
A Hierarchical Parallel Scheme for Global
Parameter Estimation in Systems Biology

J. He∗, M. Sosonkina††, C. A. Shaffer∗, J. J. Tyson†, L. T. Watson∗, J. W. Zwolak∗
Department of Computer Science∗ , Department of Biology†

Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061

Ames Laboratory, Iowa State University††

236 Wilhelm Hall, Ames, IA 50011.

Contact E-mail: jihe@vt.edu

Abstract—This paper presents a sophisticated and
efficient parallel scheme for the DIRECT global opti-
mization algorithm of Jones et al. (1993). Although
several sequential implementations for this algorithm
have been successfully applied to large scale MDO
problems, few parallel versions of the DIRECT al-
gorithm have addressed well algorithm characteristics
such as a single starting point, an unpredictable work-
load, and a strong data dependency. These challenges
engender many interesting design issues including do-
main decomposition, data access and management, and
workload balancing. In the present work, a hierarchical
parallel scheme has been developed to address these
challenges at three levels. Each level is supported
by parallel and distributed data structures to access
shared data sets, distribute workload, or exchange
messages. Parameter estimation problems in systems
biology provide an ideal application context for the
present work. Global nonlinear parameter estimation
results obtained on a 200 node Linux cluster are given
for a cell cycle model for frog eggs.

Index Terms—DIRECT (DIviding RECTangles) al-
gorithm, global optimization, GPSHMEM (generalized
portable shared memory), load balancing strategy,
multidisciplinary design optimization, parallel and
distributed data structures, parameter estimation,
systems biology

1. Introduction
The optimization algorithm DIRECT (DIviding

RECTangles) is a global search algorithm proposed

by Jones et al. [11], designed as an effective approach

to solve continuous optimization problems subject to

simple constraints. In the past decade, DIRECT has

been successfully applied to many modern large-scale

multidisciplinary engineering problems ([2], [3], [9],

and [20]). Recently, DIRECT has been used in

global nonlinear parameter estimation problems in

systems biology [14]. However, unnecessary overhead

and complexity caused by inefficient implementa-

tion inside other software packages (e.g., Matlab)

(master slave model)

(work pool model)
Global-addressing

Message-passing
Level 3 Function Evaluation

Functional ComponentLevel

Domain Decomposition

Box Subdivision

Programming Model

Message-passingLevel 1

Level 2

Figure 1.1. Three functional levels with a
mixed programming paradigm.

may obscure DIRECT’s advanced features. Some
computational biologists are attracted by its unique
strategy of balancing global and local search, its
selection rules for potentially optimal regions ac-
cording to a Lipschitz condition, and its easy-to-use
black-box interface. Like other global optimization
approaches of [4] and [6], DIRECT is being challenged
by high-dimensional nonlinear models for parameter
estimation. The present work applies DIRECT to a
parameter estimation problem for a frog egg model
from the JigCell systems biology project [1]. Modeling
details and results obtained from a local method can
be found in [21].

As the scale of both problems and clusters of
workstations grows, computational parallelism of

1

optimization algorithms has become a very active

research area. However, the nature of the DI-

RECT algorithm presents both potential benefits and

difficulties for a sophisticated and efficient parallel

implementation. Gablonsky [5] and Baker et al. [2]

are among the few parallel DIRECT implementations

known in the public domain. In [5], Gablonsky adopts

a master-slave paradigm to parallelize the function

evaluations, but little discussion is given to the issue

of parallel performance and potential problems, such

as load-balancing and interprocessor communication,

both of which raise many challenging design issues.

A major contribution in [2] is a distributed control

version equipped with dynamic load balancing strate-

gies. Nevertheless, that work did not fully address

other design issues such as a single starting point and

a strong data dependency.

The present work proposes a hierarchical parallel

scheme (shown in Figure 1.1) to address design issues

by three function components in different levels.

Level 1 splits the entire search space to start the

processing at multiple points, detects the stopping

conditions, and merges the results at the end. This

level transforms the original single-start sequential

algorithm to a multistart parallel algorithm. Below

Level 1, Level 2 uses GPSHMEM [16] to establish

a global addressing space to ease the strong data

dependency problem occurring in the algorithm step

(refer to Section 2) that identifies a set of potentially

optimal boxes to be subdivided at the next iteration.

