
Bundling: Reducing the Overhead of Multiprocessor Prefetchers

Dan Wallin and Erik Hagersten
Uppsala University, Department of Information Technology

P.O. Box 337, SE-751 05 Uppsala, Sweden�
dan.wallin, erik.hagersten�@it.uu.se

Abstract

Prefetching has proven useful for reducing cache misses
in multiprocessors at the cost of increased coherence traffic.
This is especially troublesome for snooping-based systems,
where the available coherence bandwidth often is the scal-
ability bottleneck.

The newbundling technique, introduced in this paper,
reduces the overhead caused by prefetching by two means:
piggybacking prefetches with normal requests; and, re-
quiring only one device on the “bus” to perform a snoop
lookup for each prefetch transaction. This paper describes
bundling implementations for three important transaction
types: reads, upgrades and downgrades.

While bundling could reduce the overhead of most exist-
ing prefetch schemes, the evaluation of bundling performed
in this paper has been limited to two of them: sequential
prefetching and Dahlgren’s adaptive sequential prefetch-
ing.

Both schemes have their snoop bandwidth cut in about
half for all the commercial and scientific benchmarks stud-
ied. The combined effect of bundling applied to these fairly
naive prefetch schemes lowers the cache miss rate, the ad-
dress bandwidth, as well as the snoop bandwidth compared
with no prefetching for all applications – a result never
demonstrated before.

Bundling, however, will not reduce the data bandwidth
introduced by a prefetch scheme. We argue, however, that
the data bandwidth is more easily scaled than the snoop
bandwidth for snoop-based coherence systems.

1 Introduction

Many important applications spend a substantial part of
their time waiting for memory transactions [5], [15]. A
cache miss rate of 1 percent may add as much as 1.0 to the
overall CPI number, assuming an access cost to memory of
400 CPU cycles and a 25 percent ratio of memory instruc-
tions. Much research effort has been devoted to reducing
the number of cache misses using various latency-hiding
and latency-avoiding techniques, such as prefetching.

While most existing prefetch techniques efficiently re-

duce the amount of cache misses, they also increase the
amount of global coherence activity, which is a scarce re-
source in a shared-memory multiprocessor. This is espe-
cially true for systems based on snooping coherence, where
each device has to perform a cache lookup for every global
address transaction. The address networks of systems based
on directory coherence are more scalable, since the address
transactions are sent point-to-point. Still, systems based on
snooping are often preferred due to their superior cache-
to-cache transfer time. It should be noted that there is no
difference in scalability of the data network between sys-
tems based on snooping coherence and systems based on
directory coherence, since data packets can be sent point-to-
point in both cases. Actually, commercial snooping-based
systems have been built where the data network is over-
designed with 50 percent compared to the available snoop
bandwidth [6].

The goal of this research is to find a way to reduce the
cache miss ratewithout increasing coherence activity. Our
new proposal,bundling, piggybacks prefetch transactions
on ordinary cache miss transactions. An alteration of the
coherence protocol allows for a very selective snooping of
the prefetch transactions, such that only one device needs
to perform the snoop lookup. Bundling in combination
with existing prefetch proposals may actually decrease the
bandwidth of the address bus, and more importantly, also
decrease the coherence activity (i.e., address snoops) com-
pared with a system without prefetching.

This paper uses the simple but effective, adaptive se-
quential prefetching of read transactions, proposed by
Dahlgren et al. [7], as a baseline system. The Dahlgren
scheme is compared with a fixed sequential prefetch scheme
and systems with various cache line sizes. Next, bundling
techniques for read, upgrade and downgrade (i.e., write-
back) transactions are introduced, followed by a study of the
efficiency of bundled prefetch protocols. The bundled ver-
sion of the original fixed sequential prefetch protocol has
54 percent less address snoops and 10 percent less cache
misses on average for all studied applications. The bundled
adaptive protocol reduces the address snoops with 47 per-
cent and the cache misses with 5 percent compared with
the original adaptive protocol. The data traffic is similar for

bundled and non-bundled prefetchers. We also discuss the
complexity of the proposal and provide a more detailed de-
scription of one possible implementation of bundling on an
existing architecture.

We end the paper with a performance discussion of vari-
ous prefetch protocols and make a comparison between the
bundled prefetch protocols and non-prefetching protocols.
Combining the adaptive prefetch scheme with bundling al-
lows us to cheaply prefetch upgrade and downgrade transac-
tions as well as read transactions, resulting in a miss reduc-
tion of 28 percent for the scientific benchmarks (SPLASH-
2) and a miss reduction of 17 percent for the commercial
benchmarks. It alsoreducesthe snoop lookups by 25 per-
cent and 16 percent respectively compared to a system with-
out prefetching. It is interesting to note that we lower the
miss rateandthe snoop lookups for all studied applications.

While the evaluation section of this paper studies the ef-
fect of bundling on the Dahlgren sequential prefetching and
pure sequential prefetching, it does not argue that these nec-
essarily are the strategies of choice. However, it does make
the case that various forms of bundling can help reduce
the coherence overhead caused by most prefetch strategies.
While bundling reads, upgrades and downgrades may seem
obvious, it has not previously been proposed. Actually, we
are not aware of any prefetch paper that have reported are-
ductionin the coherence activity for all studied applications.

2 Background: Multiprocessor Prefetching

Several prefetch techniques have been proposed for re-
ducing the cache miss rate of multiprocessors. Software
prefetching [18], [19], [20], [25] relies on inserting prefetch
instructions in the code and results in an instruction over-
head.

