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Abstract 
We describe a peer-to-peer self-organizing overlay net- 
work for our global computing system. The preliminary 
simulation results show that the network has some small- 
world characteristics such as higher clustering coefficient 
and short path length, which leads to an efficient heuristic 
task scheduling algorithm on which any volunteer peer 
with limited knowledge about the global network can dis- 
patch its excrescent computation tasks to powerful nodes 
globally, in a way contrary to the current global comput- 
ing system in which a global broker is responsible for the 
task scheduling. We argue that our approach is a starting 
point to eliminate the broker component which makes 
current global systems unscalable.  
 
1 Introduction 
 

This paper describes a peer-to-peer self-organizing over- 
lay network on which we build a java based general- 
purpose global computing system, Paradropper. The goal 
of Paradropper project is to implement an unified compu- 
ting network on which anyone can submit (contribute) 
his/her computing jobs (resources) in an unified overlay 
network via unified user-friendly GUI (see Figure 1). The 
most desirable feature of our system is its peer-to-peer 
architecture. Current global computing systems such as 
Javelin++[1] and Bayanihan[2] are essentially center- 
based. The centralized architecture leads to some problems 
in scalability and accessibility. Firstly, in systems such as 
Javelin++ and Bayanihan, there is a broker component 
which is responsible for registering, task dispatching, job 
submitting, load balancing, and synchronizing. When there 
are many computing jobs managed by the broker, it be- 
comes a bottleneck of the whole computing network and a 
potential single point of failure. Though the two pro- jects 
both prompt a broker network [1] (in Bayanihan, a similar 
concept is called server pool) approach to avoid this 
situation, we argue that the maintaining cost of the broker 
network cannot be neglected. Secondly, in most  other 

general-purpose global computing systems (including 
above two systems), there must be one or more 
well-known sites to host the brokers, non-professional 
clients and volunteers need firstly to know these brokers 
address for submitting their computing jobs or registering 
their computers. This in a sense will frustrate those 
volunteers who do not want to know any troublesome 
details of how to contribute their computation resources. 
So how to eliminate the broker component (or weaken its 
functions?) is a key issue of the system scalability and 
accessibility. The peer-to-peer overlay network has been 
widely used in file-sharing and data-sharing applications 
[3, 4, 5], many researches [6, 7, 8, 9] has proved that a 
well-designed peer-to-peer topology would make the 
applications built on it more scalable and assessable. In 
this paper, we investigate the possibility of using a pure 
peer-to-peer network to construct computing network. Our 
preliminary work show that, by constructing a small- 
world network with clustering characteristic, any volunteer 
peer with limited knowledge about global network can 
dispatch its computation tasks to the more powerful nodes 
globally, without the help of a global broker component. In 
another word, our work lighten the broker’s overload by 
unleashing its scheduling and registering responsibility, 
and any peer can join the computing network just by 
starting the (Paradropper) program without any knowledge 
about broker (like the situation in some pure decentralized 
file-sharing application). Our ongoing work is dealing with 
eliminating other responsibility of the broker component, 
such as heartbeat detecting, termination detecting, load 
balancing, and synchronizing, etc. The final goal of our 
project is to eliminate the whole broker component 
completely.  

The paper is organized as follows: in section 2 we 
discuss construction of Paradropper network. In section 3 
we prompt a heuristic task scheduling algorithm. In section 
4 a conclusion is given. 
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2 The Constructing of Paradropper Network 
 

Many researches [10, 11, 12, 13, 14] have shown that 
peer-to-peer applications such as the Kazaa decentralized 
file-sharing network, have some self-organizing network 
characteristics, which contribute to peer’s easily and 
effectively searching for data. These characteristics  

 
 
 
 
 
include (1) high clustering coefficient, (2) short path 
length and (3) power-law distribution of node degree, etc. 
All these characteristics help peers relying on limited local 
knowledge to make routing decisions rather than 
depending on global knowledge. After Milgram[15] 
prompted the famous 6- degrees of separation notion by a 
social experiment, Watts et al. [16] started by looking at 
graphs and the metrics for graphs common in social 
networks. Two key ideas they focused on were clustering 
and path length. The first concept is a formal way to state 
how "cliquish" a graph is, i.e., how tightly the links of a 
node in the graph are connected to each other. For 
convenience, we give the formal graph theory definitions 
about these concepts:  
Definition 1 The connectivity of a vertex v, kv, is the 
number of attached edges. 
Definition 2 Let d(i, j) be the length of the shortest path 
between the vertices i and j, then the characteristic path 

length, L, is d(i, j) averaged over all Cn

2
 pairs of 

vertices. 
Definition 3 The neighborhood of a vertex v, 

v = 1),(: vidi  so vv  
Definition 4 The local clustering coefficient, Cv, is: Cv 

