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Abstract

Most distributed applications require, at least conceptually, some sort of shared state: in-
formation that is non-static but mostly read, and needed at more than one site. At the same
time, RPC-based systems such as Sun RPC, Java RMI, CORBA, and .NET have become the de
facto standards by which distributed applications communicate. As a result, shared state tends
to be implemented either through the redundant transmission of deep-copy RPC parameters
or through ad-hoc, application-specific caching and coherence protocols. The former option
can waste large amounts of bandwidth; the latter significantly complicates program design and
maintenance.

To overcome these problems, we propose a distributed middleware system that works seam-
lessly with RPC-based systems, providing them with a global, persistent store that can be ac-
cessed using ordinary reads and writes. In an RPC-based program, shared state serves to (1)
support genuine reference parameters in RPC calls, eliminating the need to pass large struc-
tures repeatedly by value, or to recursively expand pointer-rich data structures using deep-copy
parameter modes; (2) eliminate invocations devoted to maintaining the coherence and consis-
tency of cached data; (3) reduce the number of trivial invocations used simply to put or get
data. Relaxed coherence models and aggressive protocol optimizations reduce the bandwidth
required to maintain shared state. Integrated support for transactions allows a chain of RPC
calls to update that state atomically.

We focus in this paper on the implementation challenges involved in combining RPC with
shared state, relaxed coherence, and transactions. In particular, we describe a transaction meta-
data table that allows processes inside a transaction to share data invisible to other processes and
to exchange data modifications efficiently. Using microbenchmark and large-scale datamining
applications, we demonstrate how the integration of RPC, transactions, and shared state facili-
tates the rapid development of robust, maintainable code.
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1 Introduction

Most Internet-level applications are distributed not for the sake of parallel speedup, but rather to
access people, data, and devices in geographically disparate locations. Typical examples include e-
commerce, computer-supported-collaborative work, multi-player games, peer-to-peer data sharing,
and scientific GRID computing. For the sake of availability, scalability, latency, and fault tolerance,
most such applications cache information at multiple sites. To maintain these copies in the face
of distributed updates, programmers typically resort to ad-hoc messaging or RPC protocols that
embody the coherence and consistency requirements of the application at hand. The code devoted
to these protocols often accounts for a significant fraction of overall application size and complexity,
and this fraction is likely to increase.

To facilitate the design, implementation, maintenance, and tuning of distributed applications, we
have developed a system known as InterWeave that manages shared state automatically [7, 26, 29].
InterWeave allows the programmer to share both statically and dynamically allocated variables
across programs written in different programming languages and running on a wide variety of hard-
ware and OS platforms. InterWeave currently supports C, C++, Java, Fortran 77, and Fortran 90,
running on Alpha, Sparc, x86, MIPS, and Power series processors, under Tru64, Solaris, Linux,
Irix, AIX, and Windows NT (XP). Driving applications include datamining, intelligent distributed
environments, and scientific visualization.

Shared data segments in InterWeave are named by URLs, but are accessed, once mapped, with
ordinary loads and stores. Segments are also persistent, outliving individual executions of sharing
applications, and support a variety of built-in and user-defined coherence and consistency models.
Aggressive protocol optimizations, embodied in the InterWeave library, allow InterWeave appli-
cations to outperform all but the most sophisticated examples of ad-hoc caching [7, 8, 29]. Most
distributed applications, despite their need for shared state, currently use remote invocation to trans-
fer control among machines. InterWeave is therefore designed to be entirely compatible with RPC
systems such as Sun RPC, Java RMI, CORBA, and .NET. By specifying where computation should
occur, RPC allows an application to balance load, maximize locality, and co-locate computation
with devices, people, or private data at specific locations. At the same time, shared state serves to

• eliminate invocations devoted to maintaining the coherence and consistency of cached data;

• support genuine reference parameters in RPC calls, eliminating the need to pass large struc-
tures repeatedly by value, or to recursively expand pointer-rich data structures using deep-
copy parameter modes;

• reduce the number of trivial invocations used simply to put or get data.

These observations are not new. Systems such as Emerald [16] and Amber [5] have long employed
shared state in support of remote invocation in homogeneous object-oriented systems. Kono et
al. [18] supported reference parameters and caching of remote data, but with a restricted type system,
and with no provision for coherence across RPC sessions.

RPC systems have long supported automatic deep-copy transmission of structured data among
heterogeneous languages and machine architectures [15, 31], and modern standards such as XML
provide a language-independent notation for structured data. To the best of our knowledge, however,
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InterWeave is the first system to automate the typesafe sharing of structured data in its internal (in-
memory) form across multiple languages and platforms, and to optimize that sharing for distributed
applications.

For Internet-level applications, it becomes an expectation rather than an exception to experience
system failures or race conditions when accessing shared data. Since fault tolerance is not provided
at the RPC level, RPC-based applications usually have to build their own mechanism to recover from
faults and to improve availability, which complicates application design from another dimension.
InterWeave eases the task of building robust distributed applications by providing them with support
for transactions. A sequence of RPC calls and data access to shared state can be encapsulated in
a transaction in such a way that either all of them execute or none of them do with respect to the
shared state. Transactions also provide a framework in which the body of a remote procedure can
see (and optionally contribute to) shared data updates that are visible to the caller but not yet to other
processes.

Previous papers have focused on InterWeave’s coherence and consistency models [7], hetero-
geneity mechanisms [6, 29], and protocol optimizations [8]. The current paper addresses the in-
tegration of shared state, remote invocation, and transactions. Section 2 briefly summarizes the
InterWeave programming model, and introduces a design that seamlessly integrates shared state, re-
mote invocation, and transactions to form a distributed computing environment. Section 3 sketches
the basic structure of the InterWeave client and server libraries, and then focuses on implementation
issues in adding support for remote invocation and transactions into InterWeave. Section 4 evalu-
ates InterWeave in both local and wide area network, using microbenchmarks and a larger example
drawn from our work in data mining, that uses RPC and shared state to offload computations to
back-end servers. Section 5 discusses related work. Section 6 presents conclusions.

2 InterWeave Design

InterWeave integrates shared state, remote invocation, and transactions into a distributed computing
environment. The InterWeave programming model assumes a distributed collection of servers and
clients. Servers maintain persistent copies of shared data and coordinate sharing among clients.
Clients in turn must be linked with a special InterWeave library, which arranges to map a cached
copy of needed data into local memory. Once mapped, shared data (including references) are
accessed using ordinary reads and writes. InterWeave servers are oblivious to the programming
languages used by clients, and the client libraries may be different for different programming lan-
guages. InterWeave servers may be replicated to improve availability and scalability. Data co-
herence among replicated servers is maintained using a group communication protocol [17]. Inter-
Weave supports the use of relaxed coherence models when accessing shared data. Updates to shared
data and invocations to remote procedures on arbitrary InterWeave processes can be optionally pro-
tected by ACID transactions [13].

