

Multiple Instruction Stream Control for an
Associative Model of Parallel Computation

M. Scherger, J. Baker, and J. Potter
Department of Computer Science

Kent State University
Kent, Ohio 44242

{ mscherge, jbaker, potter} @cs.kent.edu

Abstract

This paper describes a system software design
for multiple instruction stream control in a massively
parallel associative computing environment. The
purpose of providing multiple instruction stream
control is to increase throughput and reduce the
amount of parallel slackness inherent in single
instruction stream parallel programming constructs.
The Multiple ASsociative Computing (MASC) model
will be used to describe this technique and a brief
introduction to the MASC model of parallel
computation is presented. A simple parallel
computing example is used to illustrate the
techniques for multiple instruction stream control in
a massively parallel runtime environment.

Keywords: Multiple instruction streams, associative
computing, system software, parallel processing.

1 Introduction
Traditional massively parallel processing

computers such as single instruction stream, multiple
data stream (SIMD) computers rely on a host or
instruction stream to control the array of parallel
processors or parallel array unit. By definition of
Flynn’s taxonomy of parallel computer architectures,
the SIMD model has only one control unit.

But what if more than one control unit is

introduced to a massive array of processors? Can
multiple control units or instruction streams work
seamlessly to improve application performance and
throughput? Would multiple instruction streams
reduce parallel slackness inherent in parallel
programming constructs such as the parallel if-then-
else and if so, how much overhead would a parallel
runtime environment incur? How should these

multiple instruction streams be controlled from a
programming and system software perspective?

To answer some of these questions and examine
some of these research topics, the Parallel and Associative
Computing Research Group at Kent State University is
conducting research on just such a model. The Multiple
ASsociative Computing (MASC) model of parallel
computation uses an M-SIMD (multiple SIMD)
architecture that allows for multiple instruction streams to
control a unique partition of a global set or array of
processing elements (cells).

This research explores a method of controlling
multiple instruction streams in a massively parallel
processing environment such as defined by the MASC
model of parallel computing. Furthermore, this research
explores this control from a system software perspective
(compilers and parallel runtime environments). This was
achieved by examining the current system software
requirements for single instruction stream computing and
designing the compiler and system software modifications
for a multiple instruction stream associative computing
runtime environment.

Section 2 will present an overview of the MASC
model of parallel computation. This model supports a
generalized data and associative parallel programming
paradigm with restricted support for control parallelism.
Section 3 will discuss the system software support for the
MASC Model. This includes the current MASC compiler
and emulator as well as a runtime environment of the
MASC model using clusters of workstations. Section 4
will present the theory and design for control of multiple
instruction streams. New parallel byte code instructions
for this control are introduced and a discussion of the
overhead required for their implementation is presented.
Section 5 will present a parallel associative computing
example demonstrating multiple instruction stream
control.

2 The MASC Model of Parallel
Computation
The following is a conceptual description of the

Multiple Associative Computing (MASC) model of
parallel computation. As shown in figure 1, the
MASC model consists of an array of processor-
memory pairs called cells and an array of instruction
streams.

Figure 1: Conceptual view of MASC.

A MASC machine with n cells and j instruction
streams is denoted as MASC(n, j). It is expected that
the number of instruction stream processors be much
less than the number of cells. The model also
includes three virtual networks:

1. A cell network used for cell-to-cell

communication. This network is used for the
parallel movement of data between cells. This
network could be a linear array, mesh,
hypercube, or a dynamic interconnection
network.

2. A broadcast/reduction network used for

communication between an instruction stream
and a set of cells. This network is also capable
of performing common reduction operations.

3. An instruction stream network used for inter-

instruction stream communication.

Cells can receive their next set of instructions to
execute from the instruction stream broadcast
network. Cells can be instructed from their current
instruction stream to send and receive messages to

other cells in the same partition using some
communication pattern via the cell network. Each
instruction stream processor is also connected to two
interconnection networks. An instruction stream
processor broadcasts instructions to the cells using the
instruction stream broadcast network. The instruction
streams also may need to communicate and may do so
using the instruction stream network. Any of these
networks may be virtual and be simulated by whatever
network is present.