The hardware prefetching techniques [4], [7], [8], [12],
[14], [16], [22] require hardware modification to the cache
controller to speculatively bring additional data into the
cache. Hardware prefetching often relies on detecting reg-
ularly accessed strides. A common approach to avoid
unnecessary prefetches in multiprocessors is to make the
prefetcher adapt the amount of prefetching at run time [12],
[14], [22]. These proposals introduce small caches that de-
tect the efficiency of prefetches based on the data structure
accessed. Baer and Chen proposed to predict the instruction
stream with a look-ahead program counter [4]. A cache-like
reference predictor table is used to keep previous predic-
tions of instructions. Correct branch prediction is needed
for successful prefetching.

Another hardware prefetch approach is to take better ad-
vantage of spatial locality by fetching data close to the orig-
inally used cache line. A larger cache line size can achieve
this. Unfortunately, enlarging the cache line size is not as
efficient in multiprocessors as in uniprocessors since it can
lead to a large amount of false sharing and an increase in

data traffic. The influence of cache line size on cache miss
rate and data traffic has been studied by several authors [9],
[11], [13], [26], [27]. To avoid false sharing and at the same
time take advantage of spatial locality, sequential prefetch-
ing fetches a number of cache lines having consecutive ad-
dresses on a read cache miss. The number of additional
cache lines to fetch on each miss is called the prefetch de-
gree.

Sequential prefetching in multiprocessors was first stud-
ied by Dahlgren [7]. The increased prefetch traffic tends to
hurt multiprocessors more than uniprocessors. This is es-
pecially a problem in bus-based multiprocessors where the
available snoop bandwidth is limited [24]. Dahlgren pro-
posed two types of sequential prefetching schemes, a fixed
version and an adaptive version [7]. Prefetches are only
generated on read misses in these schemes and the focus on
the study was on prefetching to the second level cache.

The fixed sequential prefetch scheme issues prefetches
to theK consecutive cache lines on each cache read miss. If
the consecutive cache lines are not already present in a cor-
rect state in the cache, a prefetch message for the missing
cache line is generated on the interconnect. The prefetch de-
greeK is fixed to a positive integer in this scheme. The fixed
sequential prefetch scheme requires only small changes to
the cache controller of the prefetching cache. In addition
to this, a special prefetch request has to be handled by the
interconnect and the memory system.

The adaptive sequential prefetch scheme is identical
to the fixed sequential prefetch scheme, except that the
prefetch degreeK can be varied during run time. The
prefetch degree is varied based on the success of previ-
ous prefetches. Dahlgren’s approach to finding an optimal
value ofK is to count the number of useful prefetches. This
is done by using two counters that keep track of the total
number of prefetches and the number of useful accesses to
prefetched cache lines. Prefetched cache lines are tagged
for later detection. Every sixteenth prefetch, the useful
prefetches are checked. If the number of useful prefetches
is larger than twelve,K is incremented.K is decremented
if the number of useful prefetches is lower than eight or di-
vided by two if less than three prefetches are useful. The
scheme also has a method of turning prefetching on, since
no detection can be carried out if the prefetch degree is low-
ered so that no prefetches are performed.

The behavior of fixed and adaptive sequential prefetch
schemes on a single level of coherent caches is studied in
Figure 1. The prefetch strategies are evaluated in terms of
cache misses, snoop lockups and data traffic for fourteen
commonly used scientific and commercial benchmarks. All
results are normalized relative to the 32 B non-prefetching
protocol. The numbers indicated in the cache miss figures
are miss ratios, showing the percentage of cache accesses
missing in the cache, for each application’s 32 B configu-

(a) Cache misses (b) snoop lockups and data traffic

(c) Cache misses (d) snoop lockups and data traffic

(e) Cache misses (f) snoop lockups and data traffic

(g) Cache misses (h) snoop lockups and data traffic

Figure 1. Cache misses, snoop lockups and data traffic for three different cache line sizes, 32, 64, 128, a fixed sequential prefetch

protocol with a prefetch degree of 3, F3r, and Dahlgren’s adaptive prefetch protocol, Dr. The results are normalized relative to the 32 B

non-prefetching configuration. The cache miss ratios are indicated for the 32 B configuration for each application.

ration. The adaptive protocolDr is the one described by
Dahlgren [7]. The abbreviationDr indicates that this is
the adaptive protocol proposed byDahlgren, which only
prefetches onreads. The fixed sequential prefetch protocol
F3r is a non-adaptive scheme that issues prefetches to the
next three consecutive cache lines based on the address on
all cache read misses. In addition to these protocols, the re-
sults of non-prefetching protocols are presented for various
cache line sizes.

The original adaptive Dahlgren schemeDr lowers the
cache misses for all studied applications compared with the
32 B non-prefetching configuration. The fixed prefetch pro-
tocolF3r lowers the cache misses for all applications except
Barnes and Volrend.

Both fixed and adaptive prefetching increase the data
traffic and address snoops rather heavily compared with
a non-prefetching protocol. For some applications, e.g.
Barnes and Raytrace, the increase is very large. How-
ever, for most applications the adaptive strategy has a better
prefetch efficiency and thus results in less address snoops
and data traffic than in the fixed version. The difference be-
tween the snoop lookups and the data traffic is caused by
upgrades, which results in address snoops but no data traf-
fic.

By looking at the snoop lookups and data traffic figures,
we can identify algorithms with good prefetch efficiency.
For such algorithms, e.g. Cholesky, FFT, LU and Ocean,
the access pattern is very regular and the adaptive algorithm
works well thus generating only a small increase in data
traffic. These algorithms also have good spatial locality
since the cache misses decrease substantially when a large
cache line size is used.

