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Abstract

Modern multiprocessors are complex systems that often 
require years to design and verify. A significant factor is 
that engineers must allocate a disproportionate share of 
their effort to ensure that rare corner-case events behave 
correctly. This paper proposes using “speculation for sim-
plicity” to enable designers to focus on common-case sce-
narios. Our approach is to speculate that rare events will 
not occur and rely on an efficient recovery mechanism to 
undo the effects of mis-speculations. 

We illustrate the potential of speculation to simplify 
multiprocessor design with three examples. First, we sim-
plify the design of a directory cache coherence protocol by 
speculatively relying on point-to-point ordering of mes-
sages in an adaptively routed interconnection network. 
Second, we simplify a snooping cache coherence protocol 
by treating a rare coherence state transition as a mis-spec-
ulation. Third, we simplify interconnection network design 
by removing the virtual channels and then recovering from 
deadlocks when they occur.

Experiments with full-system simulation and commer-
cial workloads show that speculation is a viable approach 
for simplifying system design. Systems can incur as many 
as ten recoveries per second due to mis-speculations with-
out significantly degrading performance, and our specula-
tively simplified designs incur far fewer recoveries. 

1  Introduction

Shared memory multiprocessors are complicated sys-
tems that are difficult to design. Verifying that these 
designs are correct is even more difficult. As one example, 

cache coherence protocols are prone to infrequent timing 
races that exercise difficult-to-test corner cases. As another 
example, deadlock avoidance presents a challenge in the 
design of a multiprocessor memory system. The standard 
solution avoids deadlock in the interconnection network 
by using virtual channels [7], which increases design and 
verification complexity. However, even without virtual 
channels, deadlock occurs rarely. We would like to be able 
to speculate that rare scenarios, such as corner cases in 
cache coherence protocols and deadlocks in interconnects, 
will not occur and recover when they do.

Designers have already discovered the potential of 
speculation to simplify design, but they have only applied 
it within the processor core. The key has been to leverage 
the existing mis-speculation recovery mechanism in the 
dynamically scheduled core. Several processors resort to a 
pipeline squash on rare, complicated instructions, such as 
the Intel Pentium Pro’s manipulation of control registers 
[11]. Similarly, the Pentium 4 uses recovery to handle cor-
ner case deadlocks in the scheduler [5]. These processors 
are speculating that certain instructions or races are rare.

The enabling technology for speculation is fast and effi-
cient recovery; otherwise, even infrequent mis-specula-
tions will unacceptably degrade performance. Modern 
dynamically scheduled processors provide such mecha-
nisms in the uniprocessor core, allowing speculation 
within a single thread of execution. More recently, there 
have been several proposals for fast and efficient system-
wide checkpoint/recovery of multiprocessors in hardware 
[19, 17]. These mechanisms capture a consistent global 
state, allowing speculation between multiple processors. 
Future multiprocessor systems will likely use such system-
wide checkpoint/recovery to tolerate the increasing fre-
quency of transient hardware faults in emerging sub-
micron technologies. We seek to exploit such a mechanism 
to simplify the design and verification of multiprocessors. 

In this paper, we propose using “speculation for sim-
plicity” to simplify multiprocessor design. The corner-
stone of our philosophy is to allocate design and 
verification effort towards common-case, performance-
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critical events rather than rare corner-case events. Such a 
system may predict that it will not encounter a rare event 
and speculatively execute based on that assumption. If the 
system detects mis-speculation (i.e., the rare event 
occurred), it recovers to a consistent pre-speculation state 
and resumes execution. Speculation can help in situations 
in which (a) the design complexity to handle an infrequent 
event is far worse than that for the common case, (b) 
detecting the infrequent event is much easier than handling 
it, and (c) the event is infrequent enough that recoveries 
negligibly impact performance. 

The primary contribution of this work is a framework 
for simplifying multiprocessor design with speculation. 
This framework specifies four features necessary for sup-
porting speculation for simplicity: (1) infrequency of mis-
speculation, (2) detection of all mis-speculations, (3) 
recovery from mis-speculation, and (4) guaranteed forward 
progress. We present this framework in more detail in 
Section 2. 

We develop three concrete examples to illustrate how 
we use this framework to simplify the two most compli-
cated parts of multiprocessor system design: the cache 
coherence protocol and the interconnection network. In 
Section 3, we show how to simplify coherence protocols, 
with an example of a directory protocol and a snooping 
protocol. In Section 4, we show how to simplify the inter-
connection network by removing the virtual channels. 
While these examples are neither exhaustive nor applicable 
to all multiprocessors, they do reveal the potential to sim-
plify system designs. 

In Section 5, we evaluate our speculative designs with 
full-system simulation and commercial workloads. Results 
show that speculation is a viable technique for simplifying 
system design. In general, a speculative system can main-

tain its performance even when ten recoveries per second 
occur, and our speculative systems incur recoveries less 
frequently than that.

