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Abstract 
 
An ad hoc grid is a heterogeneous computing and 

communication system without a fixed infrastructure; 
all of its components are mobile. Energy management 
is a major concern in an ad hoc grid. One important 
aspect of energy management is to minimize the energy 
consumption during a mission. In an ad hoc grid, 
communication and computations are deeply 
intertwined, and any energy optimization must 
consider both types of activities together rather than 
separately. The mapping (defined as matching and 
scheduling) of tasks onto machines with varied 
computational capabilities has been shown, in general, 
to be an NP-complete problem. Therefore, heuristic 
techniques are required to efficiently map tasks to 
machines in an ad hoc grid so as to minimize the 
energy consumed due to communication and 
computation. This research evaluates and compares 
energy management issues for resource allocation in 
ad hoc grids using six static heuristics. 

 
 

1. Introduction and Problem Statement 
 

An ad hoc grid is a heterogeneous computing and 
communication system without a fixed infrastructure 

(i.e., all of its components are mobile). An ad hoc grid 
allows a group of individuals to accomplish a mission 
that involves extensive computation and 
communication among the grid components, often in a 
hostile environment; examples of applications of ad 
hoc grids are disaster management, wildfire 
prevention, and peacekeeping operations [18]. In all 
these cases a grid-like environment is necessary to 
reliably support the coordinated effort of a group of 
individuals working under extreme conditions. As the 
total battery energy available for any of the above 
applications is limited, energy management is a major 
concern in ad hoc grids. Thus, it becomes necessary to 
allocate efficiently the application task to the resources 
in the grid to minimize the total battery usage. This 
study focuses on this aspect of resource allocation in 
an ad hoc grid, where the primary objective is to 
minimize the total battery energy used to successfully 
accomplish a mission. 

For this research, a single, large application task is 
considered to be composed of S communicating 
subtasks with data dependencies among them. This 
application task is to be executed in an ad hoc grid as 
part of the mission being conducted.  

An important research problem is how to assign 
resources to the subtasks (matching) and order the 
execution of the subtasks that are matched (scheduling) 
to maximize some performance criterion of a 
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heterogeneous computing (HC) system. This procedure 
of matching and scheduling is called mapping or 
resource allocation. Static mapping refers to the case 
where the applications are mapped in an off-line 
planning phase [6], e.g., in a production environment. 
The mapping problem has been shown, in general, to 
be NP-complete (e.g., [8, 10, 12]). Thus, the 
development of heuristic techniques to find near-
optimal solutions for the mapping problem is an active 
area of research (e.g., [1, 3, 4, 5, 6, 9, 11, 17, 19, 23]). 

In this study, we statically (offline) find a resource 
allocation for a single application task composed of 
communicating subtasks that will be needed for a 
mission to be completed. The idea is to come up with a 
complete static mapping of subtasks to machines that 
could be used later when a particular mission is to be 
instantiated (e.g., response to a particular wildfire). The 
application would use input data relevant to the 
particular mission that is instantiated. The goal is to 
map subtasks to machines in such a way as to 
minimize the average percentage of the energy 
consumed by a machine. 

Six static mapping heuristics for this problem are 
evaluated and compared in this study through 
simulation experiments. The simulated HC 
environment consists of M machines in the ad hoc grid. 
The estimated expected execution time for each 
subtask on each machine is assumed to be known a 
priori. The estimated time to compute (ETC) values 
(calculated using the gamma distribution method in 
[2]) are used by the mapping heuristics. The estimated 
execution time of subtask i on machine j is ETC(i, j). 
Each machine j has four energy parameters associated 
with it: 

i. maximum battery energy: B(j); 
ii. rate at which it consumes energy for subtask 

execution, per ETC time unit: E(j);   
iii. rate at which it consumes energy for subtask 

communication, per communication time unit: 
C(j); and 

iv. the machine’s communication bandwidth: BW(j). 
Parameters (ii) and (iii) use a simplified model of real 
energy consumption. 

