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Abstract

This work provides a solution to identify malicious nodes
in wireless sensor networks through detection of malicious
message transmissions in a network. A message transmis-
sion is considered suspicious if its signal strength is incom-
patible with its originator’s geographical position. We pro-
vide protocols for detecting suspicious transmissions – and
the consequent identification of malicious nodes – and for
disseminating this information in the network. We evaluate
the detection rate and the efficiency of our solution along a
number of parameters.

1. Introduction

A wireless sensor network (WSN) consists of a set of
compact and automated devices called sensing nodes. A
sensing node is a computational device that has memory,
battery, processor, transceiver, and a sensing device. The
Berkeley MICA Mote [4, 1], SmartDust [7, 8, 12], and
CotsDust [5] are examples of such nodes. These nodes are
distributed across an area and communicate among them-
selves, forming an ad hoc network. Sensor networks con-
tain special nodes that process and store the information col-
lected by the network; they are called sink nodes. Commu-
nication between two nodes is performed in multiple hops
if they are not within each other’s transmission range.

Wireless sensor networks can collect data from the envi-
ronment where they are embedded. The data are often first
processed by the sensor nodes and then sent over non-secure
channels to the sink node for further processing. Some of
the applications envisioned for sensor networks are envi-
ronmental monitoring, infrastructure management, public
safety, medical, home and office security, transportation,
and battlefield surveillance. Given their criticality, these ap-
plications are likely to be attacked.

There are a number of ways one can attack a WSN. For
example, one can spoof the various fields of a message
while it is in transit, in such a way that what the recipi-
ent receives is an altered copy of the original message. One
can also tamper with a node (its hardware and/or software),
so as to alter its behavior. Different types of attacks will
require different types of countermeasures.

In this work, we focus on two types of attacks: HELLO
flood attacks [9] and wormhole attacks [6]. HELLO mes-
sages are used in many protocols by nodes that want to
announce their presence and proximity to their neighbors.
Most of these protocols rely on the assumption that a node
A is within the radio transmission range of another nodeB
if A is able to receive messages fromB. In a HELLO flood
attack, a malicious node may try to transmit a message with
an abnormally high power so as to make all nodes believe
that it is their neighbor.

Wormhole attacks can be described in the following
steps. An adversaryA tunnels a message received to a sec-
ond adversaryB in a distant part of the network using a low-
latency out-of-band channel.B then retransmits the mes-
sage exactly as received to the nodes in its neighborhood.
An immediate result of a wormhole attack is that nodes that
hear the transmission fromB are tricked into thinking that
they are neighbors of whichever node originated the mes-
sage (this node is most likely located in a distant part of the
network).

Both the HELLO flood attack and the wormhole attack
are typically carried out to compromise route establishment
in a network. For example, a malicious node that broadcasts
a routing beacon with an extra high power could lead a large
number of nodes to attempt to use it as their next hop in their
route to the sink. But those sufficiently far away would be
simply sending their messages into the oblivion. A similar
scenario results from a wormhole attack. A malicious node
could convince nodes that are normally multiple hops from
the sink node that they are just one hop away. These nodes
would try to send their packets directly to the sink node,



which would not be able to hear them.
Hu, Perrig, and Johnson have proposed a countermea-

sure for wormhole attacks in ad hoc networks [6]. They
introduced the concept of a packet leash, which is a piece
of additional information added to standard packets to re-
strict its maximum allowed travel distance. Two types of
packet leashes were proposed: geographical and temporal.
The former ensures that the recipient of a packet is within a
certain distance from the sender. The latter limits the life-
time of a packet. Both rely on some kind of clock synchro-
nization between nodes. Because clock synchronization is
resource demanding, and, thus, packet leashes have limited
applicability in wireless sensor networks.

In this work, we propose a mechanism based on signal
strength and geographical information for detecting mali-
cious nodes staging HELLO flood and wormhole attacks.
The idea is to compare the signal strength of a reception
with its expected value, calculated using geographical in-
formation and the pre-defined transceiver specification. A
protocol for disseminating information about detection of
malicious nodes is also proposed. The detection rate of our
solution depends on a number of parameters. We evaluate
their correlation through simulation.