In Section 6, we discuss related work in design simplifi-
cation, before concluding in Section 7. 

2  Framework for Speculation for Simplicity

Our framework specifies the four features necessary for 
supporting speculation for simplicity. Without these fea-
tures, speculation for simplicity is not viable.

(1) Infrequency of mis-speculation. Mis-speculation must 
occur sufficiently rarely that the performance overhead of 
recoveries is not prohibitive.

(2) Detection of mis-speculations. The system must 
detect all mis-speculations, and detection mechanisms 
must not be so complex as to offset gains from speculation. 

(3) Recovery. To recover from mis-speculation, we need a 
recovery mechanism that (a) incurs low runtime overhead 
during mis-speculation-free execution and (b) can recover 
the system to a pre-speculation state. While such a scheme 
may be too expensive to implement strictly for purposes of 
speculation for simplicity, we can leverage the same recov-
ery mechanism used to improve system availability. For all 
three of our examples, we use SafetyNet [19], a recently 
developed hardware mechanism for recovering the state of 
a multiprocessor system, although other schemes exist 
[17]. Since our speculation extends outside the processor 
core, the recovery scheme must encompass the entire mem-
ory system, including the caches, cache coherence state, 
and the memory. Periodically, SafetyNet logically check-
points the state of the shared memory system and, on mis-
speculation, it allows the system to recover to a previous 
checkpoint. Checkpoints can span hundreds of thousands 

Table 1. Using the framework to characterize three speculative designs

Applications of Speculation for Simplicity

Simplify directory protocol  
by speculating on point-to-point 
ordering (Section 3.1)

Simplify snooping protocol  
by treating corner case transition as 
error (Section 3.2)

Simplify interconnection network  
by removing virtual channel flow control 
(Section 4)

(1) Infre-
quency of mis-
speculation

re-orderings are rare and most re-
orderings do not matter

writebacks do not often race with 
requests to write the block

worst-case buffering requirements are 
rarely needed in practice

(2) Detection one specific invalid transition in 
protocol controller

one specific invalid transition in 
protocol controller

timeout on cache coherence
transaction

(3) Recovery SafetyNet SafetyNet SafetyNet

(4) Forward  
Progress

selectively disable adaptive rout-
ing during re-execution

slow-start execution after  
recovery

slow-start execution after recovery, with 
sufficient buffering during slow-start

Result simpler protocol with rare mis-
speculations

protocol almost never exercises cor-
ner case in practice

simpler network incurs no deadlocks in 
practice
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of cycles and tolerate long detection latencies. SafetyNet 
efficiently checkpoints the multiprocessor state, using only 
hardware, by incrementally logging changes to the cache 
and memory state. The system recovers by undoing the 
logged changes. SafetyNet uses the standard solutions to 
the output commit problem (i.e., waiting to verify data 
before sending it to I/O devices) and the input commit 
problem (i.e., logging data received from I/O devices).

(4) Forward progress. We must ensure that, even in the 
worst-case mis-speculation scenario, the system continues 
to make forward progress. Mis-speculation must not fall 
victim to a pathological situation, whether unintentional or 
due to malicious software. As with detection, mechanisms 
for forward progress should not be overly complex. All 
three of our examples use similar forward progress mecha-
nisms that are guaranteed to alter the timing of the execu-
tion after system recovery such that the race cannot recur. 

In Section 3 and Section 4, we present three applications 
of speculation for simplicity, and we summarize them in 
Table 1. First, we simplify the design of a directory proto-
col by speculating that the adaptively routed interconnect 
provides point-to-point ordering of messages. Second, we 
simplify the design of a broadcast snooping cache coher-
ence protocols by treating a rare corner case as a mis-spec-
ulation instead of explicitly designing for it. Third, we 
simplify the design of interconnection networks by remov-
ing the virtual channels used for deadlock avoidance. In all 
examples, detection and forward progress are easy to 
implement and thus speculation simplifies system design.

3  Simplifying Cache Coherence Protocols

In this section, we describe two ways to use speculation 
to simplify cache coherence protocols. Cache coherence 
protocols define the behaviors of the cache and memory 
controllers. Each controller is a finite state machine that has 
some number of states (per cache block) and handles some 
number of events that can happen to a block. Numerous 
controllers concurrently interact with each other with 
respect to many different blocks. While protocols are sim-
ple at a high level, they are much more complicated to 
design at a low level. Textbooks often abstract protocols 
into a handful of stable states (MOESI) and a handful of 
messages that nodes exchange [6]. In reality, though, proto-
cols have numerous transient states, and messages race 
with each other in the interconnect and can arrive in many 
different orders. 

Cache coherence protocols are notoriously difficult to 
design and verify. The state space explosion problem—an 
exponential function of the number of controllers, memory 
blocks, and block states—limits the viability of various for-
mal verification methods [4], such as model checking and 

theorem proving. Testing is a valuable complement to for-
mal verification techniques, and directed testing or ran-
domized testing [3, 23] can uncover many bugs. 
Unfortunately, the complexity of protocols is often due to 
subtle race conditions, especially those that are infrequent 
and thus less likely to be uncovered by testing.

