
This work is supported in part by the National Science Foundation
(grants: CCR-0309164, CCR-0324878, EIA-9971256, EIA-0205286, and
CCR-0105721), an Intel Graduate Fellowship and a Warren Faculty
Scholarship (Sorin), a Norm Koo Graduate Fellowship and an IBM Grad-
uate Fellowship (Martin), two Wisconsin Romnes Fellowships (Hill and
Wood), Spanish Secretaría de Estado de Educación y Universidades (Hill
sabbatical), and donations from Compaq Computer Corporation, Intel
Corporation, IBM, and Sun Microsystems. Profs. Hill and Wood have
significant financial interests in Sun Microsystems.

Using Speculation to Simplify Multiprocessor Design

Daniel J. Sorin1, Milo M. K. Martin2, Mark D. Hill3, David A. Wood3

1Dept. of Elec. & Comp. Engineering 2Dept. of Comp. & Information Science 3Computer Sciences Dept.

Duke University University of Pennsylvania University of Wisconsin—Madison

sorin@ee.duke.edu milom@cis.upenn.edu {markhill,david}@cs.wisc.edu

Abstract

Modern multiprocessors are complex systems that often
require years to design and verify. A significant factor is
that engineers must allocate a disproportionate share of
their effort to ensure that rare corner-case events behave
correctly. This paper proposes using “speculation for sim-
plicity” to enable designers to focus on common-case sce-
narios. Our approach is to speculate that rare events will
not occur and rely on an efficient recovery mechanism to
undo the effects of mis-speculations.

We illustrate the potential of speculation to simplify
multiprocessor design with three examples. First, we sim-
plify the design of a directory cache coherence protocol by
speculatively relying on point-to-point ordering of mes-
sages in an adaptively routed interconnection network.
Second, we simplify a snooping cache coherence protocol
by treating a rare coherence state transition as a mis-spec-
ulation. Third, we simplify interconnection network design
by removing the virtual channels and then recovering from
deadlocks when they occur.

Experiments with full-system simulation and commer-
cial workloads show that speculation is a viable approach
for simplifying system design. Systems can incur as many
as ten recoveries per second due to mis-speculations with-
out significantly degrading performance, and our specula-
tively simplified designs incur far fewer recoveries.

1 Introduction

Shared memory multiprocessors are complicated sys-
tems that are difficult to design. Verifying that these
designs are correct is even more difficult. As one example,

cache coherence protocols are prone to infrequent timing
races that exercise difficult-to-test corner cases. As another
example, deadlock avoidance presents a challenge in the
design of a multiprocessor memory system. The standard
solution avoids deadlock in the interconnection network
by using virtual channels [7], which increases design and
verification complexity. However, even without virtual
channels, deadlock occurs rarely. We would like to be able
to speculate that rare scenarios, such as corner cases in
cache coherence protocols and deadlocks in interconnects,
will not occur and recover when they do.

Designers have already discovered the potential of
speculation to simplify design, but they have only applied
it within the processor core. The key has been to leverage
the existing mis-speculation recovery mechanism in the
dynamically scheduled core. Several processors resort to a
pipeline squash on rare, complicated instructions, such as
the Intel Pentium Pro’s manipulation of control registers
[11]. Similarly, the Pentium 4 uses recovery to handle cor-
ner case deadlocks in the scheduler [5]. These processors
are speculating that certain instructions or races are rare.

The enabling technology for speculation is fast and effi-
cient recovery; otherwise, even infrequent mis-specula-
tions will unacceptably degrade performance. Modern
dynamically scheduled processors provide such mecha-
nisms in the uniprocessor core, allowing speculation
within a single thread of execution. More recently, there
have been several proposals for fast and efficient system-
wide checkpoint/recovery of multiprocessors in hardware
[19, 17]. These mechanisms capture a consistent global
state, allowing speculation between multiple processors.
Future multiprocessor systems will likely use such system-
wide checkpoint/recovery to tolerate the increasing fre-
quency of transient hardware faults in emerging sub-
micron technologies. We seek to exploit such a mechanism
to simplify the design and verification of multiprocessors.

In this paper, we propose using “speculation for sim-
plicity” to simplify multiprocessor design. The corner-
stone of our philosophy is to allocate design and
verification effort towards common-case, performance-

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

critical events rather than rare corner-case events. Such a
system may predict that it will not encounter a rare event
and speculatively execute based on that assumption. If the
system detects mis-speculation (i.e., the rare event
occurred), it recovers to a consistent pre-speculation state
and resumes execution. Speculation can help in situations
in which (a) the design complexity to handle an infrequent
event is far worse than that for the common case, (b)
detecting the infrequent event is much easier than handling
it, and (c) the event is infrequent enough that recoveries
negligibly impact performance.

The primary contribution of this work is a framework
for simplifying multiprocessor design with speculation.
This framework specifies four features necessary for sup-
porting speculation for simplicity: (1) infrequency of mis-
speculation, (2) detection of all mis-speculations, (3)
recovery from mis-speculation, and (4) guaranteed forward
progress. We present this framework in more detail in
Section 2.

We develop three concrete examples to illustrate how
we use this framework to simplify the two most compli-
cated parts of multiprocessor system design: the cache
coherence protocol and the interconnection network. In
Section 3, we show how to simplify coherence protocols,
with an example of a directory protocol and a snooping
protocol. In Section 4, we show how to simplify the inter-
connection network by removing the virtual channels.
While these examples are neither exhaustive nor applicable
to all multiprocessors, they do reveal the potential to sim-
plify system designs.