The rest of this paper is organized as follows. In Sec-
tion 2, we present our model and our detection scheme. In
Section 3, we present the various parameters which our de-
tection scheme depends on, and whose impact on the de-
tection rate we investigate in this work. We describe the
simulation we used to evaluate our work and discuss the
results in Section 4. Finally, in Section 5 we present our
concluding remarks and future work.

2. Suspicious node detection by signal strength

In this section, we describe our approach for detecting
suspicious messages and suspicious nodes based on signal
strength.

2.1. The model

In this work, we assume WSNs are homogeneous (all
network nodes contain the same hardware and software con-
figuration), symmetric (nodeA can only communicate with
nodeB if and only if B can communicate withA), and
static (network nodes do not move after deployment). In
particular, the radio transceivers of all members of the net-
work operate under the same configuration throughout the
lifetime of the network (e.g., transmission power, antenna
height, and antenna gain).

All nodes are uniquely identified, and know their own
geographical position, which can be obtained using a po-
sitioning system such as the GPS. The value of a node’s
geographical position as well as its identifier are included

in each of the messages it sends. We assume that message
exchanges in the network are protected against tampering
(using some cryptographic mechanism, for example) [11].

We further assume that radio propagation follows a well
defined model, such as the Free Space Model and the Two-
Ray Ground Model [10], which specify how the values of
transmission power, received signal strength and distance
between the transmitter and the receiver relate to each other.
As an example, the Two-Ray Ground propagation model
(Equation 1) makes the assumption that a signal sent from
one node does not arrive at another node through a unique
path (a straight line), but eventually also through a reflection
in the ground.Pr = Pt �Gt �Gr � h2t � h2rd4 � L (1)

In Equation 1,Pr is the received signal power in Watts,Pt is the transmission power also in Watts,Gt is the trans-
mitter antenna gain,Gr is the receiver antenna gain,ht is
the transmitter antenna height in meters,hr is the receiver
antenna height in meters,d is the distance between the re-
ceiver and transmitter in meters andL is the system loss
(a constant). A signal is only detected by a receiving node
if the received signal powerPr is equal or greater than the
received signal power thresholdPm.

We also assume that the signal strength of a received sig-
nal can be easily acquired from a transceiver. The Chipcon
SmartRF CC1000 [3] transceiver, used in the latest MICA
Motes series [2], for example, has a built-in RSSI (Received
Signal Strength Indicator) giving an analogue output signal
at its RSSI pin. When the RSSI function is enabled, the out-
put current of this pin is inversely proportional to the input
signal level. The voltage at the pin can be measured by a
analog/digital converter, which is the only additional hard-
ware required. Formulas 2 and 3 specify the received signal
strengthsPr, in dBm, when the transceiver is operating at
433 MHz and 868 MHz, respectively.VRSSI is the voltage
measured at the RSSI pin.Pr = �51:3� VRSSI � 49:2 (2)Pr = �50:0� VRSSI � 45:5 (3)

Finally, we assume that malicious nodes are capable of
HELLO flood attacks and wormhole attacks only.

In what follows, a transmission is malicious if the geo-
graphical position included in the corresponding message is
made up or was transmitted with a power that differs from
the one agreed upon by all the other nodes in the system. A
node is malicious if it broadcast a malicious transmission.

Upon receiving a message, a node can classify it as sus-
picious or unsuspicious, depending on whether the node
thinks the transmission is malicious. Given that this clas-
sification (suspicious vs. unsuspicious) is done locally at



the receiving node, malicious transmissions may not al-
ways be classified as suspicious (false negatives), and and
non-malicious transmissions may be classified as suspicious
(false positives).

2.2. Suspicious message detection by signal strength
(SMDSS)

Under the model described above, any node can ob-
tain two values on any transmission it hears. The first
value is the expected signal strength of the received signal,
which can be computed using the transmission power that
was agreed upon for message transmissions in the system
and the distance between the node that hears the transmis-
sion and the source of the transmission itself. The second
value is the actual signal strength detected at the listener’s
transceiver.

In a system where all is well, the two values should
match. The same would not be true in most cases, however,
if the system is under a HELLO flood attack or a worm-
hole attack. We make use of this fact to identify suspicious
messages in the system.