Figure 1 presents an example of InterWeave client code for a simple shared linked list. The
InterWeave API used in the example will be explained in more detail in the following sections. For
consistency with the example, we present the C version of the API. Similar versions exist for C++,
Java, and Fortran.
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// RPC client code
IW_seg_t seg; node_t *head;
void list_init(void) {

seg = IW_open_segment("data_svr/list");
head = IW_mip_to_ptr("data_svr/list#head");
IW_set_sharing(seg, IW_MIGRATORY);

}

// RPC client code
int list_insert(int key, float val) {

IW_trans_t trans; node_t *p; arg_t arg;
for (int c = 0; c < RETRY; c++) {

trans = IW_begin_work(); //new transaction
IW_twl_acquire(trans, seg); //lock
p = (node_t*) IW_malloc(seg, IW_node_t);
p->key = key;
p->val = val;
p->next = head->next;
head->next = p;
arg.list = "data_svr/list"; //RPC argument
arg.trans = trans; //needed by IW lib
clnt_compute_avg("rpc_svr", &arg); //RPC
printf("average %f\n", head->val);
IW_twl_release(trans, seg); //unlock
if (IW_commit_work(trans) == IW_OK)
return IW_OK;

}
return IW_FAIL;

}

// RPC server code
result_t *compute_avg(arg_t *arg, svc_req *r) {

static reslt_t result; int n=0; float s=0;
char *seg_url = IW_extract_seg_url(arg->list);
seg = IW_open_segment(seg_url);
IW_twl_acquire(arg->trans, seg); //lock
head = IW_mip_to_ptr(arg->list);
for (node_t *p = head->next; p; p = p->next) {

s += p->val; n++;
}
head->val = (n!=0)? s/n : 0;
IW_twl_release(arg->trans, seg); //unlock
IW_close_segment(seg);
result.trans = arg->trans; //needed by IW lib
return &result;

}

Figure 1: Shared linked list in InterWeave. Both the RPC client and RPC server are InterWeave
clients. The variable head points to a dummy header node; the first real item is in head->next.
head->val is the average of all list items’ val fields. The RPC client is initialized with
list init. To add a new item to the list, the RPC client starts a transaction, inserts the item, and
makes a remote procedure call to a fast machine to update head->val. head->val could rep-
resent summary statistics much more complex than “average”. The function clnt compute avg
is the client side stub generated by the standard rpcgen tool. The IW close segment in the
RPC server code will leave the cached copy of the segment intact on the server for later reuse.

2.1 Data Allocation

The unit of sharing in InterWeave is a self-descriptive segment (a heap) within which programs
allocate strongly typed blocks of memory. Every segment is specified by an Internet URL. The
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struct arg_t {
char * list;
IW_trans_t trans; //instrumented by IW IDL

};

bool_t xdr_arg_t(XDR *xdrs, arg_t *objp) {
if(!xdr_string(xdrs, &objp->list, ˜0))

return FALSE;
if(!xdr_trans_arg(xdrs, &objp->trans))

return FALSE; //instrumented by IW IDL
return TRUE;

}

Figure 2: The argument structure and its XDR routine. During an RPC, xdr arg t () is invoked
on both the caller side (to marshal arguments) and the callee side (to unmarshal arguments). Like-
wise, xdr result t () (not shown here) is invoked to marshal and unmarshal the results. Both
routines are generated with the standard rpcgen tool and slightly modified by the InterWeave IDL
compiler. xdr trans arg () is a function in the InterWeave library that marshals and unmar-
shals transaction metadata along with other arguments.

blocks within a segment are numbered and optionally named. By concatenating the segment URL
with a block name or number and optional offset (delimited by pound signs), we obtain a machine-
independent pointer (MIP): “foo.org/path#block#offset”. To accommodate heteroge-
neous data formats, offsets are measured in primitive data units—characters, integers, floats, etc.—
rather than in bytes.

Every segment is managed by an InterWeave server at the IP address corresponding to the
segment’s URL. Different segments may be managed by different servers. Assuming appropriate
access rights, IW open segment() communicates with the appropriate server to open an existing
segment or to create a new one if the segment does not yet exist. The call returns an opaque segment
handle, which can be passed as the initial argument in calls to IW malloc().

As in multi-language RPC systems, the types of shared data in InterWeave must be declared in
an interface description language (IDL—currently Sun XDR). The InterWeave IDL compiler trans-
lates these declarations into the appropriate programming language(s) (C, C++, Java, Fortran). It
also creates initialized type descriptors that specify the layout of the types on the specified machine.
The descriptors must be registered with the InterWeave library prior to being used, and are passed
as the second argument in calls to IW malloc(). These conventions allow the library to translate
data to and from wire format, ensuring that each type will have the appropriate machine-specific
byte order, alignment, etc. in locally cached copies of segments.

Synchronization (see Section 2.2) takes the form of reader-writer locks that take a segment
handle and an optional transaction handle (see Section 2.3) as parameters. A process must hold a
writer lock on a segment in order to allocate, free, or modify blocks.

Given a pointer to a block in an InterWeave segment, or to data within such a block, a process
can create a corresponding MIP: “IW mip t m = IW ptr to mip(p)”. This MIP can then
be passed to another process through a message, a file, or a parameter of a remote procedure.
Given appropriate access rights, the other process can convert it back to a machine-specific pointer:
“my type *p = (my type*) IW mip to ptr(m)”. The IW mip to ptr() call reserves
space for the specified segment if it is not cached locally, and returns a local machine address.
Actual data for the segment will not be copied into the local machine unless and until the segment
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is locked.
It should be emphasized that IW mip to ptr() is primarily a bootstrapping mechanism.

Once a process has one pointer into a data structure (e.g. the head pointer in our linked list ex-
ample), any data reachable from that pointer can be directly accessed in the same way as local
data, even if embedded pointers refer to data in other segments. InterWeave’s pointer-swizzling and
data-conversion mechanisms ensure that such pointers will be valid local machine addresses [29].
It remains the programmer’s responsibility to ensure that segments are accessed only under the
protection of reader-writer locks.

2.2 Coherence

When modified by clients, InterWeave segments move over time through a series of internally con-
sistent states. When a process first locks a shared segment (for either read or write), the InterWeave
library obtains a copy from the segment’s server. At each subsequent read-lock acquisition, the
library checks to see whether the local copy of the segment is “recent enough” to use. If not, it
obtains an update from the server. An adaptive polling/notification protocol [7] often allows the
client library to avoid communication with the server when updates are not required. Twin and diff
operations [4], extended to accommodate heterogeneous data formats, allow the implementation to
perform an update in time proportional to the fraction of the data that has changed.