This globally shared data structure also forms a work

pool paradigm [7] to apply a dynamic load balancing

strategy to adjust the workload among processors at

Level 2. Similar to [2], a master-slave paradigm is

used between Level 2 and 3 for distributing function

evaluation tasks.

All three levels take advantage of dynamic process

management in MPI-2 [8] so that processors are

assigned to different levels at run time. As shown

in Figure 1.1, a mixed programming paradigm is

constructed with a global addressing model and a

message passing model. A similar style of subgrouping

processors for multiple level parallelism (MLP) was

called GSPMD (group single program multiple data)

in [18]. By contrast, in [12] and [17], a hybrid

parallel programming model involving thread-level

parallelism (OpenMP) and message passing (MPI)

was used to vary the number of threads and CPUs in

order to simplify the dynamic load balancing strategy

in MLP. Mixed parallel programming models may

become a trend due to the recent deployment of many

large scale clusters of shared memory multiprocessor

workstations [12].

Section 2 describes the DIRECT algorithm and

the parallel design issues. The proposed parallel

implementation is described in Section 3, with the

systems biology problem described in Section 4.

Computational results and some performance analysis

are included in Section 5.

2. Design Challenges
The sequential DIRECT algorithm can be described

by the following six steps [11], given an objective

function f(x) and the n-dimensional design space

D = {x | l ≤ x ≤ u}.
Step 1. Normalize the design space D to be the

unit hypercube. Sample the center point

ci of this hypercube and evaluate f(ci).

Initialize fmin = f(ci), evaluation counter

m = 1, and iteration counter t = 0.

Step 2. Identify the set S of potentially optimal

boxes.

Step 3. Select any box j ∈ S.

Step 4. Divide the box j as follows:

(1) Identify the set I of dimensions with the

maximum side length. Let δ equal one-third

of this maximum side length.

(2) Sample the function at the points c ± δei
for all i ∈ I, where c is the center of the

box and ei is the ith unit vector.

(3) Divide the box j containing c into thirds

along the dimensions in I, starting with the

dimension with the lowest value of wi =

min{f(c + δei), f(c − δei)}, and continuing

to the dimension with the highest wi.

Update fmin and m.

Step 5. Set S = S − {j}. If S 6= ∅ go to Step 3.

Step 6. Set t = t+ 1. If iteration limit or evaluation

limit has been reached, stop. Otherwise, go

to Step 2.

Steps 2 to 6 form a processing loop controlled

by two stopping criteria—limits on iterations and

function evaluations. Starting from the center of the

initial hypercube, DIRECT makes exploratory moves

across the design space by probing the potentially

optimal hyperboxes. “Potentially optimal” is precisely

defined in [11], but roughly a hyperbox is potentially

optimal if, for some Lipschitz constant, the objective

function is potentially smaller in that hyperbox than

in any other hyperbox. It is observed in Step 4

2

M-ary Tree

ROOT

Level 3

Level 2

Level 1

Master Ring

Subdomain

Subdomain

Figure 3.1. A 3-level hierarchical parallel
scheme.

that multiple new hyperboxes are generated for each

potentially optimal hyperbox. The multiple function

evaluation tasks at each iteration give rise to a natural

functional parallelism used both in [5] and [2].

In addition, a few design challenges are also

observed here. First, the algorithm starts with

one normalized domain, which produces simply one

evaluation task for all the acquired processors. With a

single starting point, load balancing is always an issue

at an early stage, even though the situation will be

improved as the algorithm progresses by subdividing

the domain and generating multiple evaluation tasks.

Second, the number of boxes subdivided at each

iteration is unpredictable depending on the result

of identifying the potentially optimal boxes. For

iterations that generate fewer new boxes, a load

imbalance occurs with some processors sitting idle.