=
Ck

E

v

v
2  ,where E  gives a sub graph's total 

number of edges. 
Definition 5 The clustering coefficient, C, is Cv averaged 
over all vertices. 

Watts et al. have discovered that almost all the 
self-organizing networks have two basic characteristics:(1) 

higher clustering coefficient than the random network (2) 
short path length, and the (2) lead to the famous 
small-world phenomenon in social network and many 
self-organizing networks. Unfortunately, Watts’s network 
constructing approaches are based on regular network 
(lattice), and not suitable for dynamic network 
constructing and maintaining. There are other researches 
[17] also prompt some approaches which are more suitable 
for dynamic network constructing, but these approaches 
seem to be dedicated to constructing only low diameter 
network without more concerning about clustering 
characteristic which is important in our system. In this 
paper, we prompt a very simple construction approach, and 
the simulation show that our approach is very suitable for 
constructing small-world network with clustering 
characteristic. 

 
2.1 The Construction of Paradropper Computing 
Network 
 

We use the following approach to construct 
Paradropper network:  

At bootstrapping stage, every new volunteer 
computer interacts with an entry point cache, which 
randomly selects an in-network volunteer (we call it 
network entry point) as response to the new participator.  
(1) The new volunteer then send a message to the entry 

point, if the entry point’s neighbor number is beyond 
the upper bound Z, it will accept the new node as its 
new neighbor, otherwise, refuse it. In the later 
situation, the new node will ask the cache again for a 
new entry point. 

(2) If the entry point accepts the new node, it will send 
notify messages to part of his old neighbors. Let the 
number is K. 

(3) These K neighbors who received the notify message 
will also try to build a neighbor relationship with the 
new node.  
In social terms, when you have a new friend, you 

would likely introduce him (her) to part of your old friends. 
We argue that it is the main reason why in social network 
the probability of our friends know each other is very high. 
The clustering characteristic emerges when we introduce 
new friends to our old friends. The re-wiring behavior 
described by Watts [16] can also be explained by our mo- 
del:  some nodes have friends in several clusters. These 
nodes play the re-wiring roles just like those nodes 
selected randomly in Watts’s lattice network. 

Practically, a volunteer computer can only have 
limited neighbors. Suppose when an entry point accepts a 
new node as a new neighbor, it will introduce the new 
node to maximum K number of his old neighbors. In 
Paradropper, we let the upper bound of a volunteer can 
have neighbors is 2K, i.e., Z=2K. Sometimes, not all the K 

 

Figure 1.  Paradropper screenshot 
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neighbors notified will accept the new node as a new 
neighbor because of the upper bound Z. Let us suppose 
every in-network volunteer computer knows how many 
neighbors his neighbors have. The notify message will first 
send to neighbors whose neighbor number is below the 
upper bound Z. The reason why we take Z as 2K is 
empirically: we find when 1<K<Z-1(If K = Z-1, the 
network will become a complete graph and stop to grow as 
the nodes number in network reach Z), the constructed 
network appears almost the same properties with slightly 
decreasing in clustering coefficient when K Z-1 and 
slightly increasing in path length when K 1. More 
details about K and Z are discussed in our technical report 
[18].The Figure 2 illustrate the construction of 5 nodes 
network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2 Paradropper Network Simulation  
 

We use simulation approach to investigate the pro- 
perties of Paradropper network, i.e. clustering coefficient 
and path length. A simulator (Figure 3) was build with 
java. We use undirected graph to represent Paradropper 
network and vertex to represent volunteer computer. A 
failure simulation thread make some links disable (every 
500ms) randomly, and another recovery thread 
periodically check if there is node with no neighbor (every 
1000ms), if so, give it an entry point randomly and make it 

re-connect to the network again. We have tried scale of 
100,400, 600, 1000 nodes, with K = 2, 4, 8, 10, 20. The 
results are shown in Figure 4, 5. The simulation result 
show that our construction approach leads to a self- 
organizing overlay network, with the clustering coefficient 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
is very high and the path length decrease sharply with 
limited K. For example, when scale is 100, K=4, the 
clustering coefficient C  0.65, and when the scale 
became 1000, C just has some slight change(C  0.67). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The path length decrease sharply with the increasing of 
upper bound Z, while the clustering coefficient seems get 