The energy consumed for executing a single 
subtask i on machine j is ETC(i , j) × E(j). The time 
required to transfer one bit of a data item between 
machine j and machine k is the inter-machine 
communication time called CMT(j, k) and is given by:  

( ))(),(min1)( kBWjBWkj,CMT = .  
The energy consumed to send a data item g of size 

|g| from machine j to machine k is CMT(j, k) × C(j) × 
|g|. Each machine can transmit data to only one 
destination at a time, and can do so while it is 
computing. A machine can simultaneously handle one 

outgoing data transmission and one incoming data 
reception.  Similar to the study in [22], we assume that:  

i. a subtask can send out data only after it has 
completed execution; and 

ii. a subtask may not begin execution until it 
receives all of its input data items. 

The ad hoc grid that is considered for this project is 
a simplified version of an actual one. The list of 
simplifying assumptions that have been made are as 
follows: 
• the energy consumed by a subtask to receive a 

data item is ignored; 
• any initial data (i.e., data not generated during 

execution of the application task) is preloaded 
before the actual execution of the application task 
begins; 

• a machine consumes no energy if it is idle (i.e., not 
computing or not transmitting). 
The performance metric is based on the energy 

consumption across all the machines in the ad hoc grid. 
The total battery energy consumed by a machine j after 
the entire task has been completed is given by EC(j). 
The performance metric, Bpavg used to evaluate the 
mapping is defined as the percentage of energy 
consumed by each machine to complete the entire task, 
averaged across all machines, and is given by 

( )

M
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B

M
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=
=
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The goal of this study is to map all the subtasks to 
machines in such a way as to minimize Bpavg, while 
meeting an application execution time constraint τ. Six 
static mapping schemes are studied in this paper: Min-
Min, Levelized Weight Tuning, Genetic Algorithm, 
Simplified Lagrangian, Bottoms Up, and A*. The 
makespan is defined as the overall execution time of 
the application task on the machine suite in the ad hoc 
grid. So the final makespan of all mappings has to be 
less than or equal to τ. The wall clock time for each 
mapper itself to execute is required to be less than or 
equal to 60 minutes on a typical unloaded 1 GHz 
desktop machine.  

The next section describes the simulation setup 
used for this research. Section 3 provides a list of some 
of the literature related to this work. In Section 4, the 
heuristics studied in this research are presented. 
Section 5 describes the results, and the last section 
gives a brief summary of this research. 
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2. Simulation Setup 
 

In this study, the application task is composed of 
1024 communicating subtasks. This large number of 
subtasks is chosen to present a significant mapping 
challenge for each heuristic. 

The data dependencies among the subtasks are 
represented by a directed acyclic graph (DAG). The 
pseudocode to generate the DAG is given in the 
appendix of this paper. For this study, ten different 
DAGs are developed. The maximum fan-in and fan-out 
values for all the ten DAGs generated are twelve and 
two, respectively. Also, for each DAG there are seven 
subtasks with no predecessors, seven subtasks with no 
successors, and the remaining 1010 subtasks have 
predecessors and successors. The sizes of the global 
data items to be transferred from one subtask to 
another are sampled from a Gamma distribution, with a 
mean value of 2.8 megabits and a variance of 1.4 
megabits. 

There are a total of eight machines in the 
simulated ad hoc grid, and these are divided equally 
into two classes: “fast machines” and “slow machines.” 
The ETC matrices are setup such that machines 0 to 3 
are fast machines, while machines 4 to 7 are slow 
machines. There are eight communication channels 
available that allow the eight machines to 
communicate simultaneously with each other. 

The ETC values for all subtasks, taking 
heterogeneity into consideration, are generated using 
the Gamma distribution method described in [2]. For 
this research, a task mean and coefficient of variation 
(COV) are used to generate the ETC matrices. The 
mean subtask execution time is chosen to be 100 
seconds and a COV of 0.9 is used to generate an ETC 
matrix with high task and high machine heterogeneity. 
For this study, ten different ETC matrices are 
generated.  

To obtain the two classes of machines, all the ETC 
values for the slow machines are adjusted by a 
multiplicative factor (MF). For each subtask i the ratio 
diffi, of the ETC value of the fastest slow machine to 
the ETC value of the slowest fast machine is calculated 
as 

 diffi = 







∈

∈

[0,3]for  ),(max 

[4,7]for  ),(min 

jjiETC

jjiETC . 