Third, a strong data dependency exists throughout

the algorithm steps. Only Step 2 and Step 4 can

be parallelized, respectively, in terms of functional

parallelism and data parallelism. Both involve shared

data sets with a considerable growth rate. Efficient

data decomposition and access methods are the major

issues here.

3. Parallel Scheme and Implementation
A hierarchical parallel scheme is proposed here to

address the above mentioned design challenges. It

consists of three logical levels as shown in Figure

3.1. Each level deals with different design aspects

including domain decomposition, load balancing, and

task or data parallelism.

Level 1 holds a ring of processors, each of which

is responsible for a DIRECT search in an assigned

subdomain. A root processor is noted as the first node

to start the processing and spawn other processes,

one per processor, on the ring. The problem

domain D is decomposed by the root processor into

S2 ≤ N1 = b
√
Pc subdomains, where P is the total

number of processors. The parallel scheme described

here requires P ≥ 16. When the number of available

processors is below 16, P should be set as the total

number of processes, some of which may run on

the same physical processor. The decomposition is

accomplished in two phases. In phase one, the root

processor finds the longest dimension of the domain

and subdivides it into S = b
√
N1c partitions, each of

which will be processed by S processors. In phase two,

inside each of the resulting partitions, the currently

longest dimension is subdivided into S parts. The

total number of subdomains S2 equals the number of

processors needed for Level 1. As a result, exactly

one processor is in charge of one subdomain.

For each subdomain, a process is dynamically

spawned by the root processor to be the subdomain

master starting a DIRECT search. Subsequently, a

logical ring of processes is formed by the root and

the newly spawned processes to adopt a termination

detection strategy depending on different stopping

criteria, including the total number of iterations,

function evaluations, and the degree of subdivision.

The overall termination condition is to keep every

subdomain active until all subdomains have satisfied

the specified stopping criteria. This rule may

result in more computational cost. Thus, the

stopping condition for the proposed parallel scheme is

effectively a lower bound on the computational cost,

while for the sequential algorithm, it is an exact limit

for computation cost.

A ring topology naturally fits the equal relationship

among subdomain masters at Level 1. Moreover, it

represents the dependency of the stopping process of

each subdomain on other subdomains on the ring.

A subdomain terminates search activities only after

all other subdomains have reached their specified

stopping criteria. This discentralizes the termination

control among the ring, thus avoiding the bottleneck

at the root subdomain master. On the other hand,

the communication latency on a ring is higher than

on some other topologies, such as a tree. To reduce

the communication time on the ring and improve the

performance at Level 1, future work can consider a

3

tree topology instead of a ring. The stopping process

for the entire domain is controlled by a token passed

in the ring that consists of subdomain masters. It is

originated with value zero from the root subdomain

master R0 and passed around the rest of the ring.

After each iteration of DIRECT, each subdomain

master Ri checks if a token has arrived. If not,

DIRECT proceeds. If the token was received, and the

stopping condition obtained from M0, the root mini

master at Level 2 (in this subdomain), is not satisfied,

the token value v is reset to zero and the token is

passed along in the ring, and DIRECT continues.

If the token was received and the local stopping

condition is met, the token value v is incremented

by one. If v = S2, a termination message is sent

to all Ri. If v < S2, the token is passed along

and DIRECT continues (so this subdomain is being

explored more than required by the stopping criteria).

Lastly, R0 will collect the final results and report the

total number of evaluations and the range of number

of iterations as well as minimum diameters.

For Levels 2 and 3, there are P − S2 processors

available. Each subdomain master dynamically

spawns bMc mini master processors at Level 2 for box

subdivision tasks, where

M =

√
P − S2

S2
,

derived from M 2 × S2 = P − S2. Similarly, each

mini master spawns bσc or dσe slaves for function

evaluation tasks, where

σ =
P − S2(1 + bMc)

S2bMc .

A bMc-ary tree structure (in Figure 2.1) is rooted

at a subdomain master, which is at the boundary

of Levels 1 and 2. Therefore, a subdomain master

plays two roles—one for communicating with the

processors on the subdomain ring, and the other

for managing the search in the subdomain bMc-ary

tree. Subdomain management tasks here include

updating current search results, and detecting local

stopping conditions. Pseudo code 3.1 shows the

interactions between the root mini master M0 and

other Mjs (j = 1, 2, . . . , bMc − 1) in a subdomain i

(i = 0, 1, . . . , S2), which is managed by a subdomain

master Ri.