InterWeave currently supports six different definitions of “recent enough”. It is also designed in
such a way that additional definitions (coherence models) can be added easily. Among the current
models, Full coherence always obtains the most recent version of the segment; Strict coherence
obtains the most recent version and excludes any concurrent writer; Null coherence always accepts
the currently cached version, if any (the process must explicitly override the model on an individual
lock acquire in order to obtain an update); Delta coherence [27] guarantees that the segment is no
more than x versions out-of-date; Temporal coherence guarantees that it is no more than x time
units out of date; and Diff-based coherence guarantees that no more than x% of the primitive data
elements in the segment are out of date. In all cases, x can be specified dynamically by the process.
All coherence models other than Strict allow a process to hold a reader lock on a segment even when
a writer is in the process of creating a new version.

The server for a segment need only maintain a copy of the segment’s most recent version. The
API specifies that the current version of a segment is always acceptable. To minimize the cost of
segment updates, the server remembers, for each block, the version number of the segment in which
that block was last modified. This information allows the server to avoid transmitting copies of
blocks that have not changed.

2.3 RPC and Transactions

InterWeave’s shared state can be used with RPC systems by passing MIPs as ordinary RPC string
arguments. When necessary, a sequence of RPC calls, lock operations, and data manipulations can
be protected by a transaction to ensure that distributed shared state is updated atomically. Operations
in a transaction are performed in such a way that either all of them execute or none of them do with
respect to InterWeave shared state. InterWeave may run transactions in parallel, but the behavior
of the system is equivalent to some serial execution of the transactions, giving the appearance that
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one transaction runs to completion before the next one starts. (Weaker transaction semantics are
further discussed in Section 3.3.) Once a transaction commits, its changes to the shared state survive
failures.

Typically, a transaction is embedded in a loop to try the task repeatedly until it succeeds or
a retry bound is met (see Figure 1). The task usually starts with an IW begin work () call,
which returns an opaque transaction handle to be used in later transactional operations, such as
IW commit work () and IW rollback work ().

Each RPC call automatically starts a sub-transaction that can be individually aborted without
rolling back the work that has already been done by outer (sub-)transactions. In keeping with the
traditional RPC semantics, we assume that only one process in an RPC call chain is active at any
given time.

The skeleton code for both the RPC client and server is generated using the standard rpcgen
tool and slightly modified by the InterWeave IDL compiler to insert a transaction handle field
in both the RPC argument and result structures (see Figure 2). Accordingly, the XDR transla-
tion routines for the arguments and results are augmented with a call to xdr trans arg () or
xdr trans result (), respectively. These two InterWeave library functions encode and trans-
mit transaction information along with other RPC arguments or results.

InterWeave’s shared state and transaction support is designed to be completely compatible with
existing RPC systems. Inside a transaction, the body of a remote procedure can see (and optionally
contribute to) shared data updates that are visible to the caller but not yet to other processes. An
RPC caller can pass references to shared state (MIPs) to the callee as ordinary string arguments. The
RPC callee then extracts the segment URL from the MIP using IW extract seg url (), locks
the segment, and operates on it (see the RPC server code in Figure 1). Modifications to the segment
made by the callee will be visible to other processes in the transaction when the lock releases, and
are applied to the InterWeave server’s master copy when the outermost (root) transaction commits.
Before the root transaction commits, those modifications are invisible to other transactions.

A segment’s sharing pattern can be specified as either migratory or stationary using IW set sharing ().
When making an RPC call, the xdr trans arg () on the caller side temporarily releases writer
locks on currently locked migratory segments and makes modifications to these segments visible to
the RPC callee. When the RPC call returns, the xdr trans result () on the caller side will
automatically re-acquire locks on those segments and bring in updates made by the callee. Writer
locks on stationary segments, however, are not released by the caller before making an RPC call.
Should the callee acquire a writer lock on any of these locked segments, it is a synchronization error
in the program. The transaction simply aborts.

In addition to providing protection against various system failures, transactions also provide a
mechanism to recover from problems arising from relaxed coherence models, e.g., deadlock or lock
failure caused by inter-segment inconsistency. Suppose, for example, that process P has acquired
a reader lock on segment A, and that the InterWeave library determined at the time of the acquire
that the currently cached copy of A, though not completely up-to-date, was “recent enough” to use.
Suppose then that P attempts to acquire a lock on segment B, which is not yet locally cached. The
library will contact B’s server to obtain a current copy. If that copy was created using information
from a more recent version of A than the one currently in use at P, a consistency violation has oc-
curred. Users can disable this consistency check if they know it is safe to do so, but under normal
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circumstances the attempt to lock B must fail. The problem is exacerbated by the fact that the in-
formation required to track consistency (which segment versions depend on which?) is unbounded.
InterWeave hashes this information in a way that is guaranteed to catch all true consistency vio-
lations, but introduces the possibility of spurious apparent violations [7]. Transaction aborts and
retries could then be used in this case to recover from inconsistency, with automatic undo of un-
committed segment updates. An immediate retry is likely to succeed, because P’s out-of-date copy
of A will have been invalidated.

3 Implementation of InterWeave

In this section, we first sketch the basic structure of the InterWeave client library and server (without
support for RPC or transactions), and then elaborate on the support for RPC and transactions. De-
tails of the basic implementation can be found in previous papers. InterWeave currently consists of
approximately 45,000 lines of heavily commented C++ code. Both the client library and the server
have been ported to a variety of architectures (Alpha, Sparc, x86, MIPS, and Power4), operating
systems (Windows NT/XP, Linux, Solaris, Tru64 Unix, IRIX, and AIX), and languages (C, C++,
Fortran 77/90, and Java).

3.1 Basic Client Implementation

When a process acquires a writer lock on a given segment, the InterWeave library asks the operating
system to disable write access to the pages that comprise the local copy of the segment. When
a write fault occurs, the SIGSEGV signal handler, installed by the InterWeave library at program
startup time, creates a pristine copy, or twin [4], of the page in which the write fault occurred. It
saves a pointer to that twin for future reference, and then asks the operating system to re-enable
write access to the page.

When a process releases a writer lock, the library gathers local changes, converts them into
machine-independent wire format in a process called diff collection, and sends the diff to the server.
The changes are expressed in terms of segments, blocks, and offsets of primitive data units (integers,
doubles, chars, etc.), rather than pages and bytes. The diffing routine must have access to type
descriptors (generated automatically by the InterWeave IDL compiler) in order to compensate for
local byte order and alignment, and in order to swizzle pointers. The content of each descriptor
specifies the substructure and layout of its type.

When a client acquires a reader lock and determines that its local cached copy of the segment is
not recent enough to use under the desired coherence model (communicating with the server to make
the decision if necessary [7]), the client asks the server to build a wire-format diff that describes the
data that have changed between the current local copy at the client and the master copy at the server.