3.1  Simplifying a Directory Protocol

We now demonstrate how to simultaneously achieve (a) 
the design simplicity of a directory cache coherence proto-
col that relies on ordering in the interconnection network, 
and (b) the benefits of adaptive routing in the interconnect. 
We can simplify the design of a directory cache coherence 
protocol by relying upon the interconnect to provide point-
to-point ordering, a property that guarantees that if a source 
sends two messages to a destination, then the messages 
arrive in the order in which they were sent. Point-to-point 
ordering eliminates certain potential races in the protocol, 
as we discuss later, and handling these races adds design 
and verification complexity.

Although point-to-point ordering can simplify the 
coherence protocol, most high-speed interconnect designs 
do not provide it. Interconnection networks can often 
achieve greater throughput and performance by using adap-
tive routing. Adaptively routed interconnects, such as that 
of the Alpha 21364 [16], allow two messages from switch 
S1 to switch S2 to take different paths. Adaptive routing 
can improve performance by distributing traffic more 
evenly across the interconnect and by enabling messages to 
be routed around localized congestion. Adaptive routing 
can also enhance availability by routing messages around 
faulty switches. Adaptive routing, however, does not pro-
vide point-to-point order in the interconnection network. In 
addition to adaptive routing, the use of reliable link-level 
retry mechanisms can preclude the provision of point-to-
point ordering. 

We illustrate an example of how adaptive routing can 
violate point-to-point order in Figure 1, in which a source 
node sends two messages to a destination node. The source 
sends message M2 after sending message M1, but M2 
arrives first at the destination. The reversal in arrival order 
could be due, for example, to higher contention along the 
path taken by M1. With static routing, both messages 
would have followed the same path and arrived in order. 

Specific Example. We explore a system with a MOSI 
directory cache coherence protocol and a two-dimensional 
(2D) torus interconnection network. There are four classes 
of messages in the protocol—Request, ForwardedRequest, 
Response, and FinalAck—and each class of messages trav-
els on a logically separate interconnection network (i.e., 
virtual network). There are three types of Request mes-
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sages that processors send to directories: 
RequestReadOnly, RequestReadWrite, and Writeback. 
There are four types of ForwardedRequest messages that 
directories send to processors: Forwarded-
RequestReadOnly, Forwarded-RequestReadWrite, Invali-
dation, and Writeback-Ack. There are three types of 
Response messages that processors or directories send to 
requesting processors: Data, Ack, or Nack. Processors send 
messages to directories on the FinalAck virtual network to 
coordinate SafetyNet checkpoints, but we do not discuss 
them further here. 

We can simplify directory protocol design by relying 
upon point-to-point order (per virtual network, but not 
across virtual networks) to avoid certain race cases. One 
common example of these races occurs when the owner of 
a block, processor P1, sends a Writeback to the directory 
and another processor, P2, sends a RequestReadWrite for 
the same block to the directory. If the RequestReadWrite 
arrives first, the directory then sends a Forwarded-
RequestReadWrite and a Writeback-Ack to P1. If those 
messages, which travel on the same virtual network, arrive 
in the reverse order of that in which they were sent (i.e., the 
Writeback-Ack arrives before the Forwarded-
RequestReadWrite), then P1 first sees the Writeback-Ack 
and downgrades to Invalid. Thus, it cannot handle the 
incoming Forwarded-RequestReadWrite. Designers of 
directory protocols can handle this race, but doing so adds 
additional states and transitions to the protocol and 
increases the complexity of protocol verification.

Instead of handling this race by adding extra states and 
transitions, we implemented a speculative system with an 
adaptively routed interconnection network and a directory 
cache coherence protocol that relies upon point-to-point 
ordering. The adaptive routing algorithm allows messages 
to choose among minimal distance paths based on outgoing 
queue lengths in each direction.1

(1) Infrequency of mis-speculation. The routing algo-
rithm, while adaptive, is still unlikely to violate point-to-
point ordering (we will show that it reorders <1% of mes-
sages). Moreover, even when it does violate ordering, few 
re-orderings impact correctness. Except in the example 
described above, re-ordering does not affect correctness, 
for several reasons. First, in this protocol, point-to-point 
ordering is only necessary on one virtual network (the 
ForwardedRequest virtual network). Second, ordering only 
matters for messages concerning the same block of mem-
ory. Third, even for messages concerning the same block, 
ordering only matters between certain message types. For 
example, the directory can send multiple Forwarded-
RequestReadOnly messages to the owner of a block, but 
the order in which they arrive does not matter for correct-
ness. In particular, the situation in which a Writeback-Ack 
races a Forwarded-RequestReadWrite is particularly rare, 
since a block just evicted at one node is unlikely to be 
actively wanted by another node. 