M0 receives DIRECT parameters (problem size N ,

domain D, and stopping conditions Cstop) from Ri;

broadcast DIRECT parameters to all Mj ;

done :=FALSE;

while TRUE

if M0 then
receive a message from Ri;

if not a termination message then
send done to Ri;

send a message to keep Mjs working;

run one DIRECT iteration (reduce intermediate

results);

if Cstop satisfied then
done := TRUE;

end if
continue;

else
send a termination message to all Mjs;

terminate workers at Level 3;

store the reduced results;

break;

end if
else
Mjs receive a message from M0;

if not a termination message then
run one DIRECT iteration (reduce intermediate

results);

else
break;

end if
end if

end while
M0 sends the final results to Ri;

Pseudo code 3.1

At Level 2, mini masters collaborate on identifying

the potentially optimal box set on a shared data

structure in a global addressing space based on

GPSHMEM [16]. This algorithm step is one of

most interesting challenges in the parallelization of

DIRECT. Two sets of global shared data structures

OPTSET and OPTSET INDEX (structures in solid lines

shown in Figure 3.2) are used to hold potentially

optimal boxes. The structures in dashed lines

(SETLINK INDEX and additional OPTSETs) will be

implemented in the next version to enlarge OPTSET

at run time. Basically, SETLINK INDEX holds a

list of pointers to dynamically allocated OPTSETs

in the global addressing space. For the maximum

flexibility in adding OPTSETs, SETLINK INDEX can be

4

SETLINK_INDEX

OPTSET_INDEX

OPTSET

M1M0 M2 M3

Figure 3.2. Data structures in GPSHMEM.

implemented as a local linked list on each processor

at Level 2.

Both structures OPTSET and OPTSET INDEX are

allocated and distributed across all the mini masters,

which use one-sided communication operations such

as “put” and “get” to access shared data. These

one-sided operations provide a direct access to remote

memory with less interaction between communicating

parties. At each iteration, Mj puts all the boxes with

the smallest function values for different box sizes to

its own portion in OPTSET and updates its index in

OPTSET INDEX. Next, M0 gets all boxes in OPTSET and

merges the boxes with the same size. After M0 finds

all potentially optimal boxes, it balances the number

of boxes for each Mj ’s portion in OPTSET. Detailed

algorithm steps are in Pseudo code 3.2. Finally, each

Mj gets its portion of the workload, removes some

boxes (if any) that are assigned to other mini masters,

and starts processing each potentially optimal box.

Each box is tagged with a processor ID and other

indexing information to be tracked by its original

owner. To minimize the number of local box removals

and additions, M0 restores the boxes back to their

contributors before it starts load adjustment. This also

guarantees maximum data locality on each processor.

On each processor, a set of local data structures

for storing and processing boxes are reused from the

sequential DIRECT implementation described in [10].

GPSHMEM is a suitable tool to handle irregular data

structures, and dynamic/unpredictable data access

patterns characteristic of DIRECT.

copy M0’s portion in OPTSET to LOCALSET;

merge boxes from Mj ’s portion in OPTSET

to LOCALSET;

find Nboxpotentially optimal boxes in LOCALSET;

in LOCALSET, pick out boxes given by Mj to its

portion in OPTSET;
avgload := d(Nbox/Nproc)e;
i := 0;
while TRUE

if i = Nproc − 1 break;
if OPTSET INDEX(i+1)< avgload then
i1 := i;
while TRUE

underload := avgload− OPTSET INDEX(i+1);
i1 := (i1 + 1)%Nproc;
if i1 = i break;
if OPTSET INDEX(i1+1) > avgload then
overload := OPTSET INDEX(i1+1) −avgload;
if overload ≥ underload then

shift enough load over;
OPTSET INDEX(i+1) := avgload;
OPTSET INDEX(i1+1) :=

OPTSET INDEX(i1+1) −underload;
break;