When the diff arrives the library uses it to update the local copy in a process called diff appli-
cation. In the inverse of diff collection, the diff application routine uses type descriptors to identify
the local-format bytes that correspond to primitive data changes in the wire-format diff.
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3.2 Basic Server Implementation

Each server maintains an up-to-date copy of each of the segments for which it is responsible, and
controls access to those segments. To avoid an extra level of translation, the server stores both
data and type descriptors in wire format. For each segment, the server keeps track of blocks and
subblocks. Each subblock comprises a small contiguous group of primitive data elements from
the same block. For each modest-sized block in each segment, and for each subblock of a larger
block, the server remembers the version number of the segment in which the content of the block
or subblock was most recently modified. This convention strikes a compromise between the size of
server-to-client diffs and the size of server-maintained metadata.

Upon receiving a diff from a client, an InterWeave server uses the diff to update its master copy.
It also updates the version numbers associated with blocks and subblocks affected by the diff. At
the time of a lock acquire, if the client’s cached copy is not recent enough to use, the client sends the
server the (out-of-date) version number of the local copy. The server then identifies the blocks and
subblocks that have changed since the last update to this client by inspecting their version numbers,
constructs a wire-format diff, and returns it to the client.

3.3 Support for RPC and Transactions

When neither transactions nor RPC are being used, segment diffs sent from an InterWeave client
to a server are immediately applied to the server’s master copy of the segment. With transactions,
updates to the segment master copy are deferred until the transaction commits. Like many database
systems, InterWeave employs a strict two-phase locking protocol and two-phase commit protocol
to support atomic, consistent, isolated, and durable (ACID) transactions. With a strict two-phase
locking protocol, locks acquired in a transaction or sub-transaction are not released to the Inter-
Weave server until the outermost (root) transaction commits or aborts. It would be possible to adapt
variants of these protocols (e.g., optimistic two-phase locking [13]) to InterWeave, but we do not
consider this possibility here.

Each InterWeave client runs a transaction manager (TM) thread that keeps tracks of all on-going
transactions involving the given client and listens on a specific TCP port for transaction related re-
quests. Each TM is uniquely identified by a two-element <client IP, #port> tuple. Each transaction
is uniquely identified by a three-element <client IP, #port, #seq> tuple, where <client IP, #port>
is the ID of the TM that starts the transaction and “#seq” is a monotonically increasing sequence
number inside that TM. These naming conventions allow TMs to establish connections to each other
once the ID of a TM or transaction is known.

In the IW start work () call, a transaction metadata table (TMT) is created to record
information about the new transaction: locks acquired, locks currently held, version numbers of
locked segments, segments modified, locations where diffs can be found, etc. The TMT is the key
data structure that supports the efficient implementation of transactions and the integration of shared
state and transactions with RPC. It is passed between caller and callee in every RPC call and return.
With the aid of the TMT, processes cooperate inside a transaction to share data invisible to other
processes and to exchange data modifications without the overhead of going through the InterWeave
server. This direct exchange of information is not typically supported by database transactions, but
is crucial to RPC performance.
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Locks inside a Transaction

When a client requests a lock on a segment using either IW twl acquire () (for a writer lock)
or IW trl acquire () (for a reader lock), the InterWeave library searches the TMT to see if
the transaction has already acquired the requested lock. There are four possible cases. (1) The lock
is found in the TMT but another process in the transaction is currently holding an incompatible
lock on the segment (e.g., both are write locks). This is a synchronization error in the application.
The transaction aborts. (2) The lock is found in the TMT and no other process in the transaction
is currently holding an incompatible lock on the segment. The lock request is granted locally. (3)
The lock is found in the TMT but only for reading, and the current request is for writing. The
client contacts the InterWeave server to upgrade the lock. (4) The lock is not found in the TMT,
meaning that the segment has not previously been locked by this transaction. The client contacts
the InterWeave server to acquire the lock and updates the TMT accordingly.

When a client releases a lock, the InterWeave library updates the lock status in the TMT. In
keeping with the strict two-phase locking semantics, the transaction retains the lock until it commits
or aborts rather than returning the lock to the InterWeave server immediately. During the release of
a write lock, the library uses the process described in Section 3.1 to collect a diff that describes the
modifications made during the lock critical section. Unlike the non-transaction environment where
the diff is sent to the InterWeave server immediately, the diff is stored locally in the created-diff
buffer (or in a file, if the memory is scarce). The library also increases the segment’s current version
number, stores this number in the TMT, and appends an entry indicating that a diff that upgrades
the segment to this new version has been created by this client. The actual content of the diff is not
stored in the TMT.

Interplay of RPC and Transactions

When a client performs an RPC inside a transaction, the xdr trans arg () call, included in the
argument marshaling routine by the InterWeave IDL compiler, encodes and transmits the TMT to the
callee along with other arguments. A complementary xdr trans arg () call on the callee side
will reconstruct the TMT when unmarshaling the arguments. Typically the TMT is small enough
to have a negligible impact on the overhead of the call. For instance, a complete TMT containing
information about a single segment is of only 76 bytes. A null RPC call over a 1Gbps network takes
0.212ms, while a null RPC call in InterWeave (with this TMT) takes just 0.214ms. With a slower
network, the round trip time dominates. The TMT overhead becomes even more negligible.

Among other things, the TMT tracks the latest version of each segment ever locked in the
transaction. This latest version can be either the InterWeave server’s master copy or a tentative
version created in the on-going transaction. When the callee acquires a lock on a segment and finds
that it needs an update (by comparing the latest version in the TMT to the version it has cached), it
consults the TMT to decide whether to obtain diffs from InterWeave servers, from other InterWeave
clients, or both. To fetch diffs from other clients, the callee’s TM contacts the TMs on those clients
directly. Once all needed diffs have been obtained, the callee applies them, in the order in which
they were originally generated, to the version of the segment it has cached.

If the TMT is modified by the callee to reflect locks acquired or diffs created during an RPC, the
modifications are sent back to the caller along with the RPC results, and incorporated into the caller’s
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copy of the TMT. As in the original call, the code that does this work (xdr trans result ())
is automatically included in the marshaling routines generated by the InterWeave IDL compiler.
When the caller needs diffs created by the callee to update its cache, it knows where to get them by
inspecting the TMT. Since there is only one active process in a transaction, the TMT is guaranteed
to be up-to-date at the site where it is in active use.

Transaction Commits and Aborts

During a commit operation, the library on the client that originally starts the transaction (the trans-
action coordinator) finds all InterWeave clients that participated in the transaction by inspecting the
TMT. It then initiates a two-phase commit protocol among those clients by sending every client a
prepare message. During the first, prepare phase of the protocol, each client sends its locally created
and temporarily buffered diffs to the appropriate InterWeave servers, and asks them to prepare to
commit. A client responds positively to the coordinator only if all servers the client contacted re-
spond positively. During the prepare phase, each InterWeave server temporarily stores the received
diffs in memory.