In Section 5, we evaluate our speculative designs with
full-system simulation and commercial workloads. Results
show that speculation is a viable technique for simplifying
system design. In general, a speculative system can main-

tain its performance even when ten recoveries per second
occur, and our speculative systems incur recoveries less
frequently than that.

In Section 6, we discuss related work in design simplifi-
cation, before concluding in Section 7.

2 Framework for Speculation for Simplicity

Our framework specifies the four features necessary for
supporting speculation for simplicity. Without these fea-
tures, speculation for simplicity is not viable.

(1) Infrequency of mis-speculation. Mis-speculation must
occur sufficiently rarely that the performance overhead of
recoveries is not prohibitive.

(2) Detection of mis-speculations. The system must
detect all mis-speculations, and detection mechanisms
must not be so complex as to offset gains from speculation.

(3) Recovery. To recover from mis-speculation, we need a
recovery mechanism that (a) incurs low runtime overhead
during mis-speculation-free execution and (b) can recover
the system to a pre-speculation state. While such a scheme
may be too expensive to implement strictly for purposes of
speculation for simplicity, we can leverage the same recov-
ery mechanism used to improve system availability. For all
three of our examples, we use SafetyNet [19], a recently
developed hardware mechanism for recovering the state of
a multiprocessor system, although other schemes exist
[17]. Since our speculation extends outside the processor
core, the recovery scheme must encompass the entire mem-
ory system, including the caches, cache coherence state,
and the memory. Periodically, SafetyNet logically check-
points the state of the shared memory system and, on mis-
speculation, it allows the system to recover to a previous
checkpoint. Checkpoints can span hundreds of thousands

Table 1. Using the framework to characterize three speculative designs

Applications of Speculation for Simplicity

Simplify directory protocol
by speculating on point-to-point
ordering (Section 3.1)

Simplify snooping protocol
by treating corner case transition as
error (Section 3.2)

Simplify interconnection network
by removing virtual channel flow control
(Section 4)

(1) Infre-
quency of mis-
speculation

re-orderings are rare and most re-
orderings do not matter

writebacks do not often race with
requests to write the block

worst-case buffering requirements are
rarely needed in practice

(2) Detection one specific invalid transition in
protocol controller

one specific invalid transition in
protocol controller

timeout on cache coherence
transaction

(3) Recovery SafetyNet SafetyNet SafetyNet

(4) Forward
Progress

selectively disable adaptive rout-
ing during re-execution

slow-start execution after
recovery

slow-start execution after recovery, with
sufficient buffering during slow-start

Result simpler protocol with rare mis-
speculations

protocol almost never exercises cor-
ner case in practice

simpler network incurs no deadlocks in
practice

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

of cycles and tolerate long detection latencies. SafetyNet
efficiently checkpoints the multiprocessor state, using only
hardware, by incrementally logging changes to the cache
and memory state. The system recovers by undoing the
logged changes. SafetyNet uses the standard solutions to
the output commit problem (i.e., waiting to verify data
before sending it to I/O devices) and the input commit
problem (i.e., logging data received from I/O devices).

(4) Forward progress. We must ensure that, even in the
worst-case mis-speculation scenario, the system continues
to make forward progress. Mis-speculation must not fall
victim to a pathological situation, whether unintentional or
due to malicious software. As with detection, mechanisms
for forward progress should not be overly complex. All
three of our examples use similar forward progress mecha-
nisms that are guaranteed to alter the timing of the execu-
tion after system recovery such that the race cannot recur.

In Section 3 and Section 4, we present three applications
of speculation for simplicity, and we summarize them in
Table 1. First, we simplify the design of a directory proto-
col by speculating that the adaptively routed interconnect
provides point-to-point ordering of messages. Second, we
simplify the design of a broadcast snooping cache coher-
ence protocols by treating a rare corner case as a mis-spec-
ulation instead of explicitly designing for it. Third, we
simplify the design of interconnection networks by remov-
ing the virtual channels used for deadlock avoidance. In all
examples, detection and forward progress are easy to
implement and thus speculation simplifies system design.

3 Simplifying Cache Coherence Protocols

In this section, we describe two ways to use speculation
to simplify cache coherence protocols. Cache coherence
protocols define the behaviors of the cache and memory
controllers. Each controller is a finite state machine that has
some number of states (per cache block) and handles some
number of events that can happen to a block. Numerous
controllers concurrently interact with each other with
respect to many different blocks. While protocols are sim-
ple at a high level, they are much more complicated to
design at a low level. Textbooks often abstract protocols
into a handful of stable states (MOESI) and a handful of
messages that nodes exchange [6]. In reality, though, proto-
cols have numerous transient states, and messages race
with each other in the interconnect and can arrive in many
different orders.

Cache coherence protocols are notoriously difficult to
design and verify. The state space explosion problem—an
exponential function of the number of controllers, memory
blocks, and block states—limits the viability of various for-
mal verification methods [4], such as model checking and

theorem proving. Testing is a valuable complement to for-
mal verification techniques, and directed testing or ran-
domized testing [3, 23] can uncover many bugs.
Unfortunately, the complexity of protocols is often due to
subtle race conditions, especially those that are infrequent
and thus less likely to be uncovered by testing.