else
shift some and look for more;
OPTSET INDEX(i+1) :=

OPTSET INDEX(i+1)+overload;
OPTSET INDEX(i1+1) := avgload;

end if
end if

end while
end if
i := i + 1

end while

Pseudo code 3.2

As shown in Pseudo code 3.2, a centralized dynamic
load balancing strategy is applied at Level 2 with
shared data structures in GPSHMEM. At Level 3,
workload balancing of processors is also centralized
with a master-slave model. For Level 2, the workload
is box subdivision on the subdomain assigned at Level
1. The root mini master adjusts the workload in
the globally shared structure, and each mini master
subdivides its share of potentially optimal boxes and
distributes the function evaluation tasks down to its
slaves at Level 3. Workload is spread from the
subdomain master to mini masters at Level 2 and
their slaves at Level 3. In some way, this is similar
to a sender-initiated strategy in MLB (multilevel load
balancing) defined in [13], where workload is sent
down to a bMc-ary tree structure. Although the
control mechanism is simple, this strategy suffers a
common bottleneck problem with other centralized
methods. A distributed control version will be
considered in future work.

5

4. Systems Biology Modeling

The ultimate goal of molecular cell biology is to

understand how the information stored in the genome

is read out and put into action as the physiological

behavior of a living cell. At one end of this

continuum, genes direct the synthesis of polypeptide

chains, and at the other end, networks of interacting

proteins govern how a cell moves, feeds, responds, and

reproduces. The model presented here is of the latter

type and can be represented as a system of ordinary

differential equations (ODE).

The model describes the activity of MPF in frog egg

extracts. A frog egg extract is the cytoplasmic protein

mix obtained by disrupting (or disintegrating) the

membranes of hundreds of frog eggs and separating

out the cytoplasm containing protein. The extract

can be easily manipulated and assayed compared with

intact frog eggs but it still has nearly the same

chemical kinetics as an intact frog egg. MPF plays an

important role in the chemical kinetics of frog eggs.

Primarily the activity of MPF controls when the frog

egg enters mitosis and subsequently divides. MPF is

a dimer of Cdk1 and Cyclin and is at the center of

the model.

The model includes two other proteins that regulate

MPF activity: Wee1 and Cdc25. Wee1 inhibits MPF

activation, and Cdc25 promotes MPF activation.

In turn, MPF regulates Wee1 and Cdc25 creating

feedback loops. These three proteins are the most

important to cell division in frog eggs. The following

system of ODEs describes their interactions:

dM

dt
=
(
v′d(1−D) + v′′dD

)
(CT −M)

−
(
v′w(1−W) + v′′wW

)
M, (1)

dD

dt
= vd

(
M (1−D)

Kmd + (1 −D)
− ρdD

Kmdr +D

)
, (2)

dW

dt
= vw

(
− MW

Kmw + W
+

ρw(1−W)

Kmwr + (1−W)

)
,(3)

where

M = [MPF]/[total Cdk1],

D = [Cdc25P]/[total Cdc25],

W = [Wee1]/[total Wee1],

CT = [total cyclin]/[total Cdk1].

M , D, W , and CT represent scaled concentrations

of active MPF, active Cdc25, active Wee1, and total

cyclin in the extract, respectively. The parameters

v′d, v′′d , v′w, v′′w, vd, Kmd, ρd, Kmdr , vw, Kmw,

5 10 15 20
DIRECT Iteration

1.5

2

2.5

3

3.5

fmin

Figure 5.1. Comparison of optimization
results generated by single-start DIRECT
(dotted curve) and by multistart parallel
DIRECT (solid curve).

ρw , and Kmwr are also scaled, making the system

dimensionless.

The parameters of the model are unknown. They

can be determined experimentally at a great cost to

the experimentalist, and only to the theoretician’s

immediate benefit. The parameters can also be

determined by comparing model simulations to exper-

iments and adjusting the parameters until the model

matches the experiments. In the present work, a

formal objective function (see [21]) has been defined in

terms of the parameters and given to the parallelized

DIRECT optimization algorithm to perform a global

parameter estimation (nonlinear orthogonal distance

regression).