Then the value of MF is given by 
MF = 2 / (min diffi for i ∈ [0, 1023]).  
All the ETC values for the slow machines are now 
multiplied by the MF to get the new adjusted values. 
After creating the two classes of machines, the new 
mean estimated execution time for a single subtask is 
131 seconds. For this study, across all the subtasks in 
an ETC matrix, the average fastest machine is 

approximately ten times faster than the average slowest 
machine.  
 

 fast machines  slow machines 

B(j) 580 energy units 58 energy units 

C(j) 0.2 energy units/ 
sec 

0.002 energy 
units/sec 

E(j) 0.1 energy units/ 
sec 

0.001 energy 
units/sec 

BW(j) 8 megabits/sec 4 megabits/sec 
 
Table 1: The values of B(j), C(j), E(j), and BW(j) 
for fast and slow machines. 
 

The values of B(j), C(j), E(j), and BW(j) for both 
fast and slow machines are shown in Table 1. These 
values represent a rough industry average based on 
microprocessors and battery capacity selected on 
currently commercially available machines. Fast 
machines are typified by the DELL Precision M60 
notebook computer using an Intel MP4M processor 
operating at 1.7GHz. The statistics for the slow 
machines are typical personal digital assistant (PDA) 
computers, such as the DELL Axim X5 that uses an 
Intel PXA255 processor operating at 400 MHz. 

The value of the time constraintτ is chosen so that 
it prevents any heuristic from mapping subtasks only to 
slow machines, which consume less energy to execute 
a subtask. A simple greedy mapping heuristic was used 
to determine the value of τ as 34075 seconds. The 
performance of each heuristic is studied across 100 
different scenarios, where each scenario is a 
combination of one of the task graphs and one of the 
ETC matrices.  

 
3. Related Work 
 

The literature was examined to select a set of 
heuristics appropriate for the HC environment 
considered here. The nature of the DAGs used in this 
study are similar to those used in [22]. Similar to [22], 
this study also has a single application that is 
decomposed into a number of communicating subtasks 
with data dependencies among them, represented by a 
directed acyclic graph.  

Three of the six heuristics presented in this paper, 
namely Min-Min, Genetic Algorithm, and A*, have 
been used previously to map tasks onto heterogeneous 
machines (e.g., [6]). However unlike [6], where the 
goal was to minimize the total time required to 
complete an application task, the goal of our study is to 
minimize the average percentage of energy consumed 
by the machines, in addition to complete the entire task 
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within a time constraint. The Min-Min heuristic has 
proven to be a good heuristic for dynamic and static 
mapping problems in earlier studies (e.g., [6, 17]). The 
Bottoms Up heuristic used in this study is a variation 
of the Min-Min heuristic. Bottoms Up assigns tasks to 
machines in a manner similar to the Min-Min heuristic, 
but considers tasks for scheduling in a different 
manner. Genetic Algorithms are a technique used for 
searching large solution spaces and have been used for 
mapping subtasks to machines in a HC environment 
(e.g., [6, 21, 22]). The Genetic Algorithm used in this 
study is a slightly modified version of the one used in 
[22]. A* is a search technique based on a tree and has 
been used for many task allocation problems (e.g., [6, 
15, 7]). A* has been selected for this study because the 
application task is represented in the form of a DAG, 
and A* has been found to be highly effective in 
searching a tree or graph [15]. The Simplified 
Lagrangian heuristic presented in this paper is a 
modified version of the one used in [16]. Lagrangian 
relaxation techniques have been used in [16] for job 
scheduling in an industrial environment.  

 
4. Heuristics 
 

For all the six heuristics except Bottoms Up, only 
the subtasks whose predecessors had been fully 
mapped could be considered during a given mapping 
iteration (referred to as mappable subtasks). Also, for 
the final mapping of all the six heuristics, the energy 
constraint is that B(j) is not exceeded for any machine, 
and the time constraint is that the execution time of the 
application does not exceedτ. This section describes 
the six heuristics and a lower bound on the objective 
function. 