In our proposed scheme, all transmissions in the network
are subject to scrutiny: all nodes monitor all transmissions
they hear. Concretely, the following protocol is run locally
in each sensor node. For each transmission a node hears,
it compares the expected and the actual signal strengths of
the received signal, independently of whether it is the in-
tended recipient of the transmission. When the difference
between both is greater than a given threshold, the message
is regarded as suspicious.

Each node also keeps a local table containing the “repu-
tation” of other nodes in the system. Each entry contains the
node id, the number ofsuspicious votes, and the number
of unsuspicious votes.

After checking the suspiciousness of a received mes-
sage, the node updates its table accordingly: if the message
is suspicious, it increases the message originator’ssuspi-
cious count by one; otherwise, theunsuspicious count is
increased. Note that the message’s originator can be deter-
mined, given that its id is included in the message.

If the message is suspicious, the node takes a further ac-
tion: it disseminates this information among its neighbors.
We describe the dissemination protocol in Section 2.3. A
suspicious message is discarded by its intended recipient
and not acted upon.

2.3. Suspicious node information dissemination
protocol (SNIDP)

Upon detecting a suspicious message, a nodeA broad-
casts the identity of the senderS to its neighbors, informing
them thatS is suspicious. This broadcast also works as an

inquiry: those that hear this broadcast (e.g.,B) should re-
ply with their opinion (suspicious or unsuspicious) ofS. B
determines its reply the following way:� If B is notS’s neighbor, i.e.,B does not hear transmis-

sions fromS, it does not respond;� If B is a neighbor ofS, i.e., B hears transmissions
from S, then it responds with “suspicious” if thesus-
picious count forS in its table is greater than itsun-
suspicious count; otherwise it responds with “unsus-
picious”.A collects all the replies and updates its table accord-

ingly: for each “suspicious” vote it receives, it increases
its ownsuspicious count forS by one; and similarly with
“unsuspicious” votes.

Note thatB’s reply is a broadcast. This means that it
could be heard by all its neighbors, including those that are
neitherS’s neighbor norA’s neighbor (i.e., nodes that did
not hear eitherS’s malicious transmission orA’s broadcast
to disseminate the fact thatS is suspicious). They all update
their tables accordingly.

We clarify a number of our design decisions. First, the
SNIDP protocol is executed only when a suspicious mes-
sage is detected. The assumption here is that, in normal cir-
cumstances (we are being optimistic here), all transmissions
will be unsuspicious, and the network do not need to incur
the overhead of the SNIDP protocol. Second, one might
argue that a single “suspicious” vote would be more than
enough to render a node suspicious. This reasoning would
make our scheme vulnerable to malicious nodes that can
also lie. A malicious node could disseminate the false in-
formation that a regular nodeC is suspicious and, with this
single vote, effectively eliminateC from the network, po-
tentially causing a massive denial-of-service in significant
parts of the network. Our requirement that a node be consid-
ered suspicious only if itssuspicious count outnumbers its
unsuspicious count makes our scheme more robust against
this type of attack.

One might argue that this last design decision could po-
tentially increase the number of false negatives (malicious
nodes that are not detected as suspicious) in our system.
We believe that this will not be the case, because in most
cases, a malicious transmission can fool only a single target
among all the neighbors of the malicious node. This means
that there will be many more nodes broadcasting warnings
saying the malicious node is suspicious than those saying it
is not.

3. Evaluation

Our scheme depends on a number of parameters. In this
section we investigate how variations of these various pa-



rameters impact the detection rates of our scheme. Four pa-
rameters are evaluated in this work: network density, trans-
mission power multiplier of the malicious node, message
check probability, and maximum ratio difference. We dis-
cuss each in turn.

Network density determines directly the number of
neighbors a node will have. Given that our suspicious
node detection depends on exchange of information among
neighbors, this parameter should have a role to play in the
detection rate of suspicious nodes.

Sensor nodes are resource-constrained, and a cost is in-
curred by each message that a node receives and checks.
Decreasing the number of messages checked would de-
crease the overall resource consumption. Message check
probabilityC determines the probability that a transmission
will be checked by a node that hears it. For each trans-
mission, a numberc between 0 and 1, given by a uniform
random variable, will determine whether a node will check
the message. The message is checked only ifc < C.