5. Simulation and Results
All the simulations were run on a 200-node Linux

cluster with Portable Batch System (PBS). The list of

assigned processors generated by PBS can be sorted to

map the grouped processes (at each level) to adjacent

processors. The LAM/MPI package was chosen for

its support of dynamic process management in the

MPI-2 standard.

Two groups of simulations were designed to eval-

uate the present work. The first group validated

the optimization results obtained for the parameter

estimation problem for the frog egg model described

in the previous section. The second group measured

the parallel performance for the frog egg parameter

estimation problem and a synthetic test function on

16, 32, and 64 processors.

Figure 5.1 shows the optimization progress for

the original single-start DIRECT (dotted line) and

6

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.2 0.4 0.6 0.8 1

T
im

e
La

g
(m

in
)

Total Cyclin Concentration / Total Cdc2

Figure 5.2. Single-start DIRECT result: time
lag for MPF activation.

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.2 0.4 0.6 0.8 1

T
im

e
La

g
(m

in
)

Total Cyclin Concentration / Total Cdc2

Figure 5.3. Multistart DIRECT result: time
lag for MPF activation.

for the transformed multistart parallel DIRECT (in

solid line), where fmin was reduced from subdomain

masters at each iteration. As the number of iterations

grows, the objective function decreases faster in the

case of the multistart parallel DIRECT algorithm.

In a second observation, different optimal parame-

ter sets were found by the single-start and multistart

DIRECT after the same number of iterations. Fig-

ures 5.2 through 5.5 compare the simulation results

using the newly discovered parameter sets (solid lines)

with the known set of experimental data (dots) as

well as with the simulation results from the parameter

sets in [15] and [19] (dotted lines). For the time

lag plot, the parameter set by Moore [15] predicts

the experimental data points better than that from

the multistart DIRECT, although the latter gives a

closer match in the case of phosphorylation of Wee1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

A
ct

iv
e

W
ee

1
/ T

ot
al

 W
ee

1

Time (min)

Figure 5.4. Single-start DIRECT result:
phosphorylation of Wee1 during mitosis,
when MPF is more active.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

A
ct

iv
e

W
ee

1
/ T

ot
al

 W
ee

1

Time (min)

Figure 5.5. Multistart DIRECT result: phos-
phorylation of Wee1 during mitosis, when
MPF is more active.

This suggests that the present work explores some

previously unexplored regions of parameter space,

which may lead to new optimal parameter sets with

different biological interpretations.

Table 5.1 shows some preliminary parallel perfor-

mance data for the frog egg 16-parameter estimation

problem and a 100-dimensional Griewank function

using p = 3, 6, and 15 processors in a 2-level

subdomain tree, which is a part of P = 16, 32, and

64 processors under the 3-level parallel scheme. Here,

speedup is computed relative to a base, the smallest

number of processors required for the hierarchical

parallel scheme. Because the 3-level parallel scheme

does not have an exact limit for computation cost

(as mentioned in Section 3), the time was measured

7

Table 5.1. Parallel timing (in seconds)

and efficiency results for different num-

bers I of DIRECT iterations for the frog

egg 16-parameter estimation problem and

100-dimensional Griewank function in a

2-level subdomain tree on 6 and 15 pro-

cessors with base = 3 processors.

Frog Egg Model
I 3 6 E(6) 15 E(15)

10 1432 1152 0.62 372 0.77
20 3939 2267 0.87 1045 0.75
40 8657 4936 0.88 1960 0.88

Griewank Function
I 3 6 E(6) 15 E(15)

20 42 34 0.62 27 0.31
60 132 98 0.67 81 0.33

100 719 283 1.27 138 1.04

for the lower two levels of a single subdomain tree,

neglecting any interaction with the ring at Level 1.

The formulas for S2, M , and σ in Section 3 still apply,

but only the processors assigned to one subdomain

tree (working on the entire problem domain) are used

for performance evaluation. When total processor

number P ∈ [16, 64], the 3-level framework splits the

domain into four parts. Different ways of splitting the

problem domain result in different search problems,

so using 16, 32, and 64 processors guarantees the

same search problem for the efficiency test. Therefore,

the 2-level subdomain tree has p = 3, 6, and 15

processors accordingly. The smallest number of

processors possible for a subdomain tree is base = 3.