 
4.1. Min-Min   
 

Based on the Min-Min concept in [12], this 
heuristic utilized a fitness function to evaluate all 
mappable subtasks. The fitness function is chosen such 
that it would reflect the change in Bpavg and also the 
change in the makespan of the system if a subtask is 
mapped on to a machine. Let PBpavg(i, j) be the partial 
Bpavg of the system, and let PCT(i, j) be the partial 
completion time of machine j normalized with respect 
to τ, if subtask i was mapped to machine j. Then using 
α as a weighting parameter, the fitness value f(i, j) of 
any subtask i on machine j is calculated as: 
 f(i, j) = α × PBpavg(i, j) + ((1 − α) × PCT(i, j)). 

The Min-Min heuristic can be summarized by the 
following procedure. 
1. A list of mappable subtasks is created. Initially 

this list consists of subtasks with no predecessors.  

2. For each subtask i in the above list, across all 
machines find the machine j that gives the subtask 
its minimum fitness value f(i, j), ignoring other 
subtasks in the list. This is the first “Min.” 

3. From among all the subtask/machine pairs found 
in step 2, find the pair that gives the minimum 
fitness value. This is the second “Min.” 

4. The subtask found in the above step is then 
removed from the list of mappable subtasks and is 
mapped to its paired machine. 

5. Update the time and energy availability of the 
machine on which the subtask is mapped and also 
across all machines that send global data items to 
the mapped subtask. 

6. The set of mappable subtasks is updated to include 
any other new subtasks whose precedence 
constraints have now been met. 

7. Repeat steps 2 to 6 until all the subtasks are 
mapped and calculate the value of Bpavg. 

 
The procedure from step 1 to step 7 is carried out 

for eleven different values of the weighting factor α to 
get eleven different mappings. The value of α was 
varied from 0 to 1 in steps of 0.1. From among the 
eleven different mappings, the mapping that gave the 
smallest value of Bpavg and also met the energy and 
time constraints is chosen as the final mapping. 

 
4.2.  Levelized Weight Tuning    
 

In a manner similar to that used in [13] and as 
shown in Figure 1, the Levelized Weight Tuning 
(LWT) heuristic assigns subtasks to different levels 
depending on the data precedence constraints. 

 

 
Figure 1: Levelizing of subtasks S0, S1, S2, S3, 
S4, and S5 for a given sample DAG. 

 
 The lowest level consists of subtasks with no 

predecessors and the highest level consists of subtasks 

level 0 
(lowest level) 

level 3 
(highest level) 

S0

S3 

S1

S2

S4

S5

level 2 

level 1 
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with no successors. Each of the rest of the subtasks is 
at one level below the lowest producer of its global 
data items. Starting from the lowest level, each subtask 
on its respective level is assigned a priority based on 
the total size (sum) of its output global data items. The 
subtasks with larger sums of output global data items 
have a higher priority on their respective level.  

The LWT heuristic can be summarized by the 
following procedure. 
1. All the subtasks are first assigned levels depending 

on the precedence constraints. Subtasks on each 
level are assigned a priority as described above. 

2. Starting from the lowest to the highest level, 
subtasks are considered for mapping by levels 
(from low level to high level), and by priorities 
(from high priority to low priority) within levels. 

3. Every time a subtask is considered for mapping, 
find a machine M1 that will increase the current 
Bpavg  of the system by the least percentage. Let 
this least percentage increase in Bpavg  be MinBpavg. 
Also, find a machine M2 that will increase the 
current makespan of the system by the least 
percentage. Let this least percentage increase in 
makespan be MinMspan. A threshold factor η, 
which is the ratio of makespan to τ  is calculated.     

4. If η > 0.9,  
then the subtask is mapped to machine M2,  

else  
     if ((1 − Bpavg) × MinBpavg) > (Bpavg × MinMspan)  

then the subtask is mapped to machine 
M1  

     else, the subtask is mapped to machine M2.  
5. Update the time and energy availability of the 

machine on which the subtask is mapped and also 
across all machines that send global data items to 
the mapped subtask. 

6. Repeat steps 2 to 5 until all the subtasks are 
mapped and calculate the final value of Bpavg. 

 
4.3.  Bottoms Up   

 
The Bottoms Up (BU) heuristic assigns subtasks 

to levels in a manner similar to the LWT heuristic. 
However, unlike LWT, the BU heuristic begins by 
mapping subtasks from the highest level. Thus, for the 
BU heuristic, the set of mappable subtasks at any given 
time consists of all subtasks that either have no 
successors or subtasks whose successors have 
previously been mapped. Subtasks in each level are 
randomly selected for mapping. 