Maximum ratio differenceR determines how much the
received signal strengthPr can differ from the expected re-
ceived signal strengthPe without the transmission being
classified as suspicious. Given a signal, its ratio differencer is defined by Equation 4:r = 1��min(Pr; Pe)max(Pr ; Pe)� (4)

wheremin(a; b) = a if b > a, andmin(a; b) = b other-
wise;max(a; b) = b if b > a, andmax(a; b) = b other-
wise. For each message that a node receives, the message
is classified as suspicious ifr > R. This parameter is used
to deal with precision issues concerning the measurement
of signal strengths and the determination of a node’s geo-
graphical position.

We use the Two-Ray Ground propagation model (de-
scribed in Section 2.1) in this study. Table 1 shows the
values we assume for the transceivers of non-malicious
nodes [3]. Transceivers of malicious nodes have the same
characteristics except for the transmission power, which we
specify as the regular transmission power multiplied by the
transmission power multiplier. Depending on the value of
its multiplier, a malicious transmission may or may not be
detected as suspicious.

We consider two types of scenarios in our evaluations:
unfocused and focused. In an unfocused scenario, all nodes,
including the malicious one, are turned on at the same time,
and broadcast one HELLO message each. Malicious nodes
send their messages at a power other than the one used by
the members of the network, but do not fine tune it in any
other way (this is why the scenario is called unfocused).
We use this scenario to model cases where malicious nodes
manage to be present right at the deployment and initializa-
tion of the network.

Transmission powerPt �5 dBm
Transmitter antenna gainGt 1.0
Receiver antenna gainGr 1.0
Transmitter antenna heightht 0.05 m
Receiver antenna heighthr 0.05 m
Received signal power thresholdPm �104 dBm
System loss L 1.0

Table 1. Reliable node parameters

In a focused scenario, malicious nodes start their activ-
ities after the network has been deployed and initialized.
That is, a malicious node starts transmitting only after all
members have been turned on and sent a HELLO message
to each other. In this case, the malicious node chooses a
target victim (that is why this case is called focused), makes
up a position that is within the victim’s radio range, and
fine tunes its transmission power accordingly, so as to avoid
raising suspicion. The right transmission power to use can
be obtained straightforwardly using expression 1.

We evaluate our scheme through simulation.

4. Simulation and results

In this section, we present the simulation model and re-
sults of our work.

4.1. Simulation model

We developed a wireless sensor network simulator to
create an environment to evaluate our work. It is a discrete
event simulator written in Java. A network generator was
built, which generates networks comprised ofn nodes plus
one malicious node, all located in anS � S square field.
Each node has randomizedx andy coordinates. No two
different nodes share the same coordinates. Networks with50; 100; 150; : : : ; 500 nodes in 179� 179 m2 fields were
generated and used as input to the simulator. For each net-
work with a given number of nodes, 200 network topologies
were created. As all networks we consider are in a 179�
179 m2 field, the density is measured in number of nodes.
Fig. 1 shows the average number of neighbors of a node for
each network density.

We ran the simulation on each generated input file for
both scenarios (focused and unfocused) with different com-
binations of values for each of the parameters described in
Section 3. Each parameter has a range of values it can as-
sume (see Table 3), one of which is the default value (Ta-
ble 2). In each run of the simulation, we set three parameters
to their default values while varying the value of the fourth.

In the unfocused scenario, we ran 200 different simula-
tions for each combination of parameters, one for each net-
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Figure 1. Average number of neighbors vs.
network density

Parameter Default value
Network density 200 nodes in a

179� 179 m2 field
Malicious node multiplier 2
Maximum ratio difference 0.3
Message check probability 1.0

Table 2. Default parameters

work topology generated. In the focused scenario, we ran
five simulations for each network topology. In each simula-
tion, the malicious node targets its transmission to a differ-
ent node.

Right before a malicious transmission starts, all statis-
tics are reset in order to evaluate only the number of mes-
sage transmissions triggered by the detection of a suspicious
message.