The parallel efficiency E is defined as

E =
Sr

p/base
,

where Sr = Timebase/Timep is the relative speedup.

In Table 5.1, except for the case with 15 processors

in the frog egg parameter estimation problem, the

parallel efficiency E increases as the maximum number

of iterations I grows. The frog egg parameter

estimation problem, while certainly nontrivial, does

not generate a large amount of work (function

evaluations) per iteration, and so too much processor

time is spent waiting and communicating rather

than productively computing. Also, for P < 256,

the number of subdomains S = bP 1/4c does not

greatly accelerate the exploration by DIRECT of the

feasible parameter space. Much larger test problems

(that generate thousands of function evaluations per

20 40 60 80

2.5

5

7.5

10

12.5

15

17.5

Figure 5.6. One-dimensional Griewank func-
tion with parameter d = 500.

iteration) are required to fairly assess the performance

of the multilevel algorithm proposed here. A budding

yeast cell cycle model with 154 parameters is being

developed and will become an ideal testing case for

the present work. As a synthetic high dimensional

test case, a Griewank function was used here. The

n-dimensional Griewank function

f(x) = 1 +
n∑

i=1

xi
2

d
−

n∏

i=1

cos

(
xi√
i

)
,

where d > 0 is a constant to adjust the noise, has

a unique global minimum at x = 0, and numerous

local minima (one-dimensional instance is plotted in

Figure 5.6). The larger the value of d, the deeper

the minima values are. The numerical results are for

an initial box [−10, 90]n and d = 500. In this test,

superlinear speedups (E > 1) (highlighted values)

observed in Table 5.1 imply that the data generated

by DIRECT may be too large to fit into the memory

of the base number of processors. This certainly

degrades its performance due to paging operations

from disk. When P = 16, a single mini master holds

all the data on a processor and sends the function

evaluations to two slave processes. In the case of

P = 32 and P = 64, more mini masters are spawned

to hold the data, thereby sharing the huge memory

burden.

6. Conclusion and Future Work
Key contributions of the present work are i) the

transformation from single-start to multistart, ii) the

mixed programming model, and iii) the dynamic

processor assignment.

In future work, a tree topology will be considered

in place of the current ring implementation at Level

1. At Level 2, a new set of data structures

SETLINK INDEX and its associated OPTSETs will be

implemented to add flexibility for enlarging the global

8

addressing space dynamically, as the number of box

sizes is unpredictable. Second, a distributed control

version for load balancing, desirable to eliminate the

bottleneck at the master, will be developed. Third,

a queue with adjustable size entries can be used to

hold multiple function evaluation tasks on processors

at Level 3 to reduce communication overhead. The

size of the queue entries depends on the problem

granularity. When the ratio of computation to

communication is higher, the entry size in the queue

is smaller.

Acknowledgments
This work was supported in part by AFRL Grant

F30602–01–2–0572.

References

[1] N. A. Allen, C. A. Shaffer, M. T. Vass, N. Ramakrishnan,
and L. T. Watson , “Improving the development process
for Eukaryotic cell cycle models with a modeling support
environment”, in Winter Simulation Conference, to appear,
December, 2003.

[2] C. A. Baker, L. T. Watson, B. Grossman, R. T. Haftka,
and W. H. Mason, “Parallel global aircraft configuration
design space exploration”, in High Performance Computing
Symposium 2000, A. Tentner (Ed.), Soc. for Computer
Simulation Internat, San Diego, CA, 2000, pp. 101–106.

[3] M. C. Bartholomew-Biggs, S. C. Parkhurst, and S. P.
Wilson, “Using DIRECT to solve an aircraft routing
problem”, Computational Optimization and Applications,
vol. 21, no. 3, pp. 311–323, 2002.