Let the time for execution and communication of 
subtask i on machine j, normalized with respect to the 
maximum time required for execution and 
communication by subtask i across all machines be 
NT(i, j). Let the energy consumed for execution and 

output communication of subtask i on machine j, 
normalized with respect to the maximum energy 
consumed for execution and output communication of 
subtask i across all machines, be NE(i, j). Then, using 
β as a weighting parameter, the fitness value γij is 
calculated as 
γij = ( β × NT(i, j) ) + ( (1 − β) × NE(i, j) ). 
Different values of the weighting factor β were 
considered for this study. The weighting factor of β = 
0.52 was found to give the best value of Bpavg within 
the time and energy constraints for all the scenarios 
and hence was selected for this study. 

The BU heuristic can be summarized by the 
following procedure. 
1. All the subtasks are first assigned levels depending 

on the precedence constraints as explained above. 
2. Starting from the highest level to the lowest level, 

all mappable subtasks are considered randomly for 
mapping within the respective level 

3. For each mappable subtask i, at the current level 
and across all machines find the machine j that 
gives the subtask its minimum fitness value γij, 
ignoring other subtasks on that level. 

4. From among all the subtask/machine pairs found 
in the above step, find the pair that gives the 
minimum fitness value. 

5. The subtask found in the above step is then 
assigned to its paired machine. 

6. Repeat steps 2 to 5 for each level (from highest to 
lowest level) until all subtasks are assigned 
machines. 

7. After all subtasks are assigned machines, they are 
scheduled in the reverse order they were matched. 

8. The entire mapping is then evaluated and the final 
value of Bpavg is calculated. 

  
4.4.  A*  
 

The A* technique used in this study is similar to 
that used in [6, 7]. A* is a tree-search algorithm, 
beginning at a root node that is a null solution. As the 
tree grows, nodes represent partial mappings (a subset 
of subtasks is assigned to machines). The partial 
mapping (solution) of a child node has one more 
subtask mapped than the parent node. For each node n, 
a cost function c(n) is calculated as follows:  

Let g(n) be the maximum of the machine 
completion times for the subtasks mapped through 
node n and h(n) be a lower bound estimate of the 
completion time of all the unassigned subtasks at node 
n. Let mmct(n) be the maximum of the minimum 
machine completion times over all unassigned subtasks 
at node n. Then the function h(n) is defined as  

( )( ).)()(,0max)( ngnmmctnh −=  
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The function f(n) that is an estimate of the time 
required to complete all the subtasks, normalized with 
respect to τ,  is given by 

( ) .)()()( τnhngnf +=  
The function p(n) is the lower bound of the 

estimated energy consumption through node n. It is 
defined as the sum of the Bpavg of all the assigned 
subtasks at node n and the lower bound estimate of the 
Bpavg for all the unassigned subtasks at node n. The 
lower bound estimate of the Bpavg is calculated by 
assuming that every unassigned subtask is assigned to 
a machine that increases the Bpavg of the system by the 
least amount.  

The cost function for node n is then given by 

( ) 22 p(n)f(n)c(n) +×= µ , where µ is a weighting 
factor. Different values of the weighting factor µ were 
considered for this study. The weighting factor of µ = 
0.07 was found to give the best value of Bpavg within 
the time and energy constraints for all the scenarios 
and hence was selected for this study. 

The A* heuristic can be summarized by the 
following procedure. 
1. A valid scheduling order of subtasks that satisfies 

the precedence constraints for the entire task is 
first generated.  

2. All subtasks are then considered for mapping in 
the order that they are in this valid schedule.  

3. The root node generates eight nodes (partial 
mappings) by allocating the first mappable subtask 
to each of the eight machines.  

4. After a parent node generates child nodes, it 
becomes inactive (i.e., it is not eligible for further 
expansion). The new nodes created are considered 
to be active nodes and are stored in a node list. 
The size of the node list is always kept at 100 by 
retaining only the best 100 active nodes (based on 
c(n)) at any one time. Similar to [6], this is done to 
keep the execution time of the heuristic tractable.  