4.2. Results

In the following, we present and discuss the simulation
results. All values in the graphs are the average value of
multiple runs for a given set of parameter values. In each
case, we investigate the malicious message detection rate
(the inverse of the ratio between the total number of recep-
tions of malicious messages and the number of those con-

Parameter Values
Network density 50, 100,: : :, 500 nodes
Malicious node multiplier 1.1, 1.2,: : :, 2.0
Maximum ratio difference 0.1, 0.2,: : :, 0.9
Message check probability 0.1, 0.2,: : :, 1.0

Table 3. Parameter values evaluated

sidered suspicious) as well as malicious node detection rate
(the inverse of the ratio between the total number of nodes
that has heard of the malicious node and the number of those
that consider it as suspicious).

As expected, no one single non-malicious transmission
was classified as suspicious.

4.2.1 Detection rate vs. network density

In Figure 2, we show how the malicious message detection
rate correlates with network density. Our simulation shows
that the results are quite similar for the two scenarios. In
the unfocused case, all malicious messages are classified as
suspicious. In the focused case, a small fraction of mali-
cious message receptions are not classified as suspicious.
This happens because for each malicious transmission the
target victim is actually fooled.

To be sure, rarely some other nodes are also fooled. But
this happens only when the target node and the one that is
also fooled have almost the same distance to the made up
position of the malicious node as well as to its actual posi-
tion.
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Figure 2. Percentage of malicious message
receptions detected vs. network density

In both scenarios, all nodes that are within the radio
range of the malicious node heard its transmissions and,
using the SNIDP protocol, are able to conclude that it is
suspicious. This result holds for all the network densities
we considered. Given the uniformity of the result, we omit
the corresponding graph here.

4.2.2 Detection rate vs. transmission power multiplier

Malicious message detection rate and transmission power
multiplier used by the malicious node (in the unfocused
case) have a fairly simple correlation. If the multiplier is
above approximately 1.43, all malicious transmissions are
regarded as suspicious by everyone that hears the transmis-
sions; otherwise the result is diametrically opposite (none



of the malicious transmissions are regarded as suspicious
by anyone).

4.2.3 Detection rate vs. maximum ratio difference

The results concerning the maximum ratio difference are
summarized in Figures 3 and 4.

The impact of this parameter in the two scenarios is al-
most identical. In the unfocused case, the malicious mes-
sage detection rate is 1, when the maximum ratio difference
is less than or equal to 0.4; while, for the focused case, the
detection rate is slightly under 1 for the same values of max-
imum ratio difference.

The results for malicious node detection (Fig. 4) are sim-
ilar.

Note that the scheme works well even when the maxi-
mum ratio difference is high (0.4). This means that neither
the value of a reception’s signal strength nor the value of a
node’s geographical position need to have high precision.
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centage vs. maximum ratio difference
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Figure 4. Malicious node detection percent-
age vs. maximum ratio difference

4.2.4 Detection rate vs. Message check probability

The results concerning the message check probability are
shown in Figure 5. In these experiments, nodes of the net-
work do not check all transmissions they hear. Instead, they
do so with a certain probability, given by the check prob-
ability. Our results show that, in the unfocused scenario,
a check probability of 70% will yield malicious node de-
tection rates that are near 90%. This shows that it is not
necessary to check all transmissions one hears in order to
have a very good malicious node detection rate. On the
other hand, in the focused case, the detection rate is 1 for
any check probability.
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Figure 5. Malicious node detection percent-
age vs. message check probability

4.2.5 SNIDP overhead

Figure 6 shows the average number of transmissions and re-
ceptions in the focused scenario. These values are restricted
to SNIDP protocol message exchanges triggered by mali-
cious transmissions. These values are quite high consider-
ing sensor nodes’ resources limitations, specially in terms
of energy. Efficiency was not in the foreground of our con-
siderations when we designed the SNIDP protocol (we were
interested in finding firstly a simple version that would work
correctly), but we expect that it will be possible to greatly
optimize it. For example, a possible improvement would be
for a nodeN to respond to inquiries regarding some suspi-
cious nodeS only if N has not answered any inquiries aboutS for a predefined period of time. In fact, optimization of
SNIDP is one of our most pressing future work.