[4] W. R. Esposito and C. A. Floudas, “Global optimization
in parameter estimation of nonlinear algebraic models via
the Error-In-Variables approach”, Ind Eng. Chemistry and
Research, vol. 37, pp. 1841–1858, 1998.

[5] J. M. Gablonsky, “Modifications of the DIRECT algo-
rithm”, PhD thesis, Department of Mathematics, North
Carolina State University, Raleigh, NC, 2001.

[6] C. Gau and M. A. Stadtherr, “Nonlinear parameter
estimation using interval analysis”, in AIchE Symposium,
vol. 94, no. 320, pp 445-450, 1999.

[7] A. Grama, A. Gupta, G. Karypis, and V. Kumar,
Introduction to Parallel Computing, Pearson Education
Limited, 2nd Edition, 2003.

[8] W. Gropp, E. Lusk, and R. Thakur, Using MPI-2:
Advanced features of the message-passing interface, The
MIT Press, Cambridge, Massachusetts, London, England,
1999.

[9] J. He, A. Verstak, L. T. Watson, T. S. Rappaport, C.
R. Anderson, N. Ramakrishnan, C. A. Shaffer, W. H.
Tranter, K. Bae, and J. Jiang, “Global optimization of
transmitter placement in wireless communication systems”,
in Proc. High Performance Computing Symposium 2002,
A. Tentner (ed.), Soc. for Modeling and Simulation
International, San Diego, CA, pp. 328–333, 2002.

[10] J. He, L. T. Watson, N. Ramakrishnan, C. A. Shaffer,
A. Verstak, J. Jiang, K. Bae, and W. H. Tranter,
“Dynamic data structures for a direct search algorithm”,
Computational Optimization and Applications, vol. 23,
pp. 5–25, 2002.

[11] D. R. Jones, C. D. Perttunen, and B. E. Stuckman,
“Lipschitzian optimization without the Lipschitz constant”,

J. Optim. Theory Appl., vol. 79, no. 1, pp. 157–181,
1993.

[12] D. J. Marriplis, “Parallel performance investigation of
an unstructured mesh Naiver-Stokes solver”, Internat. J.
High Performance Computing Appl., vol. 16, no. 4, pp.
395–407, 2002.

[13] V. Kumar, A. Y. Crama, and N. R. Vempaty, “Scalable
load balancing techniques for parallel computers”, J.
Parallel Distributed Computing, vol. 22, pp. 60–79, 1994.

[14] C. G. Moles, P. Mendes, and J. R. Banga, “Parameter
estimation in biochemical pathways: a comparison of
global optimization methods”, Genome Res., vol. 13, pp.
2467–2474, 2003.

[15] J. Moore, “Private Communication”, Aug., 1997.
[16] K. Parzyszek, J. Nieplocha, and R. A. Kendall, “A

generalized portable SHMEM library for high performance
computing”, in 12th IASTED International Conference
Parallel and Distributed Computing and Systems (PDCS),
pp. 401–406, 2000.

[17] R. Rabenseifner, and G. Wellein, “Communication and
optimization aspects of parallel programming models on
hybrid architectures”, Internat. J. High Performance
Computing Appl., vol. 17, no. 1, pp. 49–62, 2003.

[18] M. Ruiz, O. Lopera, and C. de la Plata, “Component-based
derivation of a parallel stiff ODE solver”, Internat. J.
Parallel Programming, vol. 30, no. 2, pp. 99–148, 2002.

[19] Z. Tang, T. R. Coleman, and W. G. Dunphy, “Two distinct
mechanisms for negative regulation of the Wee1 protein
kinase”, EMBO J., vol. 12, no. 9, pp. 3427–36, 1993.

[20] L. T. Watson and C. A. Baker, “A fully-distributed parallel
global search algorithm”, Engineering Computations, vol.
18, no. 1/2, pp. 155–169, 2001.

[21] J. W. Zwolak, J. J. Tyson, and L. T. Watson, “Parameter
estimation in a cell cycle model for frog egg extracts”,
in High Performance Computing Symposium 2002, A.
Tentner (ed.), Soc. for Modeling and Simulation Internat.,
San Diego, CA, pp. 67–74 2002.

9