Comparing a sequential prefetch protocol of prefetch de-
greeK with a protocol with a large cache line size, e.g.
comparingF3r with the 128 B non-prefetch protocol, we
see that the fixed prefetch protocol generally generates less
data traffic than the non-prefetch protocol. Dahlgren also
showed this. One reason for this is that false sharing can be
avoided in the prefetch protocol and another reason is that
the prefetch protocol always fetches subsequent addresses,
which is not the case in a protocol having a large cache line
size.

3 Simulation Environment

The Simics [17] full-system simulator is used in all the
experiments. The simulation is execution-driven and mod-
els the in-order SPARC v9 ISA. We have implemented an
invalidation-based MOSI (Modified, Owner, Shared, In-
valid) protocol extension to Simics as a baseline cache
coherence protocol. In all experiments, a bus-based 16-
processor system with one level of 4-way associative uni-
fied data and instruction caches per CPU is modeled. Since
our goal is to reduce the second level cache misses and we

assume an inclusive cache hierarchy with a write-through
first level cache, we have chosen to only model one cache
level. A single level simulation will yield the same number
of cache misses as for a two level hierarchy, but the miss-
ratio will be lower since more read accesses will reach the
cache compared with a multi-level cache hierarchy.

Many different classification schemes of cache misses in
multiprocessors have been proposed [9], [10], [23]. The
cache miss characterization in our paper is influenced by
Eggers and Jeremiassen [10]: The first reference to a given
block by a processor is a cold miss. Subsequent misses to
the same block by the same processor are either caused by
invalidations and/or replacements. All misses caused by re-
placements are classified as capacity misses. The invali-
dation misses are either classified as false or true sharing
misses. False sharing misses occur if another word in the
cache line has been modified by another processor during
the lifetime in the cache. All other invalidation misses are
true sharing misses. Conflict misses are included in the ca-
pacity miss category.

Throughout the paper the termssnoop lookupsandad-
dress snoopsare used as measurements of the number of
cache lookups needed by the coherence activities. The
available snoop bandwidth is the major limitation of scal-
ability, since it grows rapidly with the number of proces-
sors. Thedata traffic reported represents the number of
bytes transferred on the data network.

3.1 Benchmark Programs and Working Sets

The studies are performed on the SPLASH-2 ap-
plications [27] and two commercial workloads,
SPECjbb2000 [3] and ECperf [1] (a modified version
has lately been adapted as SPECjAppServer2001 [2]).

The cache size is chosen to model realistic data foot-
prints. The SPLASH-2 programs are rather old benchmark
programs with small data footprints. Therefore, the cache
size for the SPLASH-2 simulations is chosen accordingly
to only 64 KB. At this cache size, the number of commu-
nication misses (false, true and upgrade misses) and non-
communication misses (cold, capacity misses) are roughly
equal and the different cache miss categorizes could be ob-
served and evaluated for all applications. If a larger cache
size is used, the diagrams are entirely dominated by cold
misses and with a smaller cache size, very few communica-
tion misses occur. The workloads are chosen according to
the default values specified in the SPLASH-2 release [27]
with some minor changes: the Cholesky benchmark is op-
timized for the cache size, the FFT benchmark is run with
65536 data points, the Raytrace benchmark allocates a to-
tal of 64 MB global memory, and the Radiosity benchmark
uses the small test scene provided in the distribution instead
of the default room scene in order to limit the simulation
time. All benchmarks are run using 16 parallel threads, and

the measurements are started right after the child processes
are created in all applications except Barnes and Ocean,
where the measurements are started after two time steps.

ECperf and SPECjbb2000 are both commercial Java-
based middleware benchmarks. ECperf is a benchmark
modeling Java Enterprise Application Servers that uses a
number of Java 2 Enterprise Edition (J2EE) APIs in a web
application. ECperf is a complicated, multi-tier benchmark
that runs on top of a database server and an application
server. SPECjbb2000 evaluates the performance of server-
side Java. It can be run on any Java Virtual Machine. Both
are commercial benchmarks, which set heavy demands on
the memory and the cache system. The SPECjbb2000 and
ECperf workloads are chosen according to Karlsson [15].
The commercial benchmarks have larger data footprints and
therefore the cache size is chosen to 1 MB for these appli-
cations for a more realistic mixture of cache misses.

ECperf models the number of successfully completed
“benchmark business operations” during a time period.
Such operations include business transactions such as a cus-
tomer making an order, updating an order or checking the
status of an order. The ECperf transactions take long time
and a total of 10 transactions are run with a 3-transaction
warm-up period. SPECjbb2000 transactions take much less
time and we simulate 50,000 transactions including 10,000
transactions of warm-up time.

4 Reduction of Address Snoops Through
Bundling

Snooping protocols result in a much lower latency for
cache-to-cache transfers than directory-based protocols.
However, the available snoop bandwidth of snoop-based
systems limits their scalability. Data packets do not need
the broadcast capabilities and can be returned on a general
network, such as a crossbar switch or a point-to-point net-
work, and do not suffer from such limitations. An example
is the architecture of Sunfire 6800, which has a data inter-
connect capable of transferring 14.4 GB/s while its snoop-
ing address network only can support 9.6 GB/s worth of
address snoops [6], i.e., the data network is over-designed
by about 50 percent. The main goal of our proposal is to
limit the snoop bandwidth consumed by the address net-
work, while the amount of bandwidth used in the data net-
work is considered to be less critical.