In the prepare phase, not every diff created in the transaction has to be sent to the InterWeave
server for commit. What matters is only the diffs that decide the final contents of the segments.
Particularly, if a diff contains the entire new contents of the segment (e.g., due to the “no-diff”
mode optimization [29]), then all diffs before this one that contain no information about deleted or
newly created blocks can be simply discarded without affecting the contents of the final version of
the segment. For each diff, the TMT records if it is discardable and if it contains the entire contents
of the segment to facilitate this diff-reduction optimization. This optimization is particularly useful
for long-running transactions that creates a lot of temporary, intermediate changes to the shared
state.

Once the coordinator has heard positively from every client, it begins the second, commit phase
of the protocol by sending every client a commit message. In response to this message each client
instructs the servers that it contacted during the prepare phase to commit. Upon receiving the
commit message, the server writes all diffs to a diff log in persistent storage, and then applies
the diffs to the segments’ master copy in the order in which they were originally generated. The
persistent diff log allows the server to reconstruct the segment’s master copy in case of server failure.
Occasionally, the server checkpoints a complete copy of the segment to persistent storage and frees
space for the diff log. InterWeave is robust against client failures (detected via heartbeats) since
cached segments can be destroyed at any time without affecting the server’s persistent master copy.

A transaction abort call, IW rollback work (), can be issued either by the application ex-
plicitly or by the library implicitly if anything goes wrong during the transaction (examples include
client failure, server failure, network partition, or lock failure caused by inter-segment inconsisten-
cies). During an abort operation, the transaction coordinator asks all involved clients to abort. Each
client instructs the InterWeave servers it contacted to abort, invalidates cached segments that were
modified in the transaction, and discards its locally created and buffered diffs. Each server then dis-
cards any tentative diffs it received from clients. When a client locks a locally invalidated segment
later on, it will obtain a complete, fresh copy of the segment from the InterWeave server.

Both the InterWeave clients and servers use timeout to decide when to abort an unresponsive
transaction. For the sake of simplicity, InterWeave does not provide any mechanism for deadlock
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prevention or detection. Transactions experiencing deadlock are treated as unresponsive and are
aborted by timeout automatically.

When a transaction completes, regardless of commit or abort, the segment locks retained by the
transaction are released to the corresponding InterWeave servers and various resources devoted to
the transaction (e.g., diff buffers and the TMT) are reclaimed.

Proactive Diff Propagation

Normally, a diff generated inside a transaction is stored on the InterWeave client that created the
diff, and is transmitted between clients on demand. To avoid an extra exchange of messages in
common cases, however, InterWeave sometimes may send diffs among clients proactively.

Specifically, the TM of an RPC caller records the diffs that are created by the caller and re-
quested by the callee during the RPC session. If the diffs for a segment are requested three times in
a row by the same remote procedure, the library associates the segment with this particular remote
procedure. In later invocations of the same remote procedure, the diffs for the associated segments
will be sent proactively to the callee, along with the TMT and RPC arguments. These diffs are
stored in the callee’s proactive diff buffer. When a diff is needed on the callee, it always searches
the proactive diff buffer first before sending a request to the InterWeave server or the client that cre-
ated the diff. When the RPC call finishes, along with the RPC results, the callee returns information
indicating whether the proactive diffs are actually used by the callee. If not, the association between
the segment and the remote procedure is broken and later invocations will not send diffs proactively.
The same thing also applies to the diffs created by the callee. If those diffs are always requested by
the caller after the RPC call returns, the callee will piggyback those diffs to the caller along with the
RPC results in later invocations.

Always deferring propagating diffs to the InterWeave servers to the end of a transaction may
incur significant delay in transaction commit. As an optimization, each InterWeave client’s TM
thread also acts as a “diff cleaner”, sending diffs in the created-diff buffer to corresponding Inter-
Weave servers when the client is idle (e.g., waiting for RPC results). These diffs are buffered on the
server until the transaction commits or aborts.

Relaxed Transaction Models

In addition to automatic data caching, RPC applications can also benefit from InterWeave’s relaxed
coherence models [8] which improve transaction throughput and reduce the demand for communi-
cation bandwidth. Bandwidth reduction is particularly important for applications distributed across
wide area networks.

In a transaction, if all locks are acquired under Strict coherence, the transaction is similar to
those in databases, possessing the ACID properties. When relaxed reader locks are used, however,
InterWeave can no longer guarantee isolation among transactions.

Gray and Reuter [13] classified transactions into degrees 0-3 based on the level of isolation they
provide. Degree 0 transactions do not respect any data dependences among transactions, and hence
allow the highest concurrency; degree 1 transactions respect WRITE→WRITE dependences; degree
2 transactions respect WRITE→WRITE and WRITE→READ dependences; degree 3 transactions
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respect all dependences, and hence ensure the ACID properties. In this terminology, InterWeave’s
relaxed transaction models belong to degree 1.

One important reason for many database applications to use degree 3 transactions is to have
repeatable reads. That is, reads to the same data inside a transaction always return the same value.
InterWeave supports repeatable reads across distributed processes. It guarantees that if any process
in a transaction reads an old version of a segment, all other processes in the transaction that employ
relaxed coherence models can only read the same old version. This enhancement, we believe, makes
it easier to reason about InterWeave’s relaxed transaction models than would normally be the case
for degree 1 transactions.

When a segment is read under a relaxed lock for the first time, the TMT records which version
of the segment is accessed (the target version). When another process in the transaction requires
a relaxed lock on the same segment, there are several possible scenarios. (1) If the target version
is not “recent enough” for the process to use, the transaction aborts. (2) If the cached copy on the
process is newer than the target version, the transaction aborts. (3) If the cached copy is the same as
the target version and it is “recent enough”, the process will use the cached copy without an update.
(4) If the cached copy is older than the target version (or it is not cached before) and the target
version would be “recent enough” for the process, it will try to update its cached copy to the target
version. If such an update is impossible, the transaction aborts. Updating a segment to a specific
version other the latest one is aided by the diff log on the servers and the created-diff buffer on the
clients.

4 Evaluations

4.1 Transaction Cost Breakdown

We first use a microbenchmark to quantify InterWeave’s transaction cost in both local area network
(LAN) and wide area network (WAN) environments. In this benchmark, two processes share a
segment containing an integer array of variable size and cooperatively update the segment inside a
transaction. One process (the RPC caller) starts a transaction and contacts the InterWeave server to
acquire a writer lock on the segment (the “lock” phase); increments every integer in the array (the
“local” phase); generates a diff that describes the changes it made (the “collect” phase); makes an
RPC call to the other process, proactively sending the diff along with the RPC call, and waits for
the callee to finish (the “RPC” phase).

During this “RPC” phase, the callee acquires a writer lock on the segment (it will find the lock
in the TMT, avoiding contacting the InterWeave server); uses the diff in the proactive diff cache to
update its local copy; increments every integer in the array; generates a diff that describes the new
changes it made; and proactively sends the diff back to the caller along with the RPC results.