3.1 Simplifying a Directory Protocol

We now demonstrate how to simultaneously achieve (a)
the design simplicity of a directory cache coherence proto-
col that relies on ordering in the interconnection network,
and (b) the benefits of adaptive routing in the interconnect.
We can simplify the design of a directory cache coherence
protocol by relying upon the interconnect to provide point-
to-point ordering, a property that guarantees that if a source
sends two messages to a destination, then the messages
arrive in the order in which they were sent. Point-to-point
ordering eliminates certain potential races in the protocol,
as we discuss later, and handling these races adds design
and verification complexity.

Although point-to-point ordering can simplify the
coherence protocol, most high-speed interconnect designs
do not provide it. Interconnection networks can often
achieve greater throughput and performance by using adap-
tive routing. Adaptively routed interconnects, such as that
of the Alpha 21364 [16], allow two messages from switch
S1 to switch S2 to take different paths. Adaptive routing
can improve performance by distributing traffic more
evenly across the interconnect and by enabling messages to
be routed around localized congestion. Adaptive routing
can also enhance availability by routing messages around
faulty switches. Adaptive routing, however, does not pro-
vide point-to-point order in the interconnection network. In
addition to adaptive routing, the use of reliable link-level
retry mechanisms can preclude the provision of point-to-
point ordering.

We illustrate an example of how adaptive routing can
violate point-to-point order in Figure 1, in which a source
node sends two messages to a destination node. The source
sends message M2 after sending message M1, but M2
arrives first at the destination. The reversal in arrival order
could be due, for example, to higher contention along the
path taken by M1. With static routing, both messages
would have followed the same path and arrived in order.

Specific Example. We explore a system with a MOSI
directory cache coherence protocol and a two-dimensional
(2D) torus interconnection network. There are four classes
of messages in the protocol—Request, ForwardedRequest,
Response, and FinalAck—and each class of messages trav-
els on a logically separate interconnection network (i.e.,
virtual network). There are three types of Request mes-

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

sages that processors send to directories:
RequestReadOnly, RequestReadWrite, and Writeback.
There are four types of ForwardedRequest messages that
directories send to processors: Forwarded-
RequestReadOnly, Forwarded-RequestReadWrite, Invali-
dation, and Writeback-Ack. There are three types of
Response messages that processors or directories send to
requesting processors: Data, Ack, or Nack. Processors send
messages to directories on the FinalAck virtual network to
coordinate SafetyNet checkpoints, but we do not discuss
them further here.

We can simplify directory protocol design by relying
upon point-to-point order (per virtual network, but not
across virtual networks) to avoid certain race cases. One
common example of these races occurs when the owner of
a block, processor P1, sends a Writeback to the directory
and another processor, P2, sends a RequestReadWrite for
the same block to the directory. If the RequestReadWrite
arrives first, the directory then sends a Forwarded-
RequestReadWrite and a Writeback-Ack to P1. If those
messages, which travel on the same virtual network, arrive
in the reverse order of that in which they were sent (i.e., the
Writeback-Ack arrives before the Forwarded-
RequestReadWrite), then P1 first sees the Writeback-Ack
and downgrades to Invalid. Thus, it cannot handle the
incoming Forwarded-RequestReadWrite. Designers of
directory protocols can handle this race, but doing so adds
additional states and transitions to the protocol and
increases the complexity of protocol verification.

Instead of handling this race by adding extra states and
transitions, we implemented a speculative system with an
adaptively routed interconnection network and a directory
cache coherence protocol that relies upon point-to-point
ordering. The adaptive routing algorithm allows messages
to choose among minimal distance paths based on outgoing
queue lengths in each direction.1

(1) Infrequency of mis-speculation. The routing algo-
rithm, while adaptive, is still unlikely to violate point-to-
point ordering (we will show that it reorders <1% of mes-
sages). Moreover, even when it does violate ordering, few
re-orderings impact correctness. Except in the example
described above, re-ordering does not affect correctness,
for several reasons. First, in this protocol, point-to-point
ordering is only necessary on one virtual network (the
ForwardedRequest virtual network). Second, ordering only
matters for messages concerning the same block of mem-
ory. Third, even for messages concerning the same block,
ordering only matters between certain message types. For
example, the directory can send multiple Forwarded-
RequestReadOnly messages to the owner of a block, but
the order in which they arrive does not matter for correct-
ness. In particular, the situation in which a Writeback-Ack
races a Forwarded-RequestReadWrite is particularly rare,
since a block just evicted at one node is unlikely to be
actively wanted by another node.

(2) Detection. For this speculative system, a mis-specula-
tion can only manifest itself as one particular invalid transi-
tion in a cache coherence controller, so cache controllers
can detect all illegal message re-orderings. For our race
case, a cache without a valid copy that receives a For-
warded-RequestReadWrite determines this situation to be a
mis-speculation and triggers a system recovery. This mis-
speculation cannot manifest itself in any other fashion and
thus is easy to detect.

(3) Recovery. We use SafetyNet in all three of our specula-
tively simplified designs.

(4) Forward progress. To ensure forward progress, we
alter the timing of the execution after recovery. We simply
allow the interconnect to selectively disable adaptive rout-
ing, so that the system can always make forward progress.
The choice of when to re-enable adaptive routing provides
an adjustable knob for setting the worst-case lower bound
on performance. At the conservative extreme, never re-
enabling it would bound performance degradation, com-
pared to static routing, to the cost of one mis-speculation.

3.2 Simplifying a Snooping Protocol

We now present an example of a protocol race in a
broadcast snooping system that the designers (the authors!)
did not initially consider. The designers overlooked this
case until weeks later when randomized testing happened
to uncover it (by crashing the simulator). Instead of forcing

Figure 1. Violating point-to-point order with adaptive
routing. The NW Switch sends Message M1 at time 1
and then message M2 at time 2 to the SE Switch.
Message M2, however, arrives at time 3, which is before
message M1 arrives at time 4.