Traditionally, hardware prefetchers, e.g. sequential
prefetchers, send address transactions for the original cache
miss as well as for all prefetch transactions. This typically
creates more snooping in the state memory – the major lim-
iting factor for the scalability of such system. The snoop
frequency is limited by the rate at which new cache state
lookups can start. The number of address transactions sent
on the network can be significantly reduced if the original

transaction, and its associated prefetch transactions arebun-
dled into a single transaction. Each original transaction has
to be extended with an offset prefetch bit mask indicating
which extra cache lines to prefetch beyond the original one
according to Figure 2. While this would reduce the number
of address transactions on the bus, it would not reduce the
number of snoop lookups each cache has to perform. How-
ever, if we alter the semantics of the prefetching slightly
using bundling, it is possible to limit the number of caches
that each prefetch transaction needs to snoop.

 type

Original

address

Prefetch

bit mask

Transaction

Figure 2. Bundled transaction.

Several hardware coherence protocols and software
DSMs have used piggyback techniques to transfer multiple
requests in one packet. None of these protocols have used
piggybacking as a method of reducing the address snoops
for prefetches. A simple form of bundling applied only to
read transactions has previously been studied together with
the capacity prefetching technique [26]. However, no eval-
uation of the possible performance gains of read bundling
has previously been performed. This paper also extends the
previous publication with a thorough discussion on how to
implement bundled reads on an existing architecture, the
SunFire 6800, as well as to also introduce bundling for up-
grades and write-backs. Bundling is also studied together
with an adaptive prefetch scheme. We show that bundling
makes the studied prefetchers more efficient by reducing
the cache misses and address snoops without increasing the
data traffic.

4.1 Read Bundling

Some prefetch schemes may decide to prefetchK cache
lines for each cache miss. The prefetch cache lines can ei-
ther be to the consecutive addresses, or separated by some
stride, depending on the prefetch scheme. However, in our
study, only sequential cache lines are prefetched.

For any of the prefetch cache lines not present in the
cache, a global prefetch request should be issued. How-
ever, instead of generating a new bus transaction for each
requested cache line, we bundle the transaction caused by
the cache miss with prefetch information. A single transac-
tion is transmitted, consisting of the addressA of the cache
miss and information about theK prefetches encoded in a
prefetch bit mask. All devices on the bus need to perform a
snoop lookup for addressA, but only the owner of cache line
A needs to performs lookups for the prefetched addresses.
It will reply with data for each prefetch address for which it
is also the owner. Otherwise, an empty NACK data packet

will be supplied for the cache lines. Since the state of the
other caches are not affected by the prefetch transaction,
they do not need to snoop the prefetch addresses.

The memory is also extended with a one-bit state:
Owner. The Owner bit is cleared on aReadExclusivere-
quest and is set again on aWrite-backrequest. This will
allow the memory controller to perform the bundling opti-
mization as well.

4.2 Upgrade Bundling

Upgrade prefetch transactions can also be bundled to
limit the number of snoop lockups required with some
changes to the original invalidate MOSI-protocol. First, we
have to introduce one additional flavor of the Owner state in
the cache coherence protocol. Second, a similar extension
has to be made to the memory states.

The two flavors of the Owner state, Owner� (Owner 2)
and Owner� (Owner many) are used to keep track of how
many shared copies that are available in the system. The
first time a cache line becomes downgraded from the Mod-
ified state, the cache line will enter the Owner� state. In
the Owner� state, we know that there is at most one other
cache sharing the data. If additional read requests are is-
sued to the same address by another processor, cache lines
in the Owner� state will change their state to the Owner�

state. Cache lines in this state can be shared by an unknown
number of caches. At most one cache line, being in either
the Owner� or Owner� state, is responsible for updating
the memory on a cache line replacement. A transition state
diagram can be found in Figure 4.

On each upgrade cache miss, i.e., a write request to state
Shared, cache lookups are also carried out to the prefetch
addresses. For each of the prefetch cache lines in a Shared
state, a prefetch request will be bundled with the original
upgrade request for the addressA. AddressA is snooped
by all devices, possibly causing a cache invalidation. If a
device has addressA in the Owner� state, it will also invali-
date each of the prefetch cache lines currently in the Owner�

state.
Since cache lines in the Owner� state are shared by at

most one other device, i.e., the requesting device, we know
that the copy in the requesting device now is the only copy
left. The device owning addressA will send a reply to the
requesting node indicating which of the bundled upgrade
cache lines it now safely can put into state Modified.

Cache lines being invalidated in the Owner� state can
not be handled the same way since we do not know the
number of sharers. In this case, only the original address
will be invalidated.

Upgrade bundling should work well in all programs
where at most two processors share a cache line. This be-
havior occurs in programs experiencing migratory sharing,
which has been identified as one of the major sources of

Read

Read

M

IS
CpuRead

CpuWrite

Bus generated transitions

CPU generated transitions

O

O

O

O

2

2

m

m

RdExl/Upg

RdExl/Upg

RdExl/Upg

RdExl/Upg

CpuWrite

CpuWrite

CpuWrite

I

M

S

Figure 4. Transition state diagrams for bus and CPU gen-

erated transitions.

global invalidations in multiprocessors [13].

