Anonymity and Unobservability,
LNCS 2009, 2001.
[5] S. Ratnaswamy, P. Francis, M. Handley, R. Karp, and S.
Shenker. A scalable content-addressable network. ACM
SIGCOMM, 2001.
[6] H. Zhang , A. Goel, R. Govindan. "Using the Small World
Model to Improve Freenet Performance. Proceedings, IEEE
Infocom., 2002
[7] A. Montresor, "Anthill: a Framework for the Design and
Analysis of Peer-to-Peer Systems", 4th European Research
Seminar on Advances in Distributed Systems (ERSADS '01),
Bertinoro, Italy (May 2001).
[8] A. Montresor, Hein Meling, Ozalp Babaoglu, "Towards
Self-Organizing, Self-Repairing and Resilient Peer-to-Peer
Systems", Proceedings of the 1st International Workshop on
Future Directions in Distributed Computing, Bertinoro, Forlì,
Italy, June 2002.
[9] http://www.fasttrack.nu
[10] L. Adamic, The Small World Web,Technical Report, Xerox
Palo Alto Research Center,2000
[11] J. Kleinberg. Navigation in a small world. Nature, 406,
2000.
[12] K.Aberer, M.Punceva, M.Hauswirth, R.Schmidt, Improving
Data Access in P2P Systems. IEEE Internet Computing 6(1):
58-67. January-February, 2002.
[13] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
relationships of the Internet topology. ACM SIGCOMM, 1999.
[14] A. Oram Peer-to-Peer: Harnessing the benefits of a disrupt
-tive technology (O’Reilly, 2001).
[15] S. Milgram: The Small World Problem, Psychology Today
1(1), 60-67 (1967)
[16] D. J. Watts and S. H. Strogatz. Collective dynamics of
‘small-world’ networks, Nature 393, 440--442 (1998). Net- works,
Nature 393, 440--442 , 1998.
[17] G. Pandurangan, P. Raghavan, E. Upfal, Building Low-
Diameter P2P Networks, Proceedings of the 42nd Annual IEEE
Symposium on the Foundations of Computer Science (FOCS),
2001
[18] http://paradropper.sourceforge.net

0

2000

4000

6000

8000

10000

12000

Superfactor

ac
ce

pt
ed

 ta
sk

s

t1 t2
t3 t4

 Figure10. A Accepted tasks using Paradropper
scheduling algorithm,1000 nodes, K=10

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9 10 11 12 13 14

TTL

S
he

du
lin

g
ef

fic
ie

nc
y

(%
)

100 nodes(P) 600 nodes(P) 1000 nodes(P)

100 nodes(R) 600 nodes(R) 1000 nodes(R)

Figure 11. Scheduling efficiency of Paradropper
simulation network and random network. (P:
Paradropper, R: random network)

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