NW
Switch

NE
Switch

SE
Switch

SW
Switch

SOURCE

DESTINATION

message M1

message M1message M2

message M2

2

1

4

3

1. While adaptive routing can break point-to-point order, it requires extra
buffering to avoid deadlock. To isolate the issue of adaptive routing for
purposes of this discussion, we simplistically avoid deadlock with full
buffering. A realistic implementation would likely use a more clever solu-
tion, such as Duato’s scheme for deadlock-free adaptive routing [8].

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

the designers to re-work the protocol and re-verify it, we
explore the potential to reduce verification effort and speed
the time to market by treating this edge case as a mis-spec-
ulation that triggers system recovery.

Specific Example. We developed a version of the snooping
protocol system with support for speculation. The system
treats a certain protocol corner case as a mis-speculation
instead of handling it.

(1) Infrequency of mis-speculation. Mis-speculation
occurs when a cache controller has a block in state Modi-
fied (or Owned) and then issues a Writeback for the block,
transitioning to a transient state. In this transient state, a
RequestForReadWrite arrives from another node, causing
the cache controller to transition to a different transient
state. Then, in this second transient state, the cache control-
ler observes another RequestForReadWrite from another
node. This sequence of events occurs exceedingly rarely,
especially since it begins with a Writeback from the cache
controller. Moreover, a block evicted by a Writeback is
unlikely to be requested by two other nodes. Moreover,
both nodes must request exclusive access to the block in
the interval of time between when the cache controller
issues its Writeback and then observes its own Writeback
on the request network. While this scenario occurs rarely in
practice, we still must handle it.

(2) Detection. The potential mis-speculation due to
encountering this unspecified coherence transition can only
manifest itself as one specific invalid transition and is thus
easy to detect. In this particular example, a cache controller
that observes another node’s RequestForReadWrite while
in the transient state described above detects the mis-specu-
lation.

(3) Recovery. We use SafetyNet in all three of our specula-
tively simplified designs.

(4) Forward Progress. As with the prior example, we
ensure forward progress by altering the timing of the exe-
cution after recovery. As a fail-safe mechanism, the system
temporarily enters a “slow-start” mode, in which the sys-
tem restricts the number of coherence transactions allowed
to be outstanding (e.g., one). The corner case in the proto-
col can only occur when at least two transactions race in
the system. The slow-start mode performance provides a
worst-case lower bound on performance in the presence of
mis-speculations. Moreover, before resorting to slow-start,
the system could simply try to resume execution, perhaps
in a slightly slower mode, in the likely hope that the race
does not recur.

Along with the coherence protocol, the other primary
source of complexity in a multiprocessor is the intercon-
nection network, and we now discuss how to simplify it.

4 Simplifying the Interconnection Network

In this section, we discuss how to simplify deadlock
avoidance in interconnection networks. Interconnects for
multiprocessors are difficult to design, partly because of
the difficulty of achieving high and robust performance
while verifying that deadlock is impossible under all situa-
tions. There are two types of deadlock, which we refer to as
endpoint deadlock and switch deadlock, based on where
the deadlock can occur. We discuss both of them now,
including the primary approach for avoiding them, before
delving into a speculative design that is simpler.

Endpoint deadlock. Endpoint deadlock can occur when
cross-coupled requests depend on each other, as shown in
Figure 2. For example, deadlock can occur if (a) processor
P1 sends a request for block A to P2 followed by a
response for block B, (b) P2 does the opposite (request for
B followed by response for A), (c) the incoming queues for
both processors are full of requests, and (d) neither proces-
sor can ingest its incoming request until it ingests its
incoming response, and they process incoming buffers in
order. This type of deadlock depends on the coherence pro-
tocol, but it is independent of interconnection network
topology and routing.

Switch deadlock. Switch deadlock in the interconnection
network can arise due to the combination of cross-coupled
messages and insufficient buffering for in-flight messages.
Consider the simple example illustrated in Figure 3. In this
example, switch S1 wants to send message M1 to switch
S2, and S2 wants to send M2 to S1. However, the buffer
from S1 to S2 and the buffer from S2 to S1 are both full
and unable to accept new messages. Moreover, neither
switch will process its incoming queue until it can send its

switch S1

switch S2

full of messages

full of messages message M1

message M2

proc P1

proc P2

full of requests

full of requests response

response

Figure 2. Endpoint deadlock

Figure 3. Switch deadlock

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

outgoing message. Thus, if switches process incoming
message buffers in FIFO order, the system now deadlocks,
since neither M1 nor M2 can make progress. This type of
deadlock depends on the topology of the interconnect and
the routing policy, but it does not depend on the cache
coherence protocol.

To avoid both types of deadlock, interconnects can
either use worst-case buffering or some scheme to break
the cyclic dependences that can lead to deadlock. Using
worst-case buffering at each endpoint and switch is the
simplest solution, but it is generally not viable since the
worst case can be far worse than the common case.