4.3 Downgrade Bundling

The last bundling technique is used for downgrade trans-
actions. The downgrade bundling uses speculation on write-
backs. On a write-back caused by a replacement from a
bundled read request, the original cache line is put in the
write-back buffer. The cache then checks whether the bun-
dled prefetch addresses are in the Modified or Owner state
in the cache. In that case, these cache lines also perform
speculative write-back transactions and will be downgraded
to the Shared state in the cache. This could potentially avoid
future write-back requests for the cache line, but will still
allow the cache lines to be read in the cache.

Downgrade bundling may increase the data traffic since
data packets are speculatively written to memory. They
may also increase the number of upgrade misses, for cases
where the speculative downgrade was a bad choice. How-
ever, the cache capacity misses should not increase since the

(a) Cache misses (b) snoop lockups and data traffic

(c) Cache misses (d) snoop lockups and data traffic

(e) Cache misses (f) snoop lockups and data traffic

(g) Cache misses (h) snoop lockups and data traffic

Figure 3. Influence of bundling on a fixed sequential prefetch scheme and the Dahlgren adaptive scheme. Cache misses, snoop

lockups and data traffic for three fixed, F3r, F3ru, F3Bru and three adaptive, Dr, Dru, DBru, prefetch schemes are presented. The fixed

schemes are normalized relative to the baseline fixed prefetch scheme F3r and the adaptive schemes relative to the baseline adaptive

prefetch scheme Dr.

speculative downgrades do not invalidate the downgraded
copies. The speculative downgrades may reduce the address
snoops by sending a single address transaction for several
data packets.

4.4 Efficiency of Bundling in Prefetch Protocols

Figure 3 shows the efficiency of bundling for the fixed
sequential prefetch scheme and the Dahlgren adaptive
prefetch scheme. TheF3r configuration prefetches the three
consecutive addresses on each read miss, while theF3ru
configuration prefetches the three consecutive addresses on
each read and on each write generating upgrades. Up-
grade prefetching can be useful since many access patterns
first read a variable and then update the variable with a
new value. TheF3Bru configuration is the bundled pro-
tocol prefetching three cache lines on each read and up-
grade miss. TheDr, Dru andDBru are similar protocols
except that they use adaptive prefetch degrees. The cache
misses, data traffic and snoop lookups are normalized rela-
tive to the baseline fixed and adaptive schemesF3r andDr
in the figure. Hence, we can easily study the efficiency of
the bundling proposals on the prefetch schemes.

The figure shows that in terms of cache misses, the bun-
dled and non-bundled prefetchers prefetching on both reads
and upgrades perform similarly for most applications. The
behavior is similar both for the fixed and adaptive schemes.
The cache misses are generally lower for protocols prefetch-
ing on both reads and upgrades than the baseline read
prefetch protocols.

All bundled prefetch requests will not return data. Will
not the effect on the cache miss rate be negative compared
with non-bundled prefetching, since less prefetches are is-
sued? There seems to be a fairly small difference. Actually,
sometimes bundling seems to have a positive effect. If the
owner of the original transaction is not also the owner of
the prefetch data, this may indicate that they do not have a
common history and do not belong to the same software ob-
ject. Not prefetching could therefore be the action of choice.
A small positive effect can be seen by comparing the miss
rate forF3ru andF3Bru or Dru andDBru in ECperf and
SPECjbb2000. A negative effect can be observed in Radix
and Cholesky.

There are more cold misses in the adaptive protocolDru
than inDr for some applications, e.g. Cholesky, LU , Water-
Sp and SPECjbb2000. The reason for this is that useful
prefetches are detected also for upgrades in theDru scheme.
Upgrades generally take advantage of a smaller prefetch de-
gree than reads. This makes theDru more restrictive at
prefetching and causes the cold misses to increase in this
protocol compared to theDr protocol.

For most applications, prefetching leads to an increased
data traffic when upgrade prefetches are issued. Looking
at the data traffic for the non-bundled protocols prefetching

only on reads and the bundled protocols, we can conclude
that the difference in cache misses is very small. The bun-
dled protocols issue prefetches also on upgrades but here
the negative cannot be observed. This is an effect of the
bundling since unnecessary prefetches for data belonging
to separate software objects are avoided. Using bundling,
prefetches can be issued on upgrades, thus decreasing the
cache misses, without the negative effect on data traffic.
There is also a positive effect of bundling on false sharing
since the more restrictive prefetching prevents unnecessary
prefetches in e.g. Radiosity, Water-Sp and SPECjbb2000.

The large difference between the bundled and non-
bundled protocols is in address snoops. The bundled adap-
tive protocolDBru requires much less address snoops than
theDr andDru protocols for all applications. The decrease
in address snoops is 45 percent betweenDr andDBru on
average for all applications. The decrease is even larger
compared with the non-bundled protocol prefetching also
on upgrades. The fixed protocol always issues three addi-
tional prefetches on each miss. This makes the total num-
ber of prefetches much larger in this protocol. Bundling is
therefore more efficient at reducing address snoops in this
protocol. The average reduction is 54 percent between the
F3r and F3Bru protocols. Generally, the bundling tech-
nique is more efficient at reducing address snoops in pro-
tocols which issue a large amount of prefetches per cache
miss.

4.5 Details of the Bundled Snooping Protocol Im-
plementation

While the implementation of upgrade and downgrade
bundling is rather obvious, in the following section we will
go further into an implementation of read bundling on a spe-
cific architecture. Although this section assumes a cache co-
herence implementation similar to that of Sunfire 6800 [6],
read bundling implementations should be fairly similar in
other modern snooping architectures too.