(2) Detection. For this speculative system, a mis-specula-
tion can only manifest itself as one particular invalid transi-
tion in a cache coherence controller, so cache controllers 
can detect all illegal message re-orderings. For our race 
case, a cache without a valid copy that receives a For-
warded-RequestReadWrite determines this situation to be a 
mis-speculation and triggers a system recovery. This mis-
speculation cannot manifest itself in any other fashion and 
thus is easy to detect.

(3) Recovery. We use SafetyNet in all three of our specula-
tively simplified designs.

(4) Forward progress. To ensure forward progress, we 
alter the timing of the execution after recovery. We simply 
allow the interconnect to selectively disable adaptive rout-
ing, so that the system can always make forward progress. 
The choice of when to re-enable adaptive routing provides 
an adjustable knob for setting the worst-case lower bound 
on performance. At the conservative extreme, never re-
enabling it would bound performance degradation, com-
pared to static routing, to the cost of one mis-speculation. 

3.2  Simplifying a Snooping Protocol

We now present an example of a protocol race in a 
broadcast snooping system that the designers (the authors!) 
did not initially consider. The designers overlooked this 
case until weeks later when randomized testing happened 
to uncover it (by crashing the simulator). Instead of forcing 

Figure 1. Violating point-to-point order with adaptive 
routing. The NW Switch sends Message M1 at time 1 
and then message M2 at time 2 to the SE Switch. 
Message M2, however, arrives at time 3, which is before 
message M1 arrives at time 4.

NW
Switch

NE
Switch

SE
Switch

SW
Switch

SOURCE

DESTINATION

message M1

message M1message M2

message M2

2

1

4

3

1.  While adaptive routing can break point-to-point order, it requires extra 
buffering to avoid deadlock. To isolate the issue of adaptive routing for 
purposes of this discussion, we simplistically avoid deadlock with full 
buffering. A realistic implementation would likely use a more clever solu-
tion, such as Duato’s scheme for deadlock-free adaptive routing [8].
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the designers to re-work the protocol and re-verify it, we 
explore the potential to reduce verification effort and speed 
the time to market by treating this edge case as a mis-spec-
ulation that triggers system recovery.

Specific Example. We developed a version of the snooping 
protocol system with support for speculation. The system 
treats a certain protocol corner case as a mis-speculation 
instead of handling it. 

(1) Infrequency of mis-speculation. Mis-speculation
occurs when a cache controller has a block in state Modi-
fied (or Owned) and then issues a Writeback for the block, 
transitioning to a transient state. In this transient state, a 
RequestForReadWrite arrives from another node, causing 
the cache controller to transition to a different transient 
state. Then, in this second transient state, the cache control-
ler observes another RequestForReadWrite from another 
node. This sequence of events occurs exceedingly rarely, 
especially since it begins with a Writeback from the cache 
controller. Moreover, a block evicted by a Writeback is 
unlikely to be requested by two other nodes. Moreover, 
both nodes must request exclusive access to the block in 
the interval of time between when the cache controller 
issues its Writeback and then observes its own Writeback 
on the request network. While this scenario occurs rarely in 
practice, we still must handle it.

(2) Detection. The potential mis-speculation due to 
encountering this unspecified coherence transition can only 
manifest itself as one specific invalid transition and is thus 
easy to detect. In this particular example, a cache controller 
that observes another node’s RequestForReadWrite while 
in the transient state described above detects the mis-specu-
lation.

(3) Recovery. We use SafetyNet in all three of our specula-
tively simplified designs. 

(4) Forward Progress. As with the prior example, we 
ensure forward progress by altering the timing of the exe-
cution after recovery. As a fail-safe mechanism, the system 
temporarily enters a “slow-start” mode, in which the sys-
tem restricts the number of coherence transactions allowed 
to be outstanding (e.g., one). The corner case in the proto-
col can only occur when at least two transactions race in 
the system. The slow-start mode performance provides a 
worst-case lower bound on performance in the presence of 
mis-speculations. Moreover, before resorting to slow-start, 
the system could simply try to resume execution, perhaps 
in a slightly slower mode, in the likely hope that the race 
does not recur.

Along with the coherence protocol, the other primary 
source of complexity in a multiprocessor is the intercon-
nection network, and we now discuss how to simplify it.

4  Simplifying the Interconnection Network

In this section, we discuss how to simplify deadlock 
avoidance in interconnection networks. Interconnects for 
multiprocessors are difficult to design, partly because of 
the difficulty of achieving high and robust performance 
while verifying that deadlock is impossible under all situa-
tions. There are two types of deadlock, which we refer to as 
endpoint deadlock and switch deadlock, based on where 
the deadlock can occur. We discuss both of them now, 
including the primary approach for avoiding them, before 
delving into a speculative design that is simpler.