5. For the next mappable subtask the node with the 
minimum c(n) in the node list is then expanded to 
generate eight more new child nodes 
(corresponding to mapping that task to each of the 
eight machines). 

6. Repeat steps 2 to 5 for every mappable subtask 
until finally a node is expanded to give, eight 
complete mappings. From these eight complete 
mappings, the mapping that gives the best value of 
Bpavg and also meets the energy and time 
constraints is then selected as the final mapping.  

 
Experiments with node lists of sizes larger than 

100 were also conducted. However, it was found that 
there was no significant improvement in the value of 

Bpavg, but the heuristic execution time increased 
considerably. 

 
4.5.  Simplified Lagrangian   
 

Lagrangian based approaches have been applied to 
solve a wide range of complex production scheduling 
problems [16]. The technique used here is a simplified 
version of [16] so that it would be suitable for the 
problem environment in this study. At any time k, if 
the energy remaining in machine j is denoted ER(j, k) 
and the makespan is denoted makespan(k), then the 
Lagrangian equation, L(δ, k) is given by 

[ ]( ).11

)k,(
1

0

τ)makespan(kδ)(

Mk)ER(j,δL
M

j

−−

+∑= 





 −

=
δ

 

Different values of the weighting factor δ were 
considered for this study. The weighting factor of δ = 
0.8 was found to give the best value of Bpavg within the 
time and energy constraints for all the scenarios and 
hence was selected for this study.  

The Simplified Lagrangian (SL) heuristic can be 
summarized by the following procedure. 
1. At every mapping event, the next available 

machine (i.e., the machine with the minimum 
machine availability time) is selected. If one or 
more machines have the same minimum machine 
availability time, then any one of these machines 
is selected randomly. 

2. For the selected machine, the list of mappable 
subtasks is generated. The list of mappable 
subtasks consists of all the subtasks whose 
predecessors have been mapped and can begin 
execution on the selected machine. 

3. Find the potential contribution of each mappable 
subtask in the above list to the system Lagrangian  
(i.e., L(δ, k) ), ignoring other subtasks in the list. 

4. From among the mappable subtasks found in the 
above step find the subtask that gives the largest 
value of the system Lagrangian, L(δ, k). 

5. The subtask found in the above step is then 
removed from the list of mappable subtasks and is 
mapped to its selected machine. 

6. Update the time and energy availability of the 
machine on which the subtask is mapped and also 
across all machines that send global data items to 
the mapped subtask. 

7. Repeat steps 1 to 6 until all the subtasks are 
mapped and calculate the value of Bpavg. 

 
The SL allowed a mappable subtask to be 

scheduled for a time prior to the target machine’s 
availability time if a sufficiently large “hole” in the 
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existing schedule could be found that complied with 
precedence constraints. As a result, the SL-generated 
mappings exhibited a very small makespan as 
compared to all the other heuristics. 

 
4.6.  Genetic Algorithm  
 

This method is similar to the genetic algorithm 
approach used in [22]. The genetic algorithm (GA) 
operates on a population of 100 chromosomes. Each 
chromosome represents one solution to the problem 
and a set of chromosomes is called a population. Each 
chromosome is made of a scheduling string and a 
matching string. The scheduling string is a total 
ordering of the subtasks in the DAG that obeys the 
precedence constraints, while the matching string gives 
the subtask-to-machine assignments. To form a 
scheduling string, the DAG is topologically sorted to 
form a basis scheduling string. Then, for each 
chromosome in the initial population, this basis string 
is mutated (similar to the mutation procedure described 
below) a random number of times to generate 98 other 
valid scheduling strings. The corresponding 99 
matching strings are generated by randomly assigning 
subtasks to machines. The population also includes one 
chromosome (seed) that is the Bottoms Up solution. 
Similar to the approach in [22], these chromosomes 
then undergo selection, crossover, mutation, and 
evaluation.   

Each chromosome has a fitness value (Bpavg) 
associated with it. The rank-based roulette wheel 
scheme is used for selection [21]. This scheme 
probabilistically duplicates some chromosomes and 
deletes others, where better mappings have a higher 
probability of being duplicated in the next generation. 
Elitism, the property of guaranteeing the best solution 
remains in the population, is also implemented [20]. 
The population size stays fixed at 100. 