MASC provides one or more instruction streams.
Each active instruction stream is assigned to a unique
dynamic partition of cells. This allows a task that is being
executed in a data parallel fashion to be partitioned into
two or more data parallel tasks using control parallelism.
The multiple IS’s supported by the MASC model allows
for greater efficiency, flexibility, and reconfigurability
than is possible with only one instruction stream. While
SIMD architectures can execute data parallel programs
very efficiently and normally can obtain near linear
speedup, data parallel programs in many applications are
not completely data parallel and contain several non-
trivial regions where significant branching occurs [1]. In
these parallel programming regions, only a subset of
traditional SIMD processors can be active at the same
time. With MASC, control parallelism can be used to
execute these different branches simultaneously. Other
MASC properties include:

• The cells of the MASC model consist of a processing

element (PE) and local memory. The accumulated
memory of the MASC model consists of an array of
cells. There is no shared memory between cells.

• Each instruction stream is a processor with a bus or

broadcast/reduction network to all cells. Each cell
listens to only one instruction stream and initially, all
cells listen to the same instruction stream. The cells
can switch to another instruction stream in response
to commands from the current instruction stream.

• An active cell executes the commands it receives

from its instruction stream, while an inactive cell
listens to but does not execute the command from its
instruction stream. Each instruction stream has the
ability to unconditionally activate all cells listening to
it.

• Cells without further work are called idle cells and

are assigned to a specified instruction stream, which
among other tasks manages the idle cells.

• The average time for a cell to send a message through

the cell network to another cell is characterized by

Instruction
Stream

Instruction
Stream

Instruction
Stream

C
e

ll
In

te
rc

o
n

n
e

ct
io

n
 N

e
tw

o
rk

In
stru

ctio
n

 S
tre

a
m

 In
te

rco
n

n
e

ctio
n

 N
e

tw
o

rk

B
ro

a
d

ca
st / R

e
d

u
ctio

n
 N

e
tw

o
rk

. . .

PEMemory

PEMemory

PEMemory

PEMemory

PEMemory

PEMemory
. . .

T_local

T_route

T_I/O T_bcast

T_reduce T_sync

the parameter troute. Each cell also can read or
write a word to an I/O channel. The maximum
time for a cell to execute a command is given by
the parameter tlocal. The time to perform a
broadcast of either data or instructions is given
by the predictability parameter tbcast. The time to
perform a reduction operation is given by the
predictability parameter treduce. The time for a
cell to perform this I/O transfer is characterized
by the parameter ti/o. The time to perform
instruction stream synchronization is
characterized by the parameter tsynch.

• An instruction stream can instruct its active cells

to perform an associative search in time tbcast +
tlocal + treduce. Successful cells are called
responders, while unsuccessful cells are called
non-responders.

• The instruction stream can activate either the set

of responders or the set of non-responders. It
can also restore the previous set of active cells in
tbcast + tlocal time.

• Each instruction stream has the ability to select

an arbitrary responder from the set of active cells
in tbcast + tlocal time.

• An active instruction stream can compute the

OR, AND, Greatest Lower Bound, or Least
Upper Bound of a set of values in all active cells
in treduce time.

• An idle cell can be dynamically allocated to an

instruction stream in tsynch + tbcast time.

These predictability parameters were identified
using an object oriented description of the MASC
model in [7]. They were developed to identify the
performance costs using different architecture classes
of parallel computing equipment. When the MASC
model is implemented using a traditional SIMD
computer such as the STARAN or Wavetracer DTC
or Zephyr, the MASC model is highly deterministic
and the predictability costs can often be calculated
and are often “best possible” [3]. Many of the
predictability parameters for MASC operations
become fixed or operate in one step [3].