Endpoint deadlock. Endpoint deadlock can occur when 
cross-coupled requests depend on each other, as shown in 
Figure 2. For example, deadlock can occur if (a) processor 
P1 sends a request for block A to P2 followed by a 
response for block B, (b) P2 does the opposite (request for 
B followed by response for A), (c) the incoming queues for 
both processors are full of requests, and (d) neither proces-
sor can ingest its incoming request until it ingests its 
incoming response, and they process incoming buffers in 
order. This type of deadlock depends on the coherence pro-
tocol, but it is independent of interconnection network 
topology and routing. 

Switch deadlock. Switch deadlock in the interconnection 
network can arise due to the combination of cross-coupled 
messages and insufficient buffering for in-flight messages. 
Consider the simple example illustrated in Figure 3. In this 
example, switch S1 wants to send message M1 to switch 
S2, and S2 wants to send M2 to S1. However, the buffer 
from S1 to S2 and the buffer from S2 to S1 are both full 
and unable to accept new messages. Moreover, neither 
switch will process its incoming queue until it can send its 

switch S1

switch S2

full of messages

full of messages message M1

message M2

proc P1

proc P2

full of requests

full of requests response

response

Figure 2. Endpoint deadlock

Figure 3. Switch deadlock
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outgoing message. Thus, if switches process incoming 
message buffers in FIFO order, the system now deadlocks, 
since neither M1 nor M2 can make progress. This type of 
deadlock depends on the topology of the interconnect and 
the routing policy, but it does not depend on the cache 
coherence protocol.

To avoid both types of deadlock, interconnects can 
either use worst-case buffering or some scheme to break 
the cyclic dependences that can lead to deadlock. Using 
worst-case buffering at each endpoint and switch is the 
simplest solution, but it is generally not viable since the 
worst case can be far worse than the common case. 

To avoid the costs of worst-case buffering, many inter-
connection networks use schemes that break the cyclic 
dependences that can lead to deadlock [10]. To avoid end-
point deadlock, we can use virtual networks for the differ-
ent classes of messages. A virtual network is just one or 
more incoming buffers reserved by the switches and end-
points for a particular class of messages. If we have a dif-
ferent virtual network for each class of messages (e.g., 
request and response), then the incoming queue can never 
fill up with just requests, since we have reserved space for 
responses. To avoid switch deadlock, we can use virtual 
channel flow control [7]. A virtual channel is just one or 
more buffers per unidirectional physical link2 that is 
reserved by the switch for messages of a particular priority. 
In our simple example, if M1 was on virtual channel 1 and 
M2 was on virtual channel 2, then deadlock would not 
occur. The interaction of virtual channels and virtual net-
works is multiplicative; if we need N virtual networks to 
avoid endpoint deadlock and C virtual channels to avoid 
switch deadlock, then we need NxC virtual channels total 
(i.e., C per virtual network). For a 2D bidirectional torus 
and our directory cache coherence protocol, we require two 
virtual channels per virtual network (for static routing) and 
four virtual networks (i.e., 4*2=8 virtual channels total). To 
provide deadlock freedom with adaptive routing requires at 
least one additional virtual channel [9]. 

Virtual channel/network flow control minimizes dead-
lock-free buffering requirements and it is well-understood, 
but it adds complexity and requires additional verification 
effort. The SGI Origin directory protocol [13] avoids this 
complexity by using only two virtual networks instead of 
the three that would have ensured deadlock avoidance. 
Instead, the Origin relies on a higher level mechanism to 
negatively acknowledge (nack) its way out of the deadlocks 
that occur due to this limitation, even though nacking 
increases protocol complexity and could introduce livelock 

problems. At the other extreme, the Alpha 21364 intercon-
nect uses nineteen virtual channels (six virtual networks 
times three virtual channels each, plus an extra channel for 
special messages) [16], demonstrating that complicated 
flow control is implementable. 

As an alternative to virtual channel/network flow con-
trol, interconnect designers have used deflection routing 
(a.k.a. hot potato routing) to avoid deadlock. Deflection 
routing avoids deadlock without using any buffering, but it 
can suffer from potential livelock problems. 

Specific Example. To demonstrate the viability of easing 
interconnection network design, we implemented a 2D 
torus interconnect with less than worst-case buffering and 
no virtual channel/network support. We use the same sys-
tem model as the directory protocol example in 
Section 3.1. In the case that the system detects deadlock, it 
recovers and resumes execution.

(1) Infrequency of mis-speculation. Adaptively routed 
networks are generally designed to avoid potential dead-
lock conditions. This is because both deadlock avoidance 
(e.g., using “escape channels” [8]) and deadlock recovery 
(e.g., as proposed here) negatively impact performance. 
Designers can size buffers to reduce the probability of 
potential deadlocks. Some networks also use source throt-
tling to further reduce this probability [21]. Using recovery 
to resolve deadlock changes the problem from a correct-
ness issue into a performance issue.