To avoid the costs of worst-case buffering, many inter-
connection networks use schemes that break the cyclic
dependences that can lead to deadlock [10]. To avoid end-
point deadlock, we can use virtual networks for the differ-
ent classes of messages. A virtual network is just one or
more incoming buffers reserved by the switches and end-
points for a particular class of messages. If we have a dif-
ferent virtual network for each class of messages (e.g.,
request and response), then the incoming queue can never
fill up with just requests, since we have reserved space for
responses. To avoid switch deadlock, we can use virtual
channel flow control [7]. A virtual channel is just one or
more buffers per unidirectional physical link2 that is
reserved by the switch for messages of a particular priority.
In our simple example, if M1 was on virtual channel 1 and
M2 was on virtual channel 2, then deadlock would not
occur. The interaction of virtual channels and virtual net-
works is multiplicative; if we need N virtual networks to
avoid endpoint deadlock and C virtual channels to avoid
switch deadlock, then we need NxC virtual channels total
(i.e., C per virtual network). For a 2D bidirectional torus
and our directory cache coherence protocol, we require two
virtual channels per virtual network (for static routing) and
four virtual networks (i.e., 4*2=8 virtual channels total). To
provide deadlock freedom with adaptive routing requires at
least one additional virtual channel [9].

Virtual channel/network flow control minimizes dead-
lock-free buffering requirements and it is well-understood,
but it adds complexity and requires additional verification
effort. The SGI Origin directory protocol [13] avoids this
complexity by using only two virtual networks instead of
the three that would have ensured deadlock avoidance.
Instead, the Origin relies on a higher level mechanism to
negatively acknowledge (nack) its way out of the deadlocks
that occur due to this limitation, even though nacking
increases protocol complexity and could introduce livelock

problems. At the other extreme, the Alpha 21364 intercon-
nect uses nineteen virtual channels (six virtual networks
times three virtual channels each, plus an extra channel for
special messages) [16], demonstrating that complicated
flow control is implementable.

As an alternative to virtual channel/network flow con-
trol, interconnect designers have used deflection routing
(a.k.a. hot potato routing) to avoid deadlock. Deflection
routing avoids deadlock without using any buffering, but it
can suffer from potential livelock problems.

Specific Example. To demonstrate the viability of easing
interconnection network design, we implemented a 2D
torus interconnect with less than worst-case buffering and
no virtual channel/network support. We use the same sys-
tem model as the directory protocol example in
Section 3.1. In the case that the system detects deadlock, it
recovers and resumes execution.

(1) Infrequency of mis-speculation. Adaptively routed
networks are generally designed to avoid potential dead-
lock conditions. This is because both deadlock avoidance
(e.g., using “escape channels” [8]) and deadlock recovery
(e.g., as proposed here) negatively impact performance.
Designers can size buffers to reduce the probability of
potential deadlocks. Some networks also use source throt-
tling to further reduce this probability [21]. Using recovery
to resolve deadlock changes the problem from a correct-
ness issue into a performance issue.

(2) Detection. Detection of this form of mis-speculation is
straightforward, since the requestor can detect all dead-
locks by a time-out.3 If a message gets stuck in the inter-
connect, the coherence transaction to which it belongs will
not complete, and the requestor of the transaction will tim-
eout and trigger a system recovery. We choose time-out
latency to be long enough to mitigate false positives while
short enough to not slow down SafetyNet commitment of
checkpoints.4 Since there is little gain in having a timeout
latency shorter than necessary for SafetyNet, a processor
times out on its request after three checkpoint intervals.

(3) Recovery. We use SafetyNet in all three of our specula-
tively simplified designs.

(4) Forward Progress. As with the prior two examples, we
ensure forward progress by altering the timing of the exe-
cution after recovery. As a fail-safe mechanism, we enter a
“slow-start” mode like that in Section 3.2, in which the sys-

2. When we refer to virtual channel requirements, they are the require-
ments per unidirectional physical link.

3. A timeout mechanism would also detect livelock if we were to use
speculation to support deflection routing on a topology for which deflec-
tion routing does not provably avoid livelock.
4. SafetyNet cannot commit an old checkpoint until it is sure that execu-
tion prior to that checkpoint was mis-speculation-free. Thus, it might have
to wait as long as the timeout latency to either commit a checkpoint or
trigger a system recovery.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

tem restricts the number of coherence transactions allowed
to be outstanding. As long as we provide enough buffering
to satisfy the reduced number of transactions, slow-start
provably avoids livelock and provides a worst-case lower
bound on performance. We can raise this bound by provid-
ing more buffering to support a slow-start mode that allows
more concurrent transactions. Moreover, before resorting
to slow-start, the system could simply try to resume execu-
tion, possibly in a slower mode, in the hope that deadlock
will not occur again. If deadlock does recur, the system can
then fall back on slow-start. Slow-start adds some com-
plexity back into the system, but it is less than that of vir-
tual channel flow control.

5 Evaluation

In this section, we evaluate the applications of specula-
tion for simplicity that we have developed in Sections 3 and
4. Our first goal is to determine the mis-speculation fre-
quency at which our system performance begins to
degrade. Our second goal is to determine if our speculative
systems incur mis-speculations infrequently enough. We
start by describing our system model, methodology [1], and
workloads, and then we discuss our results.

5.1 System Model and Simulation Methodology

Our target system is a 16-node shared-memory multi-
processor. Each node consists of a processor, two levels of
cache, some portion of the shared memory and directory,
and a network interface. The processor architecture is
SPARC v9, and the system runs Solaris 8.

We evaluate our target system with the Simics full-sys-
tem, multiprocessor, functional simulator, and we extend
Simics with a memory hierarchy simulator to compute exe-
cution times. Simics is a system-level architectural simula-
tor developed by Virtutech AB [15]. We use Simics/sun4u,
which simulates Sun Microsystems’s SPARC V9 platform
architecture (e.g., Sun E6000s) in sufficient detail to boot
unmodified Solaris 8. Simics is a functional simulator only,
and it assumes that each instruction takes one cycle to exe-
cute (although I/O may take longer), but it provides an
interface to support detailed memory hierarchy simulation.