  

(a) add a new 
 volunteer B 

(b) add a new volunteer C 
from entry point A, A 
introduce it to B 

  

(c) add a new 
volunteer D from 
entry point B, B 
introduce it to A, C 

(d) add a new volunteer E 
from entry point C, C 
introduce it to A, D 

Figure 2.  A Simple illustration of 
Paradropper Network Construction 

 

Figure 3.. (a) a Paradropper simulation network with 
K=10, Z =20, 100 nodes; (b) a Paradropper simulation
network with K=10, Z =20, 400 nodes 
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little affected. In fact, the C gets slightly increased when 
the nodes have a higher upper bound Z. This phenomenon 
can be explained easily: when Z becomes larger, the whole 
network gets more tightly. In an extreme situation, when 
Z=N-1(N is the scale of the network) and K=Z, the whole 
network will become a complete graph gradually with C=1 
and the path length L=1. The failure simulation thread and 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
recovery thread are used to investigate the robustness of 
Paradropper network in an ad-hoc environment, which is 
the nature of internet. The simulation results are shown in 
Figure 6, 7. With the interaction between the failure thread 
and recovery thread, the clustering coefficient waves at a 
slight scope, and the network partitioned occasionally but 
could be repaired at last. The explanation is intuitive: when 
a node lost some of its neighbors, the local clustering 
efficient Cv will decrease and the global clustering 
coefficient C trends to decrease with a lot of nodes lost 
their neighbors. But as we discuss in section 2.1, when a 
node finds itself lost all its neighbors, it will asks the entry 
point cache to give it a new entry point to re-join to the 
network, so its Cv will increase and the global C will 
recovery with the work of the recovery thread. The path 
length is in the same situation, when a node lost some of 
its neighbors, it means that node lost some possible 
shortest path to some other nodes. In an extreme situation, 

this will make the whole graph “partition”. But the 
recovery algorithm will merge these partitions as long as 
there is enough running time. 
 
3 Scheduling Algorithm 
 

Here scheduling means routing tasks to volunteer 
peer efficiently, i.e., with a high probability, tasks are more 
likely to be routed to the powerful peers in Paradropper 
network. In a random network, deciding to whom to send 
the task is sightless. Because Paradropper network is close 
to a self-organizing network with high clustering 
coefficient and short path length, we could implement a 
very simple but efficient heuristic scheduling algorithm. 

As we discuss above, every Paradropper peer has 
limited neighbors. In each routing hop, the idlest neighbor 
is selected as the target. In every peer, there is a variable 
WorkLoad recording the current workload of the peer. 
Whenever the peer accepts a task, its Workload increase 
by 1, and whenever the peer finishes a task, its Workload 
decreases by 1. Here we use the number of tasks the peer 
accepted to represent the workload of a peer. It’s a coarse 
granularity workload representation, but we thought it is 
enough to explain our scheduling algorithm here. 

A new volunteer has the workload 0. When the work- 
load of a peer gets changed (accept a task or finish a task), 
the peer will notify all its neighbor using Load Change 
Report Message (LCRM). We give the scheduling 
algorithm as follow: 
Algorithm (pseudocode) 
(1) receive a task (or the sponsor who first schedule the task); 
(2) if(ttl>0){ 

Select a neighbor whose workload is the smallest in its 
neighbors; 

(3)   if  the  selected neighbor ‘s workload low than the 
peer’s 

(4)      ttl decrease by 1; 
(5)      Send the task to the neighbor; 
(6)   else  
(7)      Accept itself; 
(8)   endif 
(9) else 
(10)      Accept it itself. 
(11) endif 

The ttl is used to limit the hops of a task message. 
Because Paradropper network has a short path length, in 
most case, a peer could reach any peer in limited hops (in 
our system, we set the ttl to 11). The procedure is shown in 
Figure 8-a.  