5. Conclusion and future work

Our detection scheme detects HELLO flooding attacks
because a malicious nodeS can only trick one nodeN at
a time by advertising a made up position and adjusting its
transmission power accordingly. However, most neighbors
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of N will detect this malicious transmission, and will dis-
seminate this information among their neighbors. Through
this mechanism,N will also learn thatS is suspicious. Our
scheme also detects wormhole attacks because messages
that travel beyond their originator’s transmission range are
discarded.

Our proposed scheme can be easily integrated into other
protocols. It would interface with the rest of the system
through an API that provides information about whether a
node or a message is regarded as suspicious. The MNDSS
protocol does not have heavy requirements in terms of the
underlying hardware; low-precision devices can be used, as
the scheme works well even for relatively high values of
maximum ratio difference.

Energy consumption is directly correlated to the number
of message checkings and the number of message transmis-
sions and receptions incurred by the execution of the SNIDP
protocol. Regarding the number of message checkings, our
experimental results show that it is not necessary that nodes
check all transmissions they hear to obtain a good mali-
cious node detection rate. Regarding the number of mes-
sage transmissions and receptions, our SNIDP protocol has
not been optimized yet, and the number of messages ex-
changed between nodes can definitely be decreased without
compromising the current detection rates. A possible im-
provement would be for a nodeN to respond to inquiries re-
garding some suspicious nodeS only if N has not answered
any inquiries aboutS for a predefined period of time.

As future work, we intend to explore other physical mod-
els. The Two-Ray Ground model alone does not model sig-
nal power loss due to obstacles, weather conditions, inter-
ference, etc.

Determination of a malicious node’s location is another
interesting question. It is, however, not a straightforward
task. It would require some degree of cooperation between
nodes, so that they may together pinpoint the approximate
location of the adversary. When a node receives a message

and considers it as suspicious, it may coordinate with its
neighbors to try to locate the origin of the message by using
the signal strength detected by its own receiver and the sig-
nal strength received by other nodes. A minimum of three
nodes should be sufficient in finding the approximate region
where the adversary is located. We envision a scheme sim-
ilar to what is deployed in GPS Radio systems, where a re-
ceiver needs to obtain a position from at least three orbiting
satellites.

References

[1] Berkeley MICA mote.
http://webs.cs.berkeley.edu/tos/hardware/hardware.html,
2003.

[2] MICA2 radio stack for TinyOS.
http://webs.cs.berkeley.edu/tos/tinyos-
1.x/doc/mica2radio/CC1000.html, 2003.

[3] Chipcon. SmartRF CC1000 single chip very low power RF
transceiver.
http://www.chipcon.com/files/CC1000DataSheet2 1.pdf,
2003.

[4] J. Hill and D. Culler. A wireless embedded sensor architec-
ture for system-level optimization. Technical report, Univer-
sity of California, Berkeley, 2001.

[5] S. Hollar. COTS Dust. Master’s thesis, University of Cali-
fornia, Berkeley, December 2000.

[6] Y.-C. Hu, A. Perrig, and D. B. Johnson. Packet leashes:
A defense against wormhole attacks in wireless ad hoc net-
works. Proceedings of the 22nd Annual Joint Conference of
the IEEE Computer and Communications Societies (INFO-
COM 2003), April 2003.

[7] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century
challenges: Mobile networking for “smart dust”. InInter-
national Conference on Mobile Computing and Networking
(MOBICOM), pages 271–278, 1999.

[8] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Emerging chal-
lenges: Mobile networking for “smart dust”.Journal of
Communications and Networks, 2(3):188–196, September
2000.

[9] C. Karlof and D. Wagner. Secure routing in wireless sensor
networks: Attacks and countermeasures.First IEEE Inter-
national Workshop on Sensor Network Protocols and Appli-
cations, May 2003.

[10] T. S. Rappaport.Wireless communications: principles and
practice. Prentice Hall, 2nd edition, 2002.

[11] W. Stallings.Cryptography and Network Security – Princi-
ples and Practice. Prentice Hall, 3rd edition, 2003.

[12] B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister.
Smart dust: Communicating with a cubic-millimeter com-
puter.Computer, 34(1):44–51, 2001.