Processor. We model a processor core that, given a perfect
memory system, would execute four billion instructions per
second and generate blocking requests to the cache hierar-
chy and beyond. We use this simple processor model to
enable tractable simulation times for full-system simulation
of commercial workloads. While an out-of-order processor
model might affect the absolute values of the results,
mostly due to being able to maintain more outstanding
memory requests, it would not qualitatively change them.
If having additional outstanding requests leads to more
exercising of certain races or corner cases, we could violate
the first necessary feature of speculation for simplicity (i.e.,
infrequency of mis-speculation). Then we would have to
re-consider this particular speculation but not speculation
for simplicity in general.

Memory System. We have implemented a memory hierar-
chy simulator that supports our coherence protocols and
SafetyNet. The simulator captures all state transitions
(including transient states) of our coherence protocols in
the cache and memory controllers. We model the intercon-
nection network topologies and the contention within them.
In Table 2, we present the design parameters of our target
memory systems.

SafetyNet. For our system recovery mechanism, we use
SafetyNet [19]. We list SafetyNet system parameters in
Table 2, and SafetyNet performance overhead (in error-free
execution) is minimal for these design parameters, as was
demonstrated by Sorin et al. [19]. The checkpoint interval
differs between the directory and snooping systems, due to
the different logical time basis used for creating consistent
checkpoints. Recovery time varies somewhat, depending
on how much work the system loses between the recovery
point and when it detects the mis-speculation. We stress-
tested the recovery mechanism by periodically triggering
recoveries, and we show these results in Section 5.3.

5.2 Workloads

Commercial applications represent an important work-
load for shared memory multiprocessors. As such, we eval-
uate our speculative design with four commercial
applications and one scientific application, described

Table 2. Target System Parameters

L1 Cache (I and D) 128 KB, 4-way set associative

L2 Cache 4 MB, 4-way set-associative

Memory System Memory 2 GB, 64 byte blocks

Miss From Memory 180 ns (uncontended, 2-hop)

Interconnection Networks link bandwidth = 400MB/sec to 3.2 GB/sec

Checkpoint Log Buffer 512 kbytes total, 72 byte entries

SafetyNet Checkpoint Interval 100,000 cycles (directory), 3,000 requests (snooping)

Register Checkpointing Latency 100 cycles

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

briefly in Table 3 and in more detail by Alameldeen et al.
[1]. To address the variability in runtimes for commercial
workloads, we simulate each design point multiple times
with small, pseudo-random perturbations of memory laten-
cies to cause alternative scheduling paths [1]. Error bars in
results represent one standard deviation in each direction.

5.3 Results

We now present the results of our evaluations of each of
our three speculative designs. We first explore the impact
of mis-speculation, in general, by stress-testing the sys-
tem’s ability to recover from a range of mis-speculation
rates. While mis-speculation occurs infrequently in our
speculative systems (shown next), we want to determine
the mis-speculation rate at which the latency of recoveries
can impact performance. To isolate the impact of increas-
ing the frequency of recoveries, we implement a system
without speculation and inject periodic recoveries. The
results, shown in Figure 4, reveal that recovery is suffi-
ciently short that the performance cost of recovering even
ten times per second is negligible.5

Speculatively Simplified Directory Protocol Results. We
evaluated the performance of the speculatively simplified
directory protocol to determine if mis-speculations are suf-
ficiently infrequent to make speculation viable. Re-order-
ing and mis-speculation rates are a function of available
bandwidth, since increasing the bandwidth provides fewer
opportunities for adaptive routing. The primary result is
that virtually no reorderings occur in our system, even for
link bandwidths as low as 400 MBytes/sec.

Adaptive routing incurs few recoveries for two reasons.
First, re-orderings are rare, even for link bandwidths of 400
MBytes/sec. With mean link utilizations between 13-35%
(for static routing), there is little opportunity for adaptive
routing to re-order messages to avoid congestion. Second,
when re-orderings do occur, the vast majority of them do
not affect correctness. While adaptive routing re-ordered
0.1-0.2% of all messages on the ForwardedRequest virtual
network, we observed only a handful of recoveries in all
simulations. On other virtual networks, adaptive routing re-
ordered as many as 0.8% of messages, but these re-order-
ings cannot violate correctness in our protocol. It also re-
ordered messages across virtual networks (e.g., a request
arrived after a response despite being sent first), but this re-
ordering does not matter in our protocol.

While it might thus appear that adaptive routing is not
worthwhile, it can still help performance during periods of
higher congestion. Although mean link utilization is low,
instantaneous utilization is sometimes much greater. In
these instances, adaptive routing can route more messages
around congestion. In Figure 5, for an interconnect with
link bandwidth of 400 MBytes/sec, we compare the relative
performances of systems with static and adaptive routing,
and we normalize the results to the performance of static
routing. We observe that adaptive routing achieves a signif-
icant speedup for our workloads because of better instanta-
neous link utilization and the infrequency of recoveries.

Table 3. Workloads: Wisconsin Commercial
Workload Suite and a Splash-2 scientific workload

OLTP: Our OLTP workload is based on the TPC-C v3.0
benchmark using IBM’s DB2 v7.2 EEE database management
system. We use a 1 GB 10-warehouse database stored on five
raw disks and an additional dedicated database log disk. There
are 8 simulated users per processor. We warm up for 10,000
transactions, and we run for 500 transactions.