After the callee finishes, the caller uses the returned proactive diff to update its local copy (the
“apply” phase), prints out some results, and then runs the two-phase commit protocol to update the
InterWeave server’s master copy of the segment (the “commit” phase). During the “commit” phase,
the caller and callee send the diff they created to the InterWeave server, respectively.

We compare the above “proactive transaction” with two other alternatives—“nonproactive trans-
action” and “no transaction”. With “nonproactive transaction”, the diffs are only sent between the
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Figure 3: Execution time for transactions that transmit a large amount of data on a LAN.

caller and callee on demand. During the “RPC” phase, the callee will contact the caller to fetch the
diff created by the caller. Likewise, in the “apply” phase, the caller will contact the callee to fetch
the diff created by the callee.

With “no transaction” (the basic InterWeave implementation without support for transactions),
in the “collect” phase, the caller sends the diff it created to the InterWeave server and releases the
writer lock. In the “RPC” phase, the callee contacts the InterWeave server to acquire a writer lock
and request the diff it needs. When the callee finishes, it sends the diff it created to the InterWeave
server and releases the writer lock. In the “apply” phase, the caller acquires a reader lock and fetches
the diff created by the callee from the InterWeave server to update the caller’s local copy.

Local Area Network Environment

The first set of experiments were run on a 1Gbps Ethernet. The InterWeave server, RPC caller, and
RPC callee run on three different 2GHz Pentium IV machines under Linux 2.4.9. To evaluate the
more general scenario, we turn off the diff-reduction optimization for this benchmark. For each
configuration, we run the benchmark 20 times and report the median in Figure 3. The X axis is the
size (in bytes) of the segment shared by the caller and callee. The Y axis is the time to complete the
transaction.

Compared to a “proactive transaction”, the “apply” phase in a “nonproactive transaction” is
significantly longer because it includes the time to fetch the diff from the callee. Likewise, the
“collect” phase and “apply” phase in “no transaction” are longer than those in “proactive transac-
tion”, because the diffs are sent to or fetched from the InterWeave server during those phases. For
a “proactive transaction”, the diffs are sent between the caller and callee during the “RPC” phase.
However, the “commit” phase compensates for the savings, resulting in an overall small overhead
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Figure 4: Execution time for transactions that transmit a small amount of data in LAN.

to support transactions for RPC calls that transmit a large amount of data (see the “proactive” and
“no trans.” bars).

With the aid of the TMT, processes avoid propagating the diffs through the server when sharing
segments. As a result, the critical path of the RPC call for a “proactive transaction” (the “RPC”
phase) is up to 60% shorter than that of “no transaction” (the “collect”+“RPC”+“apply” phases). In
the benchmark, the local computation cost is trivial. For transactions with relatively long compu-
tation, “proactive transaction” will send diffs to the InterWeave server in the background, reducing
the time spent in the “commit” phase.

The results for smaller segments are shown in Figure 4. The “proactive transaction” has slightly
better performance than the “nonproactive transaction” because it saves the extra two round trip
times to fetch the diffs. For transactions that only transmit a small amount of data between the
caller and callee, the relative overhead of executing the two-phase commit protocol becomes more
significant, as seen by comparing with the “no trans.” results.

Figure 5 shows the execution time of a “proactive transaction” when both the caller and callee
only update x% of a 1MB segment. As the percentage of the changed data goes down, the trans-
action cost decreases proportionally, due to InterWeave’s ability to automatically identify modifica-
tions and only transmit the diffs. In all cases, the overhead to compute the diffs (the “collect” phase)
is negligible compared with the benefits.

The “no-IW RPC” is a simple RPC program with no use of InterWeave, sending the 1MB data
between the caller and callee directly. It avoids the cost of sending the modifications to a database
server and the overhead of acquiring locks and executing the two-phase commit protocol. The
important lesson this figure reveals is that, for temporary (non-persistent) data with simple sharing
patterns, it is more efficient to transmit them (using deep copy) directly across different sites than
to put them in the global shared space. However, for persistent data (some data outlive a single
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Figure 5: Execution time for “proactive transaction” running on a LAN, when both the caller and
callee only update x% of a 1MB segment.

run of the application and hence must be persistent) with non-trivial sharing patterns, applications
can significantly benefit from InterWeave’s caching capability. With InterWeave, both deep copy
arguments and MIPs to the shared store can be used in a single RPC call, giving the programmer
maximum flexibility to choose the most efficient way to communicate data.

Wide Area Network Environment

Our second set of experiments run the same benchmark in a wide area network. The machines
running the InterWeave server, RPC caller, and RPC callee are distributed at University of Waterloo
(900MHz Pentium III, Linux 2.4.18), Rochester Institute of Technology (300MHz AMD K6, Linux
2.2.16), and University of Virginia (700MHz AMD Athlon, Linux 2.4.18), respectively.

The execution time of the transactions are shown in Figure 6, which are more than 100x slower
than those in the fast LAN. As the data size increases, the relative cost of the “RPC” phase among
“nonproactive transaction”, “proactive transaction”, and “no transaction” changes. When the data
size is small, the “RPC” phase in “proactive transaction” is the smallest because it avoids the extra
round trip time to acquire the lock or to fetch the diffs. As the data size increases, the diff prop-
agation time dominates, which is included in the “RPC” phase for “proactive transaction”. As a
result, the “RPC” phase for “proactive transaction” becomes the longest among the three. Compar-
ing Figure 6 and 4, the benefit of proactive diff propagation is more substantial in WAN, due to the
long network latency. Also due to the slow network, “no transaction” performs noticeably better
than “proactive transaction” as it does not have the overhead of executing the two-phase commit
protocol.

Figure 7 uses the same settings as Figure 5 except that the experiment is run on a WAN. The
results are similar but there are two important differences. First, the absolute savings due to cache
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Figure 7: Execution time for a “proactive transaction” running on a WAN, when both the caller and
callee only update x% of a 1MB segment.

reuse is much more significant on a WAN because of the low network bandwidth and long latency.
Second, InterWeave’s protocol overhead (e.g., diff collection) becomes even more negligible com-
pared with the long data communication time, justifying the use of complex techniques (e.g., diffing

17



0

1

2

3

4

5

6

7

8

16 48 80 11
2

14
4

17
6

20
8

24
0

27
2

30
4

Update intervals

T
im

e 
(s

ec
.)

RPC-update
RPC-callback
RPC-IW

Figure 8: Total time to update and search a binary tree.

and relaxed coherence models) in middleware to save bandwidth for WAN applications.

4.2 Using InterWeave to Share Data in an RPC Application

We use an application kernel consisting of searching and updating a binary tree to further demon-
strate the benefit of using InterWeave to facilitate the sharing of pointer-rich data structures between
an RPC client and server. In this application, a client maintains a binary tree keyed by ASCII strings.
The client reads words from a text file and inserts new words into the tree. Periodically, the client
makes an RPC call to the server with one string as parameter. The server uses the string as keyword
to search the binary tree, does some application-specific computation using the tree content, and
returns the result.