3 MASC System Software
The current system software support for the

MASC model consists of a compiler, an emulator for
Windows or Linux based machines, and a parallel

runtime environment using a cluster of Linux machines.
The ASC programming language is a data parallel
associative programming language. This language is
further defined in [5][6]. The ASC compiler translates the
ASC syntax into MASC byte code which can be executed,
by a number of parallel runtime environments. Presently,
single instruction stream runtime environments for the
ASC compiler and emulator are available for Windows
and Linux machines, the Connection Machine, the
WaveTracer DTC and Zephyr, and the ASPRO.

A multiple instruction stream parallel runtime
environment is presently in development using a cluster
of workstations as a feasibility prototype. This runtime
environment interprets and executes the MASC byte code
generated by the current single instruction stream ASC
compiler. Since the cluster implementation of MASC
support multiple instruction streams and since the ASC
compiler only generates single instruction stream byte
code, a compiler option or optimization phase is being
developed. This optimization procedure is called the
ISGEN (Instruction Stream GENerate) and would be
performed after linking. The phases of compilation for a
MASC program are depicted in the following figure.

M A S C
C o m p i l e r

M A S C
A s s e m b l e r

M A S C
L i n k e r

M A S C
I S G E N

M A S C
R u n t i m e

E n v i r o n m e n t

1 I S

J I S s

Figure 2: MASC phases of compilation including
the ISGEN phase.

The ISGEN procedure is used to identify candidate
regions that can be assigned a separate instruction
streams. Within each multiple instruction stream region,
several code regions or basic blocks are be identified and
assigned to a virtual instruction stream. Each virtual
instruction stream region is then assigned or mapped to a

physical instruction stream within the MASC parallel
runtime environment during program execution.

4 Multiple Instruction Stream Control
Design
This section will present the parallel

programming constructs supporting multiple
instruction streams and discuss the MASC byte code
operations to support multiple instruction streams in
the MASC parallel runtime environment.
Consider the parallel associative if-then-else
programming construct.

if (parallel condition) then
 <body_1>

else
<body_2>

endif;

In the ASC programming language the result of a
parallel conditional statement is stored in a parallel
bit vector. For a single instruction stream
implementation, the instruction stream will instruct
all cells to evaluate the parallel condition and then set
their parallel responder bit accordingly. For those
cell responders set to TRUE, programming region
body_1 is executed. At the completion of body_1,
the non-responders become active and programming
region body_2 is executed. Thus, for a single
instruction stream, body_1 and body_2 are both
executed in sequence. The non-responders are
inactive during the time body_1 is executing and vice
versa.

The ISGEN phase during compilation would
identify begin and end of an ASC parallel if-then-else
construct and insert four new byte code instructions.
It can transform a single instruction stream ASC
program into a multiple instruction stream MASC
program.

• MI_REGION_BEGIN – This command will be

used to identify a candidate region for multiple
instruction streams. This command will use the
current assigned instruction stream to perform
the evaluation of the parallel conditional
expression.

• MI_REGION_END – This command will be

used to identify the end of a candidate region of
multiple instruction streams. This instruction
will be used to collapse and combine multiple
instruction streams into a single instruction

(thread of execution). This can be achieved by
performing a synchronization to wait for all
instruction streams to complete.

• MI_BEGIN – This instruction will be used to mark
the beginning of a basic block identified for a
multiple instruction stream.

• MI_END – This instruction will be used to mark the

end of a basic block identified for a multiple
instruction stream.

In theory, several MI_BEGIN and MI_END statements
may exist within a single MI_REGION_BEGIN and
MI_REGION_END construct. However for a simple
parallel if-then-else statement, the MASC byte code
would have the following format:

MI_REGION_BEGIN A
(parallel conditional expression)
MI_BEGIN A0
<body_1>
MI_END A0
MI_BEGIN A1
<body_2>
MI_END A1
MI_REGION_END A

The labels used after each command are structure codes
[5] used to keep track of which child instruction stream
belongs to a parent region.