Java Server: SPECjbb2000 is a server-side java benchmark
that models a 3-tier system with driver threads. We used Sun’s
HotSpot 1.4.0 Server JVM. Our experiments use 24 threads and
24 warehouses (~500 MB of data). We warm up for 100,000
transactions, and we run for 10,000 transactions.

Static Web Server: We use Apache 1.3.19 (www.apache.org)
for SPARC/Solaris 8, configured to use pthread locks and mini-
mal logging as the web server. We use SURGE to generate web
requests. We use a repository of 2,000 files (totalling ~50 MB).
There are 10 simulated users per processor. We warm up for
~80,000 requests and run for 5000 requests.

Dynamic Web Server: Slashcode is based on a dynamic web
message posting system used by slashdot.com. We use Slash-
code 2.0, Apache 1.3.20, and Apache’s mod_perl 1.25 module
for the web server. MySQL 3.23.39 is the database engine. The
database is a snapshot of slashcode.com, and it contains
~3,000 messages. A multithreaded driver simulates browsing
and posting behavior for 3 users per processor. We warm up for
240 transactions and run for 50 transactions.

Scientific Application: We use barnes-hut from the SPLASH-
2 suite [22], with the 16K body input set. We measure from the
start of the parallel phase to avoid measuring thread forking.

5. Mis-speculation does not improve performance for OLTP. The error
bars show that, despite the greater mean performance value with mis-
speculations, the performance is not statistically significantly better.

0.0

0.5

1.0

n
or

m
al

iz
ed

 p
er

fo
rm

an
ce

no mis-speculations

1 mis-speculation per second

10 mis-speculations per second

100 mis-speculations per second

jbb apache slashcode oltp barnes

Figure 4. Performance vs. Mis-speculation Rate

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

In summary, designers can simplify a directory protocol
by speculatively relying on point-to-point ordering despite
the use of adaptive routing. Moreover, the use of adaptive
routing may allow for cheaper links and fewer pins, while
achieving the same bandwidth as a statically routed yet
more costly interconnect.

Speculatively Simplified Snooping Protocol Results. We
tested the speculatively simplified snooping coherence pro-
tocol on our set of commercial workloads, and all of them
ran to completion without needing to recover even once
from reaching the edge case. Thus, performance of the pro-
tocol mirrors, for these workloads, that of the fully
designed protocol. While this observed lack of recoveries
obviously does not guarantee that the speculative protocol
will never have to recover, it does suggest the infrequency
of recoveries due to encountering this corner case in the
cache coherence protocol.

We conclude from this experiment that a system can tol-
erate a corner case in the cache coherence protocol with
speculation. Even if recoveries due to mis-speculations
slightly degrade performance, the reduced time for design
and verification provides a benefit that is likely to more
than offset the runtime cost of recoveries.

Simplified Interconnection Network Results. To deter-
mine the performance impact of recoveries, we compare
the performance of this system against a system with the
same protocol running on an interconnection network with
worst-case buffering (given no virtual channels/networks).
Results (not plotted) show steady performance for systems
with buffer sizes at and above 16 but a sharp dropoff in per-
formance for systems with buffers of size 8. Deadlocks do
not occur in any of our workloads until we reduce buffer
sizing from 16 to 8. Although our 16-processor system can
only have a total of 16 requests outstanding, deadlock with
buffers of size 16 is still possible because (a) each proces-
sor can also have a writeback outstanding, (b) each request
can be forwarded from the directory to multiple destina-
tions, and (c) all message types share the same buffers.

We conclude from this experiment that we can simplify
interconnection network design with speculation. We can
remove virtual channel deadlock avoidance and specula-
tively assume that deadlock will not occur. When it does,
the system can recover and still make forward progress.

Summary of Results. These experimental results show
that speculation is a viable technique for simplifying sys-
tem design. In general, a speculative system can maintain
its performance even when ten recoveries per second occur,
and our speculative systems incur recoveries less fre-
quently than that.

6 Related Work in Simplifying System Design

There exists some prior research in simplifying system
design by allocating resources towards common-case sce-
narios. We illustrate four notable examples of this
approach.

The first example is the use of software for solving com-
plex processor hardware problems. For example, proces-
sors have trapped to software for floating point arithmetic,
such as the Intel 80386 without the 80387 floating point
coprocessor. No recovery is necessary for these traps to
software. Also, numerous architectures give the user the
option of trapping to software for IEEE standard denormal-
ized floating point arithmetic, including SPARC v9 [20]
and Intel IA-64 [12]. Localized processor recovery may be
necessary in these cases to support precise interrupts.

Second, prior research has explored the use of fewer vir-
tual networks than strictly necessary in all cases. The SGI
Origin [13] can detect deadlock and then fall back on a
higher-level mechanism, specified only vaguely in the pub-
lic literature, to undo the deadlock and enable forward
progress. Similarly, more general progressive deadlock
recovery schemes have been proposed for endpoint dead-
lock [18]. The MIT Alewife uses software to recover from
interconnect deadlock due to insufficient resources in rare
situations [14].

Third, some processors have relied on the inherent
recoverability of dynamically scheduled processors to
recover from corner cases. For example, the Pentium Pro
flushes its pipeline when it manipulates certain control reg-
isters [11]. The Intel Pentium 4 recovers from deadlocks
due to corner cases in scheduling the processor core [5].
After recovery, the core will not deadlock, since the recov-
ery (and flush) changes the microarchitectural state enough
to avoid the same corner case that originally caused the
deadlock.