To avoid requiring the client to pass the entire tree in every call, the server caches the tree in its
local memory. We compare three methods by which the client may propagate updates to the server.
In the first method, the client performs a deep copy of the entire tree and sends it to the server on
every update. This method is obviously costly if updates happen frequently. In the second method,
the server invokes a callback function to obtain updates when necessary. Specifically, it calls back
to the client when (and only when) it is searching the tree and cannot find the desired keyword.
The client will respond to the callback by sending the subtree needed to finish the search. The
third method is to share the binary tree between the client and server in the global store provided
by InterWeave, thereby benefiting automatically from caching and efficient updates via wire-format
diffing.

Figures 8 and 9 compare the above three solutions. The text file we use is from Hamlet Act III
and has about 1,600 words. The client updates the server after reading a certain number of words
from the text file. The frequency of updates is varied from every 16 words to every 320 words and
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Figure 9: Total size of communication to update and search a binary tree.

is represented by the X axis in both graphs. After each update, the client takes every other word
read since the previous update and asks the server to search for these words in the tree. Under these
conventions the call frequency is the same as the update frequency. The Y axis shows the total
amount of time and bandwidth, respectively, for the client to finish the experiment.

As updates become more frequent (moving, for example, from every 80 words to every 64
words), the deep-copy update method consumes more and more total bandwidth and needs more
time to finish. The call-back and InterWeave methods keep the bandwidth requirement almost con-
stant, since only the differences between versions are transferred. However, the call-back method
requires significantly more programmer effort, to keep track of the updates manually. Due to the ex-
tra round-trip message needed by the call-back method, and InterWeave’s efficiency in wire format
translation, InterWeave achieves the best performance among the three.

This example is inspired by the one used in [18], where data can be shared between the client
and server during a single critical section (RPC call). In our version of the experiment, InterWeave
allows the client and server to share the data structure across multiple critical sections.

4.3 Service Offloading in Datamining

In this experiment, we implement a sequence mining service running on a Linux cluster to evaluate
the potential performance benefit of combining InterWeave and RPC to build network services, and
also to obtain a sense of the effort that a programmer must expend to use InterWeave.

The service provided by the cluster is to answer sequence mining queries on a database of
transactions (e.g., retail purchases). Each transaction in the database (not to be confused with
transactions on the database) comprises a set of items, such as goods that were purchased together.
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Transactions are ordered with respect to each other in time. A query from a remote user usually
asks for a sequence of items that are most commonly purchased by customers over time.

The database is updated incrementally by distributed sources. When updates to the database
exceed a given threshold, a data mining server running in the background uses an incremental algo-
rithm to search for new meaningful sequences and summarizes the results in a lattice data structure.
Each node in the lattice represents a sequence that has been found with a frequency above a spec-
ified threshold. Given a sequence mining query, the results can be found efficiently by traversing
this summary structure instead of reading the much larger database.

Following the structure of many network services, we assign one node in the cluster as a front-
end to receive queries from clients. The front-end can either answer mining queries by itself, or
offload some queries to other computing nodes in the same cluster when the query load is high.
We compare three different offloading strategies. In the first strategy, the front-end uses RPC to
offload queries to other computing nodes. Each RPC takes the root of the summary structure and
the query as arguments. The offloading nodes do not cache the summary structure. This is the
simplest implementation one can get with the least amount of programming effort. However, it is
obviously inefficient in that, on every RPC call, the XDR marshaling routine for the arguments will
deep copy the entire summary structure.

The second offloading strategy tries to improve performance with an ad-hoc caching scheme.
With more programming effort, the offloading nodes manually cache the summary structures across
RPC calls to avoid unnecessary communication when the summary structure has not changed since
the last call. The data mining server updates the offloading nodes only when a new version of
the summary structure has been produced. When the summary structure does change, in theory
it would be possible for the programmer to manually identify the changes and only communicate
those changes in the same way as InterWeave uses diffs. We consider the effort required for this
optimization prohibitive, however, because the summary is a pointer-rich data structure and updates
to the summary can happen at any place in the lattice. Therefore, this further optimization is not
implemented; when the lattice has changed it is retransmitted in its entirety.

Alternatively, the system designer can use the global store provided by InterWeave to automate
caching in RPC-based offloading. In this third strategy, we use an InterWeave segment to share the
summary structure among the cluster nodes. The data mining server uses transactions to update the
segment. When making an offloading call, the data mining server passes the MIP of the root of the
summary structure to the offloading node, within a transaction that ensures the proper handling of
errors. On the offloading node, the MIP is converted back to a local pointer to the root of the cached
copy of the summary structure using IW mip to ptr.

Our sample database is generated by tools from IBM research [28]. It includes 100,000 cus-
tomers and 1000 different items, with an average of 1.25 transactions per customer and a total of
5000 item sequence patterns of average length 4. The total database size is 20MB. The experiments
start with a summary data structure generated using half this database. Each time the database
grows an additional 1% of the total database size, the datamining server updates the summary struc-
ture with newly discovered sequences. The queries we uses ask for the first K most supported
sequences found in the database (K = 100 in our experiments).

We use a cluster of 16 nodes connected with a Gigabit Ethernet. Each node has two 1.2GHZ
Pentium III processors with 2GB memory, and runs Linux 2.4.2. One node is assigned as the front-
end server and offloads incoming user queries to some or all of the other 15 nodes.
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Figure 10: Latencies for executing one query under different offloading configurations. “Local”
executes queries locally at the front-end server; “RPC-update” uses RPC to offload computations
without any caching scheme. It also represents the case where manual caching is used but the
summary structure has changed (hence the cache is invalid and the entire summary structure has
to be transmitted). “RPC-no-update” represents RPC with manual caching to offload computation
when the cache happens to be valid. “IW-update” uses InterWeave and RPC to support offloading,
and the summary structure is changed since last cached copy. “IW-no-update” differs from “IW-
update” in that the summary structure is not changed since last cached copy.

In the first experiment, we quantify the overhead introduced by offloading by running one query
at a time. (In this case, the front-end server is not overloaded and it cannot actually benefit from
offloading. This is just our way to quantify the overhead.) The results are shown in Figure 10,
where the X axis represents a gradual increase in database size and the Y axis represents the time
to answer one query by traversing the summary structure. In this figure, as the database grows, the
time to answer one query locally at the front-end server increases from 1.4ms to 6.5ms. Offloading
introduces additional overhead due to the communication penalties between the front-end and the
offloading site. Compared with the cases with an invalid cache, the service latency is significantly
smaller when the cache is valid on the offloading site (“RPC-no-update” for RPC ad-hoc caching
and “IW-no-update” for InterWeave automatic caching).