(2) Detection. Detection of this form of mis-speculation is 
straightforward, since the requestor can detect all dead-
locks by a time-out.3 If a message gets stuck in the inter-
connect, the coherence transaction to which it belongs will 
not complete, and the requestor of the transaction will tim-
eout and trigger a system recovery. We choose time-out 
latency to be long enough to mitigate false positives while 
short enough to not slow down SafetyNet commitment of 
checkpoints.4 Since there is little gain in having a timeout 
latency shorter than necessary for SafetyNet, a processor 
times out on its request after three checkpoint intervals. 

(3) Recovery. We use SafetyNet in all three of our specula-
tively simplified designs.

(4) Forward Progress. As with the prior two examples, we 
ensure forward progress by altering the timing of the exe-
cution after recovery. As a fail-safe mechanism, we enter a 
“slow-start” mode like that in Section 3.2, in which the sys-

2.  When we refer to virtual channel requirements, they are the require-
ments per unidirectional physical link.

3.  A timeout mechanism would also detect livelock if we were to use 
speculation to support deflection routing on a topology for which deflec-
tion routing does not provably avoid livelock. 
4.  SafetyNet cannot commit an old checkpoint until it is sure that execu-
tion prior to that checkpoint was mis-speculation-free. Thus, it might have 
to wait as long as the timeout latency to either commit a checkpoint or 
trigger a system recovery. 
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tem restricts the number of coherence transactions allowed 
to be outstanding. As long as we provide enough buffering 
to satisfy the reduced number of transactions, slow-start 
provably avoids livelock and provides a worst-case lower 
bound on performance. We can raise this bound by provid-
ing more buffering to support a slow-start mode that allows 
more concurrent transactions. Moreover, before resorting 
to slow-start, the system could simply try to resume execu-
tion, possibly in a slower mode, in the hope that deadlock 
will not occur again. If deadlock does recur, the system can 
then fall back on slow-start. Slow-start adds some com-
plexity back into the system, but it is less than that of vir-
tual channel flow control.

5  Evaluation 

In this section, we evaluate the applications of specula-
tion for simplicity that we have developed in Sections 3 and 
4. Our first goal is to determine the mis-speculation fre-
quency at which our system performance begins to 
degrade. Our second goal is to determine if our speculative 
systems incur mis-speculations infrequently enough. We 
start by describing our system model, methodology [1], and 
workloads, and then we discuss our results. 

5.1  System Model and Simulation Methodology

Our target system is a 16-node shared-memory multi-
processor. Each node consists of a processor, two levels of 
cache, some portion of the shared memory and directory, 
and a network interface. The processor architecture is 
SPARC v9, and the system runs Solaris 8. 

We evaluate our target system with the Simics full-sys-
tem, multiprocessor, functional simulator, and we extend 
Simics with a memory hierarchy simulator to compute exe-
cution times. Simics is a system-level architectural simula-
tor developed by Virtutech AB [15]. We use Simics/sun4u, 
which simulates Sun Microsystems’s SPARC V9 platform 
architecture (e.g., Sun E6000s) in sufficient detail to boot 
unmodified Solaris 8. Simics is a functional simulator only, 
and it assumes that each instruction takes one cycle to exe-
cute (although I/O may take longer), but it provides an 
interface to support detailed memory hierarchy simulation. 

Processor. We model a processor core that, given a perfect 
memory system, would execute four billion instructions per 
second and generate blocking requests to the cache hierar-
chy and beyond. We use this simple processor model to 
enable tractable simulation times for full-system simulation 
of commercial workloads. While an out-of-order processor 
model might affect the absolute values of the results, 
mostly due to being able to maintain more outstanding 
memory requests, it would not qualitatively change them. 
If having additional outstanding requests leads to more 
exercising of certain races or corner cases, we could violate 
the first necessary feature of speculation for simplicity (i.e., 
infrequency of mis-speculation). Then we would have to 
re-consider this particular speculation but not speculation 
for simplicity in general. 

Memory System. We have implemented a memory hierar-
chy simulator that supports our coherence protocols and 
SafetyNet. The simulator captures all state transitions 
(including transient states) of our coherence protocols in 
the cache and memory controllers. We model the intercon-
nection network topologies and the contention within them. 
In Table 2, we present the design parameters of our target 
memory systems. 

SafetyNet. For our system recovery mechanism, we use 
SafetyNet [19]. We list SafetyNet system parameters in 
Table 2, and SafetyNet performance overhead (in error-free 
execution) is minimal for these design parameters, as was 
demonstrated by Sorin et al. [19]. The checkpoint interval 
differs between the directory and snooping systems, due to 
the different logical time basis used for creating consistent 
checkpoints. Recovery time varies somewhat, depending 
on how much work the system loses between the recovery 
point and when it detects the mis-speculation. We stress-
tested the recovery mechanism by periodically triggering 
recoveries, and we show these results in Section 5.3. 