Lastly, DIVA [2] uses a simple checker processor to
dynamically verify a complex and possibly faulty proces-
sor and ensure correctness even in the case of design errors.

0.0

0.5

1.0

1.5

n
o
rm

al
iz

ed
 p

er
fo

rm
an

ce

static routing
adaptive routing

jbb apache slash oltp barnes

Figure 5. Relative performances of static and adaptive
routing (400 Mbytes/sec link bandwidth)

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

DIVA is the closest work to speculation for simplicity, but
DIVA is limited to only the processor core.

7 Conclusions

In this paper, we have discussed how to use speculation
to simplify multiprocessor system design. Speculation
allows the designer to allocate design and verification effort
towards the common case scenarios while falling back on
system-wide recovery for situations that are rare and com-
plicated. The three applications of speculation for simplic-
ity that we have presented have demonstrated the potential
to simplify system design.

Acknowledgments

We would like to thank José Duato, Alvy Lebeck, Amir
Roth, and the Wisconsin Multifacet Group for their helpful
discussions of this work.

References

[1] A. R. Alameldeen et al. Simulating a $2M Commercial
Server on a $2K PC. IEEE Computer, 36(2):50–57, Feb.
2003.

[2] T. M. Austin. DIVA: A Reliable Substrate for Deep
Submicron Microarchitecture Design. In Proceedings of the
32nd Annual International Symposium on
Microarchitecture, pages 196–207, Nov. 1999.

[3] R. M. Bentley. Validating the Pentium 4 Microprocessor. In
Proceedings of the International Conference on
Dependable Systems and Networks, pages 493–498, July
2001.

[4] E. M. Clarke and J. M. Wing. Formal Methods: State of the
Art and Future Directions. ACM Computing Surveys,
28(4):626–643, Dec. 1996.

[5] B. Colwell. Personal Communication, June 2002.

[6] D. E. Culler and J. Singh. Parallel Computer Architecture:
A Hardware/Software Approach. Morgan Kaufmann
Publishers, Inc., 1999.

[7] W. J. Dally. Virtual Channel Flow Control. IEEE
Transactions on Parallel and Distributed Systems,
3(2):194–205, Mar. 1992.

[8] J. Duato. A New Theory of Deadlock-Free Adaptive
Routing in Wormhole Networks. IEEE Transactions on
Parallel and Distributed Systems, 4(12):1320–1331, Dec.
1993.

[9] J. Duato and T. M. Pinkston. A General Theory for
Deadlock-Free Adaptive Routing Using a Mixed Set of
Resources. IEEE Transactions on Parallel and Distributed

Systems, 12(12):1219–1235, Dec. 2001.

[10] J. Duato, S. Yalamanchili, and L. Ni. Interconnection
Networks. IEEE Computer Society Press, 1997.

[11] Intel Corporation. Pentium Processor Family Developer’s
Manual, Volume 3: Architecture and Programming
Manual. Intel Corporation, 1995.

[12] Intel Corporation. Intel IA-64 Architecture Software
Developer’s Manual, Volume 2: IA-64 System Architecture,
Revision 1.1, July 2000.

[13] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA
Highly Scalable Server. In Proceedings of the 24th Annual
International Symposium on Computer Architecture, pages
241–251, June 1997.

[14] K. Mackenzie et al. Exploiting Two-Case Delivery for Fast
Protected Messaging. In Proceedings of the Fourth IEEE
Symposium on High-Performance Computer Architecture,
Feb. 1998.

[15] P. S. Magnusson et al. Simics: A Full System Simulation
Platform. IEEE Computer, 35(2):50–58, Feb. 2002.

[16] S. Mukherjee et al. The Alpha 21364 Network Architecture.
In Proceedings of 9th Hot Interconnects Symposium, Aug.
2001.

[17] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive: Cost-
Effective Architectural Support for Rollback Recovery in
Shared-Memory Multiprocessors. In Proceedings of the
29th Annual International Symposium on Computer
Architecture, pages 111–122, May 2002.

[18] Y. H. Song and T. M. Pinkston. A Progressive Approach to
Handling Message-Dependent Deadlock in Parallel
Computer Systems. IEEE Transactions on Parallel and
Distributed Systems, 14(1):1–17, Jan. 2003.

[19] D. J. Sorin, M. M. Martin, M. D. Hill, and D. A. Wood.
SafetyNet: Improving the Availability of Shared Memory
Multiprocessors with Global Checkpoint/Recovery. In
Proceedings of the 29th Annual International Symposium on
Computer Architecture, pages 123–134, May 2002.

[20] Sun Microsystems. UltraSPARC User’s Manual. Sun
Microsystems, Inc., July 1997.

[21] M. Thottethodi, A. R. Lebeck, and S. S. Mukherjee. Self-
Tuned Congestion Control for Multiprocessor Networks. In
Proceedings of the Seventh IEEE Symposium on High-
Performance Computer Architecture, Jan. 2001.

[22] S. C. Woo et al. The SPLASH-2 Programs: Characterization
and Methodological Considerations. In Proceedings of the
22nd Annual International Symposium on Computer
Architecture, pages 24–37, June 1995.

[23] D. Wood, G. Gibson, and R. Katz. Verifying a
Multiprocessor Cache Controller Using Random Test
Generation. IEEE Design and Test of Computers, pages 13–
25, Aug. 1990.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