As the MASC runtime environment interprets this
byte code, the runtime environment must now broadcast
instructions from each of the MI_BEGIN and MI_END
regions simultaneously. This can be done by runtime
environment by reordering the byte code instructions
from each of the instruction streams into a VLIW (very
long instruction word). The VLIW instruction word is an
array of MASC instructions which is indexed by an
instruction stream ID number. The following illustration
(figure 3) further illustrates the VLIW array or vector of
MASC instructions.

There are sources of overhead identified and
associated with implementing multiple instruction streams
in the parallel runtime environment for MASC.

1. The MASC runtime environment must now
simultaneously broadcast instructions on behalf
of the multiple instruction streams
simultaneously. This requires the runtime
environment to buffer the instructions and then
reorder them into the VLIW instruction word
individually.

2. A synchronization is required to collect and
collapse instruction streams. While the
synchronization cost in a traditional SIMD is
fixed at one step, the cost in a cluster
implementation defined by the cost of such
synchronization in the cluster
communication library (for example MPI or
PVM).

fix_ 6225 C3.14159F$ STMP$+0 beg_of_stmt 1c00 29 0 fix_ 6225 C0.5F$ STMP$+0
mul_ 313 STMP$+0 RADIUS IPTMP$+0 mul_ 312 LENGTH WIDTH IPTMP$+0 mul_ 313 STMP$+0 BASE IPTMP$+0
mul_ 312 IPTMP$+0 RADIUS IPTMP$+32 float_ 6312 IPTMP$+0 RPTMP$+0 mul_ 312 IPTMP$+0 HGT IPTMP$+32
float_ 6312 IPTMP$+32 RPTMP$+0 mvpa_ 4822 RPTMP$+0 AREA float_ 6312 IPTMP$+32 RPTMP$+0
mvpa_ 4822 RPTMP$+0 AREA mvpa_ 4822 RPTMP$+0 AREA

IS 0 IS 1 IS 2

Figure 3: Example Multiple IS instruction
words implemented as a VLIW array or
vector of independent MASC instructions.

The overhead of the synchronization is limited

by the efficiency of reaching a global consistent state
among a set of processes using a parallel
communication library. Using MPI, for example,
using standard TCP/IP, the latency can be quite high
(approximately 1-10 ms). This latency can be
reduced using a different physical medium for data
communication such as Myrinet. There are many
such studies to demonstrate communication latency
and process synchronization; however they are out of
the scope of this research.

5 An Example of Multiple Instruction
Streams
To illustrate the use of the four new MASC

intermediate instruction codes, this section will
present a simple parallel associative programming
example. Consider the data parallel application of
finding the area of various shapes: circles, rectangles,
triangles, etc. A MASC program would first read
into the array memory a set of shape data, one shape
per cell in the associative memory. Next, the
program would compute the area of the various
shapes. Since the area of many shapes has to be
computed, the program will test a “shape type”
parallel variable to determine which area
computation to perform for a given partition of cells.

The following is a partial code listing for this example
application (figure 4).

Note that parallel variables use a special
programming syntax of having “ [$]” as an identifier
suffix to denote a parallel variable.

5.1 Single Instruction Stream Execution
For the single instruction stream case, as in the

existing MASC emulator, the single instruction stream
executes instructions for both branches of the parallel if-
then-else constructs. The interpreter processes all the
responder cells, or those cells that masked the parallel
condition as TRUE, and then process all the non-
responder cells; those cells that masked the parallel
condition as FALSE.

While the cells that have responded as “circles” are
computing their respective areas, all cells that have
identified themselves as “not circles” are inactive and
waiting to perform their area computations. Likewise,
while “rectangles” are computing their respective areas,
“ triangles” are inactive and waiting to perform there area
computations. Since a single instruction stream is used to
execute both branches of a parallel if-then-else construct,
parallel slackness is being introduced causing a reduction
in throughput.