5.2  Workloads

Commercial applications represent an important work-
load for shared memory multiprocessors. As such, we eval-
uate our speculative design with four commercial 
applications and one scientific application, described 

Table 2. Target System Parameters

L1 Cache (I and D) 128 KB, 4-way set associative

L2 Cache 4 MB, 4-way set-associative

Memory System Memory 2 GB, 64 byte blocks

Miss From Memory 180 ns (uncontended, 2-hop)

Interconnection Networks link bandwidth = 400MB/sec to 3.2 GB/sec

Checkpoint Log Buffer 512 kbytes total, 72 byte entries

SafetyNet Checkpoint Interval 100,000 cycles (directory), 3,000 requests (snooping)

Register Checkpointing Latency 100 cycles
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briefly in Table 3 and in more detail by Alameldeen et al. 
[1]. To address the variability in runtimes for commercial 
workloads, we simulate each design point multiple times 
with small, pseudo-random perturbations of memory laten-
cies to cause alternative scheduling paths [1]. Error bars in 
results represent one standard deviation in each direction.

5.3  Results

We now present the results of our evaluations of each of 
our three speculative designs. We first explore the impact 
of mis-speculation, in general, by stress-testing the sys-
tem’s ability to recover from a range of mis-speculation 
rates. While mis-speculation occurs infrequently in our 
speculative systems (shown next), we want to determine 
the mis-speculation rate at which the latency of recoveries 
can impact performance. To isolate the impact of increas-
ing the frequency of recoveries, we implement a system 
without speculation and inject periodic recoveries. The 
results, shown in Figure 4, reveal that recovery is suffi-
ciently short that the performance cost of recovering even 
ten times per second is negligible.5

Speculatively Simplified Directory Protocol Results. We 
evaluated the performance of the speculatively simplified 
directory protocol to determine if mis-speculations are suf-
ficiently infrequent to make speculation viable. Re-order-
ing and mis-speculation rates are a function of available 
bandwidth, since increasing the bandwidth provides fewer 
opportunities for adaptive routing. The primary result is 
that virtually no reorderings occur in our system, even for 
link bandwidths as low as 400 MBytes/sec. 

Adaptive routing incurs few recoveries for two reasons. 
First, re-orderings are rare, even for link bandwidths of 400 
MBytes/sec. With mean link utilizations between 13-35% 
(for static routing), there is little opportunity for adaptive 
routing to re-order messages to avoid congestion. Second, 
when re-orderings do occur, the vast majority of them do 
not affect correctness. While adaptive routing re-ordered 
0.1-0.2% of all messages on the ForwardedRequest virtual 
network, we observed only a handful of recoveries in all 
simulations. On other virtual networks, adaptive routing re-
ordered as many as 0.8% of messages, but these re-order-
ings cannot violate correctness in our protocol. It also re-
ordered messages across virtual networks (e.g., a request 
arrived after a response despite being sent first), but this re-
ordering does not matter in our protocol. 

While it might thus appear that adaptive routing is not 
worthwhile, it can still help performance during periods of 
higher congestion. Although mean link utilization is low, 
instantaneous utilization is sometimes much greater. In 
these instances, adaptive routing can route more messages 
around congestion. In Figure 5, for an interconnect with 
link bandwidth of 400 MBytes/sec, we compare the relative 
performances of systems with static and adaptive routing, 
and we normalize the results to the performance of static 
routing. We observe that adaptive routing achieves a signif-
icant speedup for our workloads because of better instanta-
neous link utilization and the infrequency of recoveries. 

Table 3. Workloads: Wisconsin Commercial 
Workload Suite and a Splash-2 scientific workload

OLTP: Our OLTP workload is based on the TPC-C v3.0 
benchmark using IBM’s DB2 v7.2 EEE database management 
system. We use a 1 GB 10-warehouse database stored on five 
raw disks and an additional dedicated database log disk. There 
are 8 simulated users per processor. We warm up for 10,000 
transactions, and we run for 500 transactions.

Java Server: SPECjbb2000 is a server-side java benchmark 
that models a 3-tier system with driver threads. We used Sun’s 
HotSpot 1.4.0 Server JVM. Our experiments use 24 threads and 
24 warehouses (~500 MB of data). We warm up for 100,000 
transactions, and we run for 10,000 transactions. 

Static Web Server: We use Apache 1.3.19 (www.apache.org)
for SPARC/Solaris 8, configured to use pthread locks and mini-
mal logging as the web server. We use SURGE to generate web 
requests. We use a repository of 2,000 files (totalling ~50 MB). 
There are 10 simulated users per processor. We warm up for 
~80,000 requests and run for 5000 requests.

Dynamic Web Server: Slashcode is based on a dynamic web 
message posting system used by slashdot.com. We use Slash-
code 2.0, Apache 1.3.20, and Apache’s mod_perl 1.25 module 
for the web server. MySQL 3.23.39 is the database engine. The 
database is a snapshot of slashcode.com, and it contains 
~3,000 messages. A multithreaded driver simulates browsing 
and posting behavior for 3 users per processor. We warm up for 
240 transactions and run for 50 transactions.