In Sunfire 6800, snooping cache coherence is imple-
mented using logically duplicated cache state tags: the
snoop state (OSI) and the access state (MSI). A simi-
lar scheme was also used in the Sun E6000 family of
servers [21]. The action taken for each snooped transaction
depends on the snoop state. A service request may be put
in the service queue for the cache as the result of the snoop
state lookup, e.g., anInvalidaterequest or aCopy-Backre-
quest. The snoop state is changed before the next address
transaction lookup is started. Also when a cache snoops its
own transaction, entries may be added to the queue, e.g., a
My-Readrequest or aMy-ReadExclusiverequest. Eventu-
ally, each service request will access the cache and change
its access state accordingly. The cache’s own requests are
not removed from the head of the queue until the corre-
sponding data reply is received and can thus temporarily

block the completion of later service requests [21].
The UltraSPARC III processor, used in Sunfire 6800, im-

plements the two logically duplicated states as a combina-
tion of the snoop result from the lookup in the main cache
state and in the much smaller transition state table, which
contains the new state caused by the snooped transactions
still in the request queue. The hit in the transitional state
table has precedence over a hit in the main cache state.

BundledReadprefetches in Sunfire 6800 will only re-
trieve the data if the owner of the original transaction also
is the owner of the prefetched data. All caches snoop the
address of the original read transaction address in order to
determine if they are the owner. Only the owner will add an
entry in its service queue: aRead-Prefetchrequest. Thus,
the snoop bandwidth will not increase for the other caches.
When the transaction reaches the head of the request queue,
it is expanded to behave like oneCopy-Backrequest for
each prefetch cache line. If the cache is not the owner of
a prefetch line, it will reply with a null-data NACK packet
to the requesting CPU, which will simply remove theMy-
Readrequest from its service queue. The requesting cache
must assume a shared snoop state for each prefetched cache
line when the original request is sent out. This may create
false invalidate requests if the null data is returned from the
owner cache.

The owner state bit must be added to each cache line
in memory. The Enterprise 6800 already has some state
(gI, gS and gO) associated with each cache line for other
reasons [6]. The extra bits used for these states is retrieved
by calculating the ECC code over a larger data unit, and
come ”for free”. There is one such unused bit in memory
that comes handy for the owner state bit. That bit should
be cleared on the firstReadExclusiverequest to the cache
line and set again on itsWrite-Backrequest and speculative
downgrade requests.

4.6 Implementation complexity

Our experience from designing commercial shared-
memory systems has taught us that much of the implemen-
tation complexity lies in the details of an implementation –
often at a level of details far below the description found in
research papers. Here, we will nevertheless try to carry out
a complexity discussion at a higher level.

Read bundling will introduce most complexity of the
three bundling schemes. That is also why we covered it
in some more details in Section 4.5. While this kind of
bundling will neither alter the core of the coherence pro-
tocol nor add new states, it will introduce more corner cases
in its implementation, e.g., the invalidation of prefetched
data that are NACKed. However, we feel that our detailed
description would solve such corner cases at the cost of a
reasonable amount of logic adjacent to the service queue.

Another major cost for read bundling could be adding the

one Owner state to the memory if the existing system not al-
ready has a memory state associated with each cache line in
memory. The upgrade bundling does add more state to the
caches and memory. However, it does not alter the core co-
herence scheme, since both Owner states behave the same
way from a global coherence point of view. Adding one
state may force you to add one extra state bit, if there should
not be any unused pattern using the current bits. The mech-
anisms to handle the corner cases for read bundling should
be sufficient for implementing also upgrade bundling.

The downgrade bundling is the simplest of the three tech-
niques to implement and will not introduce much extra cost
for its implementation.

5 Bundling Performance Discussion

So what is the performance effects of bundling on a real
system?

The net effect of prefetching on execution time can be
shown to be either positive or negative depending on the
parameters chosen for the simulation study. A system with
plentiful of coherence bandwidth will be dominated by the
positive effects of the lower cache miss rate, while the nega-
tive effects from increased queuing delay in the interconnect
will dominate if the coherence traffic is close to the avail-
able bandwidth of the system.

The contention bottleneck makes it very difficult to es-
timate the potential performance gain of prefetchers based
on simulation. In applications that spend a lot of their time
waiting for memory transactions, the simulated execution
time will vary very much depending on the bandwidth as-
sumptions. For these applications, the wall clock time will
follow the amount of cache misses if the available band-
width is chosen large. If the simulated bandwidth is small,
the execution time will instead depend on a combination of
the required bandwidth and the amount of cache misses.

Figure 5. Effects of contention on latency.

Singhal et al. performed measurements of the impact
of contention on memory latency in the snoop-based Sun

(a) Cache misses (b) snoop lockups and data traffic

(c) Cache misses (d) snoop lockups and data traffic

(e) Cache misses (f) snoop lockups and data traffic

(g) Cache misses (h) snoop lockups and data traffic

Figure 6. Cache misses, snoop lockups and data traffic for three non-prefetching protocols with different cache line sizes and the

bundled fixed and adaptive sequential prefetchers. The results are normalized relative to the 32 B non-prefetching configuration. The

cache miss ratios are indicated for the 32 B configuration for each application.

E6000 family of servers [21]. A similar diagram is pre-
sented in Figure 5. The figure shows that contention only
has a modest influence on memory access time as long
as the systems available bandwidth has not been reached.
However, when the interconnect is contended, the access
time increases largely. This makes it difficult to come up
with one unbiased speedup number associated with a good-
news/bad-news proposal, such as prefetching1.