To understand the performance differences between the different strategies in Figure 10, we
break down the measured latencies for the last round of database updates. The results are shown
in Figure 11. The categories on the X axis are the same as the series in Figure 10. In this figure,
“Computation” is the time to traverse the summary structure; “Argument Translation” is the time
to marshal the arguments; “Result Translation” is the time to marshal the results; “IW Overhead”
is the time spent in the InterWeave library, mainly the cost to compute the diffs; “Communication
& Misc.” is mainly the time spent in communication. Comparing “RPC-update” with “IW-update”
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Figure 11: Breakdown of query service time under different offloading configurations.

(both configurations need to update their local cache), InterWeave’s use of diffing significantly
reduces the total amount of data transferred and accordingly the data translation time. Comparing
“RPC-no-update” to “IW-no-update” (both configurations can reuse the cache without a summary
structure update), InterWeave still noticeably outperforms ad-hoc caching due to its efficiency in
returning the RPC results—arrays of sequences. With InterWeave, we only need to return an array
of the MIPs that point to the sequences in the summary structure. With ad-hoc RPC caching, we
have to return the sequences themselves because of the lack of a global store shared between the
caller and callee.

Figure 12 shows the aggregate service throughput (i.e., queries processed in 100 seconds) of the
cluster with an increasing number of offloading nodes. For each offloading node, the front-end runs
a dedicated thread to dispatch queries to it. The X axis is the number of offloading nodes we use
in the cluster, starting from 0 (no offloading) to a maximum of 15. Beginning with a database of
50% of its full contents, we increase the database to its full size in 50 steps. Each step takes about 2
seconds. The Y axis shows the total number of completed queries during the entire database update
process, i.e., 100 seconds. “IW-RPC” is the average over the “IW-update” and “IW-no-update”
series in Figure 10 (as the database grows, sometimes the cache needs no update while sometimes
it does need an update). Likewise, “RPC-cache” uses ad-hoc RPC caching but its value is averaged
over the cache hit and cache miss case. “RPC-no-cache” uses straightforward RPC offloading with
no cache. As can be seen from the figure, the throughput for “IW-RPC” scales linearly with the
size of the cluster, outperforming “RPC-cache” by up to 28%. Without caching, the system cannot
benefit much from using RPC for offloading.
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Figure 12: The impact of different offloading strategies on the system throughput.

5 Related Work

InterWeave finds context in transactional client-server caching protocols [11], traditional databases [13],
object oriented databases [3, 21], persistent programing languages [22], distributed object caching
systems [9, 19], S-DSM systems [2, 4, 32], and a wealth of other work—far too much to document
fully here. The following paragraphs concentrate on what appear to be the most relevant systems in
the literature. The most prominent features that distinguish InterWeave from previous work are its
support for a shared memory programming model across heterogeneous platforms, its exploitation
of relaxed coherence models, and its efficient integration of shared state, transactions, and remote
invocation.

PerDiS [10] is perhaps the closest to InterWeave among existing systems. It also uses URLs for
object naming, supports transactions, and has sharing units equivalent to InterWeave’s segments and
blocks. PerDiS, however, has no built-in support for heterogeneous platforms, relaxed coherence
models, or pointer swizzling. It does not allow remote procedure calls to be protected as part of a
transaction.

Smart RPC [18] is an extension to conventional RPC that allows parameter passing using call-
by-reference rather than deep copying call-by-value. It uses S-DSM techniques to fetch the refer-
enced data when they are actually accessed. The biggest difference with respect to InterWeave is
that Smart RPC does not have a persistent shared store and lacks a well-defined cache coherence
model. Because it does not track modifications made by distributed processes, Smart RPC always
propagates the parameters modified in the middle of an RPC chain back to the initial caller before
making a new RPC. This may significantly slow RPC’s critical path. Transactions are not supported
in Smart RPC.
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Franklin et al. [11] gave a detailed classification and comparison of methods for maintaining
transactional client-server cache coherence. Comparing to those methods, InterWeave is unique in
its integration of RPC, transaction and shared state, and in the use of transaction metatdata table for
efficient management of cache coherence without the excessive overhead of passing data through
the database server.

Zhou and Goscinski [33] present a detailed realization of an RPC transaction model [13] that
combines replication and transaction management. In this model, database clients call a set of re-
mote procedures provided by a database replica to process data managed locally by the replica. In-
terWeave supports transactional RPC between arbitrary clients and maintains coherence efficiently
among dynamically created caches.

Dozens of object-based systems attempt to provide a uniform programming model for dis-
tributed applications. Many are language specific (e.g., Argus [20], Mneme [22], and Arjuna [24]);
many of the more recent ones are based on Java. Language-independent distributed object sys-
tems include Legion [14], Globe [30], Microsoft’s DCOM [25], and various CORBA-compliant
systems [23]. Globe replicates objects for availability and fault tolerance. A few CORBA systems
(e.g. Fresco [19] and CASCADE [9]) cache objects for locality of reference. Unfortunately, object-
oriented update propagation, typically supported either by invalidating and resending on access or
by RMI-style mechanisms, tends to be inefficient (re-sending a large object or a log of operations).
Equally significant from our point of view, there are important applications (e.g., compute-intensive
parallel applications) that do not employ an object-oriented programming style.

LOTEC [12] employs a two-phase locking scheme to support nested transactions in a distributed
object system. LOTEC assumes that methods of a shared object only access shared data in the
given object. As a result, the compiler can automatically insert synchronization operations in object
methods to conservatively update the data that might be accessed.

Mneme [22] integrates programming language and database features to support distributed ap-
plications. Unlike InterWeave segments, Mneme objects are untyped byte streams. Mneme refer-
ences inside objects are identified by user supplied routines rather than by the runtime.

Ninja [1] is a framework for building high performance network services (e.g., web or mail
servers). It only supports two special persistent shared data structures, namely, hash tables and
B-trees.

6 Conclusions

We have described the design and implementation of a middleware system, InterWeave, that inte-
grates shared state, remote invocation, and transactions to form a distributed computing environ-
ment. InterWeave works seamlessly with RPC systems, providing them with a global, persistent
store that can be accessed using ordinary reads and writes. To protect against various system fail-
ures or race conditions, a sequence of remote invocations and data accesses to shared state can be
protected in an ACID transaction. Our novel use of the transaction metadata table allows processes
to cooperate inside a transaction to safely share data invisible to other processes and to exchange
data modifications they made without the overhead of going through the InterWeave server.

Experience with InterWeave demonstrates that the integration of the familiar RPC, transac-
tional, and shared memory programming models facilitates the rapid development of maintainable
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distributed applications that are robust against system failures. Experiments on a cluster-based
datamining service demonstrate that InterWeave can improve service scalability with its optimized
“two-way diff” mechanism and its global address space for passing pointer-rich shared data struc-
tures. In our experiments, an offloading scheme with InterWeave outperforms an RPC offloading
scheme with a manually maintained cache by 28% in overall system throughput.
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