5.2 Multiple Instruction Stream Execution
To reduce the amount of parallel slackness and

increase throughput, the use of multiple instruction
streams is introduced at the MASC byte code level.
Consider the following modification to the MASC byte
code as shown in figure 5.

Since in this example the area of three different types of
shapes is computed, three separate multiple instruction
stream regions have been identified. The start of a
multiple instruction stream region begins as the MASC
byte code for a parallel comparison is identified. The
region is initialized and assigned a label used by the
parallel runtime environment for instruction stream
synchronization. The current instruction stream is used to
make the parallel comparison and set the responder vector
for those cells that have identified themselves as “circles” .
The first MI_BEGIN-MI_END block (i.e. A0 in Figure 5)
is next and identifies the section of code for computing
the area of a circle. The second MI_BEGIN-MI_END
block is used processing the outermost parallel else

IS 0 IS 1 IS 2 IS 3 IS n-1 . . .

Multiple IS
Instruction Word

Figure 4: Partial MASC program and
resultant byte code for computing area of
various shapes.

 Figure 5: Partial MASC byte code illustrating
multiple instruction streams begin and end
regions.

.MI_REGION_BEGIN A
beg_of_stmt 1c00 29 0
begif 2000 IF$S1
eq_ 714 SHAPETYPE CIRCLE LPTMP$+0
mvpa_ 4832 LPTMP$+0 THEM
if_ 3002 LPTMP$+0 ELS$1
.MI_BEGIN A0
beg_of_stmt 1c00 30 0
decl_ 6125 C3.14159F$ 1 3.14159 0 32
entry_ 6f00 C3.14159F$
fix_ 6225 C3.14159F$ STMP$+0
mul_ 313 STMP$+0 RADIUS IPTMP$+0
mul_ 312 IPTMP$+0 RADIUS IPTMP$+32
float_ 6312 IPTMP$+32 RPTMP$+0
mvpa_ 4822 RPTMP$+0 AREA
.MI_END A0
.MI_BEGIN A1
beg_of_stmt 1c00 31 0
label 6800 ELS$1
else_ 2c02 IF$E1
.MI_REGION_BEGIN B
beg_of_stmt 1c00 32 0
begif 2000 IF$S2
eq_ 714 SHAPETYPE RECTANGLE LPTMP$+0
mvpa_ 4832 LPTMP$+0 THEM
if_ 3002 LPTMP$+0 ELS$2
.MI_BEGIN A1-B0
beg_of_stmt 1c00 33 0
mul_ 312 LENGTH WIDTH IPTMP$+0
float_ 6312 IPTMP$+0 RPTMP$+0
mvpa_ 4822 RPTMP$+0 AREA
.MI_END A1-B0
.MI_BEGIN A1-B1
beg_of_stmt 1c00 34 0
label 6800 ELS$2
else_ 2c02 IF$E2
.MI_REGION_BEGIN C
beg_of_stmt 1c00 35 0
begif 2000 IF$S3
eq_ 714 SHAPETYPE TRIANGLE LPTMP$+0
mvpa_ 4832 LPTMP$+0 THEM
if_ 3002 LPTMP$+0 ELS$3
.MI_BEGIN A1-B1-C0
beg_of_stmt 1c00 36 0
decl_ 6125 C0.5F$ 1 0.5 0 32
entry_ 6f00 C0.5F$
fix_ 6225 C0.5F$ STMP$+0
mul_ 313 STMP$+0 BASE IPTMP$+0
mul_ 312 IPTMP$+0 HEIGHT IPTMP$+32
float_ 6312 IPTMP$+32 RPTMP$+0
mvpa_ 4822 RPTMP$+0 AREA
.MI_END A1-B1-C0
beg_of_stmt 1c00 37 0
label 6800 ELS$3
endif_ 2702 IF$E3
.MI_REGION_END C
.MI_END A1-B1
beg_of_stmt 1c00 38 0
endif_ 2702 IF$E2
.MI_REGION_END B
beg_of_stmt 1c00 39 0
endif_ 2702 IF$E1
.MI_END A1
.MI_REGION_END A