Scientific Application: We use barnes-hut from the SPLASH-
2 suite [22], with the 16K body input set. We measure from the 
start of the parallel phase to avoid measuring thread forking.

5.  Mis-speculation does not improve performance for OLTP. The error 
bars show that, despite the greater mean performance value with mis-
speculations, the performance is not statistically significantly better. 
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Figure 4. Performance vs. Mis-speculation Rate
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In summary, designers can simplify a directory protocol 
by speculatively relying on point-to-point ordering despite 
the use of adaptive routing. Moreover, the use of adaptive 
routing may allow for cheaper links and fewer pins, while 
achieving the same bandwidth as a statically routed yet 
more costly interconnect. 

Speculatively Simplified Snooping Protocol Results. We 
tested the speculatively simplified snooping coherence pro-
tocol on our set of commercial workloads, and all of them 
ran to completion without needing to recover even once 
from reaching the edge case. Thus, performance of the pro-
tocol mirrors, for these workloads, that of the fully 
designed protocol. While this observed lack of recoveries 
obviously does not guarantee that the speculative protocol 
will never have to recover, it does suggest the infrequency 
of recoveries due to encountering this corner case in the 
cache coherence protocol.

We conclude from this experiment that a system can tol-
erate a corner case in the cache coherence protocol with 
speculation. Even if recoveries due to mis-speculations 
slightly degrade performance, the reduced time for design 
and verification provides a benefit that is likely to more 
than offset the runtime cost of recoveries.

Simplified Interconnection Network Results. To deter-
mine the performance impact of recoveries, we compare 
the performance of this system against a system with the 
same protocol running on an interconnection network with 
worst-case buffering (given no virtual channels/networks). 
Results (not plotted) show steady performance for systems 
with buffer sizes at and above 16 but a sharp dropoff in per-
formance for systems with buffers of size 8. Deadlocks do 
not occur in any of our workloads until we reduce buffer 
sizing from 16 to 8. Although our 16-processor system can 
only have a total of 16 requests outstanding, deadlock with 
buffers of size 16 is still possible because (a) each proces-
sor can also have a writeback outstanding, (b) each request 
can be forwarded from the directory to multiple destina-
tions, and (c) all message types share the same buffers. 

We conclude from this experiment that we can simplify 
interconnection network design with speculation. We can 
remove virtual channel deadlock avoidance and specula-
tively assume that deadlock will not occur. When it does, 
the system can recover and still make forward progress.

Summary of Results. These experimental results show 
that speculation is a viable technique for simplifying sys-
tem design. In general, a speculative system can maintain 
its performance even when ten recoveries per second occur, 
and our speculative systems incur recoveries less fre-
quently than that.

6  Related Work in Simplifying System Design

There exists some prior research in simplifying system 
design by allocating resources towards common-case sce-
narios. We illustrate four notable examples of this 
approach.

The first example is the use of software for solving com-
plex processor hardware problems. For example, proces-
sors have trapped to software for floating point arithmetic, 
such as the Intel 80386 without the 80387 floating point 
coprocessor. No recovery is necessary for these traps to 
software. Also, numerous architectures give the user the 
option of trapping to software for IEEE standard denormal-
ized floating point arithmetic, including SPARC v9 [20] 
and Intel IA-64 [12]. Localized processor recovery may be 
necessary in these cases to support precise interrupts.

Second, prior research has explored the use of fewer vir-
tual networks than strictly necessary in all cases. The SGI 
Origin [13] can detect deadlock and then fall back on a 
higher-level mechanism, specified only vaguely in the pub-
lic literature, to undo the deadlock and enable forward 
progress. Similarly, more general progressive deadlock 
recovery schemes have been proposed for endpoint dead-
lock [18]. The MIT Alewife uses software to recover from 
interconnect deadlock due to insufficient resources in rare 
situations [14]. 

Third, some processors have relied on the inherent 
recoverability of dynamically scheduled processors to 
recover from corner cases. For example, the Pentium Pro 
flushes its pipeline when it manipulates certain control reg-
isters [11]. The Intel Pentium 4 recovers from deadlocks 
due to corner cases in scheduling the processor core [5]. 
After recovery, the core will not deadlock, since the recov-
ery (and flush) changes the microarchitectural state enough 
to avoid the same corner case that originally caused the 
deadlock.

Lastly, DIVA [2] uses a simple checker processor to 
dynamically verify a complex and possibly faulty proces-
sor and ensure correctness even in the case of design errors. 
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DIVA is the closest work to speculation for simplicity, but 
DIVA is limited to only the processor core. 

7  Conclusions

In this paper, we have discussed how to use speculation 
to simplify multiprocessor system design. Speculation 
allows the designer to allocate design and verification effort 
towards the common case scenarios while falling back on 
system-wide recovery for situations that are rare and com-
plicated. The three applications of speculation for simplic-
ity that we have presented have demonstrated the potential 
to simplify system design. 
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