However, this paper is not about evaluating prefetching
per se, but to evaluate the effects bundling has on prefetch
algorithms. We have shown that bundling can cut the snoop
bandwidth roughly in half and the cache misses by ten per-
cent for the two baseline prefetch algorithms, while the data
traffic is largely unaffected (Figure 3). We could easily have
chosen simulation parameters to demonstrate a 100 percent
speedup by limiting the snoop bandwidth. We could also
have shown no speedup if the data bandwidth had been
made the major bottleneck, or just a modest speedup if there
is plentiful of both.

One could argue that we have chosen very primitive
prefetch algorithms as our baseline systems, and this is why
we can demonstrate the large cut in bandwidth. This may be
a valid argument, which may lead us to compare the perfor-
mance effects of bundling in combination with these primi-
tive prefetch algorithms compared with the non-prefetching
32 B protocol. Looking for example at Ocean in Figure 6,
its drop in miss ratio from 3.1 to 1.7 percent forDBru would
result in a CPI reduction from 4.1 to 2.7 (34 percent) using
the rough memory access latency numbers given in the in-
troduction. If the available snoop bandwidth had been the
dominating bottleneck, a speedup of 45 percent could have
been achieved, and a data bandwidth bottleneck would have
yielded a slowdown of 15 percent. In Table 1, similar val-
ues are presented for all the applications. The table shows
that if the available snoop and data bandwidths are large
enough, the prefetching scheme will reduce the execution
time for all applications. Even larger speedup can be ex-
pected if the scarce resource is snoop bandwidth. If instead
the data bandwidth is the limiting factor, the performance
will decrease with the bundled adaptive scheme.

In Figure 6, three non-prefetching protocols with cache
line sizes of 32, 64 and 128 B are compared to the bun-
dled fixed and adaptive prefetchers,F3Bru andDBru. The
figures are normalized relative the 32 B configuration since
this is the cache line size used in the prefetching schemes.
However, based on the simulation results for protocols of
different cache line sizes, we can conclude that the most
probable choice of an “optimum” cache line for the de-
sign of a multiprocessor using our benchmarks is 64 B.
Using a 64 B cache line size, the cache misses and ad-
dress snoops on average are significantly decreased com-

1Or rather, it is quite easy to come up with any desired number depend-
ing on what you would like to prove.

Cache miss Snoop BW Data BW
Barnes 0.6 3.8 -65.9
Cholesky 18.6 38.8 -11.8
FFT 27.4 39.6 -23.6
FMM 1.2 11.2 -45.9
LU 13.4 42.4 -10.7
Ocean 34.1 45.3 -14.5
Radiosity 0.2 15.5 -33.3
Radix 12.3 22.5 -21.2
Raytrace 11.5 24.4 -90.1
Volrend 1.2 6.5 -69.4
Water-Nsq 5.0 30.3 -66.2
Water-Sp 0.5 25.5 -52.3
ECperf 4.5 9.8 -38.7
SPECjbb2000 13.8 22.0 -38.5

Table 1. The performance difference in percent between the
bundled adaptive protocolDBru and the original non-prefetching
32 B protocol depending on whether the performance bottleneck
is the number of cache misses, the snoop bandwidth or the data
bandwidth. The cache miss bottleneck assumes 25 percent memory
references and a 400 CPU cycle miss penalty.

pared with a 32 B cache line, while the data traffic is much
smaller than in the 128 B configuration. The 64 B cache line
size is also the design choice of the SunFire 6800 servers.

The bundled adaptive prefetch configuration,DBru, has
10 percent less cache misses, 5 percent less snoop traffic and
10 percent less data traffic than the 64 B configuration on
average for all applications. The bundled fixed prefetcher,
F3Bru, reduces the cache misses with 14 percent, reduces
the snoop bandwidth with 6 percent but increases the data
traffic with 10 percent compared with the 64 B configura-
tion on average for all applications.

6 Conclusion

Prefetching is useful for reducing cache misses in multi-
processors. Also rather small cache miss rates of less than
1.0 percent can harm the overall performance severely in
multiprocessors as the gap between processor speed and
memory access time grows. However, many prefetching
schemes largely increase the address snoops and data traffic.

Snoop-based systems are generally limited by how fast
snoop lookups can be performed. By using the three
bundling techniques proposed in this paper for read, up-
grade and downgrade transactions, the address snoops in
prefetch protocols can be largely reduced. Bundling, lumps
several snoop transactions together in a way that requires
most of the caches to snoop only one of the transactions. We
have investigated the efficiency of bundling in two different
prefetchers, one fixed sequential prefetch scheme and one
adaptive prefetch scheme proposed by Dahlgren [7]. Com-

pared with the original adaptive Dahlgren proposal, the bun-
dled adaptive Dahlgren protocol decreases the cache misses
with 5 percent, the address snoops with 47 percent and the
data traffic with 2 percent on average for all studied appli-
cations. Bundling is even more efficient in the fixed sequen-
tial prefetch protocol, where the average reduction in cache
misses is 10 percent, while the address snoops is reduced
by 54 percent and the data traffic increases 2 percent on
average for all applications. Bundling requires only small
changes to the coherence protocol.

We show that combining bundling with the adaptive
scheme gives a protocol that reduces the cache misses with
10 percent, the snoop lookups with 5 percent and the data
traffic with 10 percent compared with the most efficient
non-prefetching protocol with 64 B cache line size on av-
erage for all studied applications.

This is the first prefetch paper that reports areductionin
the coherence activity (e.g. snoop lookups) as well as cache
misses for all studied applications. Bundling is not limited
to sequential prefetch schemes but could be used together
with more sophisticated prefetch proposals.