if shapetype[$] .eq. CIRCLE then
 area[$]=3.14159*radius[$]*radius[$];
else
 if shapetype[$] .eq. RECTANGLE then
 area[$] = length[$] * width[$];
 else
 if shapetype[$] .eq. TRIANGLE then
 area[$] = 0.5*base[$]*height[$];
 endif;
 endif;
endif;

beg_of_stmt 1c00 29 0
begif 2000 IF$S1
eq_ 714 SHAPETYPE CIRCLE LPTMP$+0
mvpa_ 4832 LPTMP$+0 THEM
if_ 3002 LPTMP$+0 ELS$1
beg_of_stmt 1c00 30 0
decl_ 6125 C3.14159F$ 1 3.14159 0 32
entry_ 6f00 C3.14159F$
fix_ 6225 C3.14159F$ STMP$+0
mul_ 313 STMP$+0 RADIUS IPTMP$+0
mul_ 312 IPTMP$+0 RADIUS IPTMP$+32
float_ 6312 IPTMP$+32 RPTMP$+0
mvpa_ 4822 RPTMP$+0 AREA
beg_of_stmt 1c00 31 0
label 6800 ELS$1
else_ 2c02 IF$E1
beg_of_stmt 1c00 32 0
begif 2000 IF$S2
eq_ 714 SHAPETYPE RECTANGLE LPTMP$+0
mvpa_ 4832 LPTMP$+0 THEM
if_ 3002 LPTMP$+0 ELS$2
beg_of_stmt 1c00 33 0
mul_ 312 LENGTH WIDTH IPTMP$+0
float_ 6312 IPTMP$+0 RPTMP$+0
mvpa_ 4822 RPTMP$+0 AREA
beg_of_stmt 1c00 34 0
label 6800 ELS$2
else_ 2c02 IF$E2
beg_of_stmt 1c00 35 0
begif 2000 IF$S3
eq_ 714 SHAPETYPE TRIANGLE LPTMP$+0
mvpa_ 4832 LPTMP$+0 THEM
if_ 3002 LPTMP$+0 ELS$3
beg_of_stmt 1c00 36 0
decl_ 6125 C0.5F$ 1 0.5 0 32
entry_ 6f00 C0.5F$
fix_ 6225 C0.5F$ STMP$+0
mul_ 313 STMP$+0 BASE IPTMP$+0
mul_ 312 IPTMP$+0 HEIGHT IPTMP$+32
float_ 6312 IPTMP$+32 RPTMP$+0
mvpa_ 4822 RPTMP$+0 AREA
beg_of_stmt 1c00 37 0
label 6800 ELS$3
endif_ 2702 IF$E3
beg_of_stmt 1c00 38 0
endif_ 2702 IF$E2
beg_of_stmt 1c00 39 0
endif_ 2702 IF$E1

statement. When the next byte code for a parallel if
statement is encountered (see region B in Figure 5), a
new multiple instruction stream region is established.
The two instruction streams for the second region are
used to compute the area of rectangle cells and
triangle cells (which are in a third multiple
instruction stream region. After all of the byte code
statements for a multiple instruction stream block are
complete, the cells change to an inactive state and
wait for a synchronization to complete for the
corresponding multiple instruction stream region.
For this non-optimized example three
synchronizations are required to collapse the three
instruction streams to one.

One such improvement is the multiple
instruction stream region optimizations. Since each
multiple instruction stream region concludes with a
synchronization step, reducing the number of regions
are reduce the overhead incurred by instruction
stream synchronizations. This is illustrated in the
MASC byte code shown in figure 6.

Figure 6: Partial example MASC byte code
illustrating multiple instruction streams
begin and end regions as created optimized
to reduce the number of multiple instruction
stream regions.

This optimized version of the shape example using
multiple instruction streams requires only one region, and
therefore, only one synchronization.