Can a random network do the same thing? No. For 
example, a random network can not deal with the 
following case shown in Figure 8-b. In figure 8-b, when 
node A accepts a task, according to our scheduling 
algorithm, the task will be send to node D, while the node 
E has the lowest workload. In Paradropper network, 
because the clustering coefficient is very high, which 
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means the probability of a peer’s neighbors knowing each 
other is very high. Suppose the clustering coefficient is P, 
then the probability of B and C have a neighbor 
relationship is P, and the probability of which E and C 
have a relationship is P2. Consider our simulation results, 
the average clustering coefficient is 0.8, then the 
probability that there is an edge between E and C is 
0.5+0.5x0.64=0.82. So the task is likely to be sent to C 
with a high probability (see Figure 8-c). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A simulation is done to show a large scale scheduling 
result. In our simulation, we setup a 1000 nodes network 
(K=10), every node has a superfactor. When a node 
accepts a task, it increases its workload by its superfactor. 
More powerful node has the smaller super- factor. The 
distribution of the nodes is shown in Figure 9(which is 
close to a Zipf distribution). A thread every t1 (1-200) ms 
randomly submit a random number of tasks, and hold t2 
(1-2000) ms to mimick the executing procedure. After t2 
ms, the workloads of these nodes decrease by their 
superfactor. After enough time, we randomly select 4 
sampling point to check the accepted tasks of different 
kinds of nodes, the result is shown in Figure 10. As the 
result indicated, those powerful nodes (with lower 
superfactor) have got more tasks than those weaker nodes. 

It implies that our scheduling algorithm can not only be 
used to dispatch tasks, but also can be used to balance 
loading of the whole computing network. When a node get 
overload, it can re-send its excrescent computation tasks to 
the network. With high probability, the re-sent tasks will be 
accepted by those powerful nodes (nodes with low 
workload). Someone may argue that even if in a random 
network we could do the same thing. As we discuss above, 
because of the poor clustering characteristic, scheduling in 
a random network will miss many nodes which are more 
suitable for those tasks. For a more accurate discussion, we 
prompt the concept of scheduling efficiency to evaluate 
and compare the scheduling capability between our 
network and random network. From figure 11 we can 
conclude that the scheduling efficiency with our network is 
far superior to random network. 

Suppose that there is a super node in the Paradropper 
network, its initialized workload and superfactor are 
always 0, and the initialized workload and superfactor of 
other nodes are value large then 1. We randomly submit N 
tasks to the network and count the number of tasks 
accepted by the super node, let the number is W. We define 
E=W/N as the scheduling efficiency. In scales of 100, 600 
and 1000 nodes, we get the scheduling efficiency E which 
is shown in Figure 11. 
 

Superfactor distribution Superfactor distribution
1 1 9 81 
2 4 10 100 
3 9 11 121 
4 16 12 144 
5 25 13 169 
6 36 14 181 
7 49   
8 64   
 
 
 

 
As we see in Figure 11, the E can reach very high level 

in Paradropper network with limited TTL, compared to the 
low level in random network. Figure 10 and 11 shows that, 
even if without any global knowledge of the computing 
network, the topology of Paradropper network and our 
heuristic scheduling algorithm make it possible for any 
volunteer to route tasks anywhere and anytime to the most 
powerful nodes in the network with high probability. This 
means that we need not a global broker to schedule the 
tasks dispatching or node registering in our computing 
network expressly. 
4. Conclusion 

In this paper, we prompt a simple and practical approach 
to build our peer-to-peer global computing net- work, the 
simulation results show that, our approach lead to a 

 

(a) task scheduling in 
Paradropper network 

(b) in a random network, 
scheduling is sightless 

probability 

probability 

(c) in a network with high 
clustering coefficient, tasks
will be routed to those 
powerful nodes with high 
probability 

Figure 8. Ta. Task scheduling in Paradropper 
network 

Figure 9.. Node distribution with different 
“superfactor” 
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network with higher clustering coefficient and short path 
length, which has been used to implement our heuristic 
scheduling algorithm. Our experimental results also 
suggest that the global broker component existing in 
current global computing system could be eliminated (or 
be weakened) from our peer-to-peer computing network in 
order to make system more scalable and accessible. Our 
current work proves that at least the scheduling and 
registering responsibility of broker component could be 
unleashed. 
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