References

[1] http://ecperf.theserverside.com/ecperf/.
[2] http://www.spec.org/osg/jappserver2001/.
[3] http://www.spec.org/osg/jbb2000/.
[4] J.-L. Baer and T.-F. Chen. An Effective On-Chip Preload-

ing Scheme to Reduce Data Access Penalty. InProceedings
of the 1991 Conference on Supercomputing, pages 176–186,
1991.

[5] L. A. Barroso, K. Gharachorloo, and E. Bugnion. Mem-
ory System Characterization of Commercial Workloads. In
Proceedings of the 25th Annual International Symposium on
Computer Architecture, pages 3–14. IEEE Press, 1998.

[6] A. Charlesworth. The Sun Fireplane System Interconnect.
In Proceedings of the 2001 Conference on Supercomputing,
2001.

[7] F. Dahlgren, M. Dubois, and P. Stenström. Sequential Hard-
ware Prefetching in Shared-Memory Multiprocessors.IEEE
Transactions on Parallel and Distributed Systems, 6(7):733–
746, 1995.

[8] F. Dahlgren and P. Stenström. Evaluation of Hardware-Based
Stride and Sequential Prefetching in Shared-Memory Multi-
processors.IEEE Transactions on Parallel and Distributed
Systems, 7(4):385–398, 1996.

[9] M. Dubois, J. Skeppstedt, L. Ricciulli, K. Ramamurthy, and
P. Stenström. The Detection and Elimination of Useless
Misses in Multiprocessors. InProceedings of the 20th An-
nual International Symposium on Computer Architecture,
pages 88–97, 1993.

[10] S. J. Eggers and T. E. Jeremiassen. Eliminating False Shar-
ing. In Proceedings of the 1991 International Conference on
Parallel Processing, pages 377–381, 1991.

[11] S. J. Eggers and R. H. Katz. The Effect of Sharing on the
Cache and Bus Performance of Parallel Programs. InPro-
ceedings of the Third International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, pages 257–270, 1989.

[12] E. H. Gornish. Adaptive and Integrated Data Cache
Prefetching for Shared-Memory Multiprocessors. PhD the-
sis, University of Illinois at Urbana-Champaign, 1995.

[13] A. Gupta and W.-D. Weber. Cache Invalidation Patterns
in Shared-Memory Multiprocessors.IEEE Transactions on
Computers, 41(7):794–810, 1992.

[14] E. Hagersten.Toward Scalable Cache-Only Memory Archi-
tectures. PhD thesis, Royal Institute of Technology, Stock-
holm, 1992.

[15] M. Karlsson, K. Moore, E. Hagersten, and D. A. Wood.
Memory System Behavior of Java-Based Middleware. In
Proceedings of the Ninth International Symposium on High
Performance Computer Architecture, 2003.

[16] D. M. Koppelman. Neighborhood Prefetching on Multipro-
cessors Using Instruction History. InProceedings of Interna-
tional Conference on Parallel Architectures and Compilation
Techniques, pages 123–132, 2000.

[17] P. S. Magnusson, M. Christensson, J. Eskilson, D. Fors-
gren, G. Hållberg, J. Högberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A Full System Simulation Platform.
IEEE Computer, 35(2):50–58, 2002.

[18] T. Mowry and A. Gupta. Tolerating Latency Through
Software-Controlled Prefetching in Shared-Memory Multi-
processors.Journal of Parallel and Distributed Computing,
12(2):87–106, 1991.

[19] T. C. Mowry. Tolerating Latency in Multiprocessors through
Compiler-Inserted Prefetching.ACM Transactions on Com-
puter Systems (TOCS), 16(1):55–92, 1998.

[20] T. C. Mowry, M. S. Lam, and A. Gupta. Design and Eval-
uation of a Compiler Algorithm for Prefetching. InPro-
ceedings of the fifth International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, pages 62–73. ACM Press, 1992.

[21] A. Singhal, D. Broniarchyk, F. Cerauskis, J. Price, L. Yuan,
C. Cheng, D. Doblar, S. Fosth, N. Agarwal, K. Harvey, and
E. Hagersten. Gigaplane: A High Performance Bus for Large
SMPs. InProceedings of IEEE Hot Interconnects, pages 41–
52, 1996.

[22] M. K. Tcheun, H. Yoon, and S. R. Maeng. An Effective
On-Chip Preloading Scheme to Reduce Data Access Penalty.
In Proceedings of the International Conference on Parallel
Processing, pages 306–313, 1997.

[23] J. Torrellas, M. S. Lam, and J. L. Hennessy. False Sharing
and Spatial Locality in Multiprocessor Caches.IEEE Trans-
actions on Computers, 43(6):651–663, 1994.

[24] D. M. Tullsen and S. Eggers. Limitations of Cache Prefetch-
ing on a Bus-Based Multiprocessor. InProceedings of 20th
Annual International Symposium on Computer Architecture,
pages 278–288, 1993.

[25] D. M. Tullsen and S. J. Eggers. Effective Cache Prefetch-
ing on Bus-Based Multiprocessors.ACM Transactions on
Computer Systems (TOCS), 13(1):57–88, 1995.

[26] D. Wallin and E. Hagersten. Miss Penalty Reduction Using
Bundled Capacity Prefetching in Multiprocessors. InPro-
ceedings of the International Parallel and Distributed Pro-
cessing Symposium, 2003.

[27] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and Method-
ological Considerations. InProceedings of the 22nd Annual
International Symposium on Computer Architecture, pages
24–36, 1995.