6 Conclusions
This paper has discussed a method of controlling

multiple instruction streams in a massively parallel
associative computing environment. The MASC model is
a model of parallel computation that supports an
associative style of parallel computation that allows
memory to be addressed by content rather than by
address. This model was used to demonstrate how
multiple instruction stream control is feasible by
introducing four new MASC byte code operations that are
interpreted by the parallel runtime environment. These
operations are used to identify program regions where
multiple instruction streams exist and define their entry
and exit points. An example was developed to
demonstrate the new MASC operations. This example
discussed the execution using single and multiple
instruction streams.

7 References

[1] Fox, Geoffrey, “What Have We Learnt from Using Real

Parallel Machines to Solve Real Problems”, Proceedings of
the Third Conference on Hypercube Concurrent Computers
and Applications, Vol. 2, ACM Press, pp. 897-955, 1988.

[2] Herbordt, Martin, and Charles Weems, “Associative,

Multiassociative, and Hybrid Processing” , Associative
Processing and Processors, Anargyros Krikelis and Charles
Weems, eds., IEEE Comupter Society Press, pp. 26-49,
1997.

[3] Jin, Minxian, Johnnie Baker, Kenneth Batcher, “Timings

for Associative Operations on the MASC Model” ,
Proceedings of the 15th International Parallel and
Distributed Symposium (Workshop on Massively Parallel
Processing), April 2001.

[4] Todd Heywood and Claudia Leopold, "Models of

Parallelism", Abstract Machine Models for Highly Parallel
Computers, John R. Davy and Peter M. Dew, Eds., Oxford
Science Publications, Oxford, England, 1995, pp. 1-16.

[5] Potter, Jerry L., Associative Computing: A Programming

Paradigm for Massively Parallel Computers, Plennum
Press, New York, NY, 1992.

[6] Potter, Jerry, Johnnie Baker, Stephen Scott, Arvind Bansal,

Chokchai Leangsuksun, and Chandra Asthagiri, “ASC: An
Associative Computing Paradigm”, IEEE Computer, Nov.,
1994, pp. 19-25.

.MI_REGION_BEGIN A
beg_of_stmt 1c00 29 0
XLAT nnnn SHAPETYPE
.MI_BEGIN A0
beg_of_stmt 1c00 30 0
decl_ 6125 C3.14159F$ 1 3.14159 0 32
entry_ 6f00 C3.14159F$
fix_ 6225 C3.14159F$ STMP$+0
mul_ 313 STMP$+0 RADIUS IPTMP$+0
mul_ 312 IPTMP$+0 RADIUS IPTMP$+32
float_ 6312 IPTMP$+32 RPTMP$+0
mvpa_ 4822 RPTMP$+0 AREA
.MI_END A0
.MI_BEGIN A1
beg_of_stmt 1c00 33 0
mul_ 312 LENGTH WIDTH IPTMP$+0
float_ 6312 IPTMP$+0 RPTMP$+0
mvpa_ 4822 RPTMP$+0 AREA
.MI_END A1
.MI_BEGIN A2
beg_of_stmt 1c00 36 0
decl_ 6125 C0.5F$ 1 0.5 0 32
entry_ 6f00 C0.5F$
fix_ 6225 C0.5F$ STMP$+0
mul_ 313 STMP$+0 BASE IPTMP$+0
mul_ 312 IPTMP$+0 HEIGHT IPTMP$+32
float_ 6312 IPTMP$+32 RPTMP$+0
mvpa_ 4822 RPTMP$+0 AREA
.MI_END A2
.MI_REGION_END A

[7] Scherger, Michael, “On Using the UML to Describe
the MASC Model of Parallel Computation” , Proc. of
the International Conference on Parallel and
Distributed Processing Techniques and Applications
(PDPTA 2000), June 2000, pp. 2639-2645.

[8] Scherger, Michael, “Using the UML to Describe the

BSP Model of Parallel Computation” , Proc. of the
International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA
2002), June 2002, pp. 578-583.