In the crossover step, a pair of parent 
chromosomes is selected from the chromosome 
population. In case of scheduling string crossover, for 
each pair a random cut-off point that cuts the 
scheduling strings into top and bottom parts is 
generated. Then, the subtasks in each bottom part are 
reordered. The new ordering of the subtasks in one 
bottom part is the relative positions of these subtasks in 
the other original scheduling string in the pair, thus 
guaranteeing that the newly generated scheduling 
strings are valid scheduling strings. For matching 
string crossover, again a random cut-off point that cuts 
the matching strings into top and bottom parts is 
generated. Then the machine assignments of the 
subtasks in the bottom parts are exchanged. After the 
crossover operation for both the scheduling and the 
matching strings, the new chromosomes generated are 

evaluated and if the new chromosomes generated do 
not violate energy or time constraints, then they 
replace the parent chromosomes in the population; else 
the new chromosomes are dropped and no child 
chromosomes are created. 

In the mutation step, a parent chromosome is 
selected for mutation from the chromosome population. 
In case of scheduling string mutation, for each chosen 
parent scheduling string, a subtask (called victim 
subtask) is selected randomly. This victim subtask is 
then moved randomly to another position in the 
scheduling string in such a way that it does not violate 
any precedence constraints to obtain a new valid 
scheduling string. In case of matching string mutation, 
for each chosen parent matching string, two 
subtask/machine pairs are selected randomly and their 
machine assignments are swapped. Similar to 
crossover, after the mutation operation for both the 
scheduling and matching strings, the new 
chromosomes generated are evaluated and if the new 
chromosomes generated do not violate energy or time 
constraints, then they replace the parent chromosomes 
in the population; else the new chromosomes are 
dropped and no child chromosomes are created. 

For both crossover and mutation operation, the 
chromosome population is traversed serially, and every 
chromosome is considered for crossover with a 
probability of 40% and for mutation with a probability 
of 20%. Selection, crossover, mutation, and evaluation 
steps constitute a single GA iteration The GA stops 
after a total of 400 iterations. Until the stopping 
criterion is met, the loop repeats, beginning with the 
selection step. At the end of 400 iterations, the 
chromosome that gave the best Bpavg is selected as the 
final mapping. For this study, at any point of time only 
chromosomes that did not violate the energy or time 
constraint were allowed to be in the population and the 
population size was always kept constant at 100 
chromosomes. 

 
4.7.  Lower Bound (LB) 
 

The method developed for estimating a lower 
bound (LB) on Bpavg for this study ignores data 
precedence constraints, inter-machine communications, 
the battery power constraint, andτ. For each subtask (in 
any random order) in the application task, the 
minimum percentage energy it will consume over all 
the machines is found. These minimum percentage 
energy values for all the subtasks are summed up and 
then finally averaged over all machines. This gives us a 
LB on Bpavg. Thus, the LB can be given as  
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5. Results 
 

The simulation results are shown in Figures 2, 3, 
and 4. All heuristics are run for 10 different task graphs 
(DAGs) and 10 different ETCs (i.e., a total of 100 
combinations) and the average values and 95% 
confidence intervals [14] are plotted. The running 
times of the heuristics averaged over 100 trials, 
mapping 1024 subtasks per trial, are shown in Table 2. 

 
 

heuristic 
average execution 
times (seconds) 

Min-Min 19 
Levelized Weight Tuning 670 
Bottoms Up 0.7 
A* 645 
Simplified Lagrangian 1200 
Genetic Algorithm 3200 

 
Table 2: The execution times of the heuristics 
averaged over 100 scenarios (using a typical 1 
GHz unloaded machine). 
 

Among the faster heuristics (i.e., Min-Min and 
Bottoms Up), the Bottoms Up heuristic did slightly 
better than the Min-Min heuristic and gave the best 
Bpavg. Both these heuristics are basically two-phase 
greedy heuristics that optimize a fitness function. The 
major difference between the two is that Min-Min used 
the top to bottom approach beginning from the root 
node to the leaf node of the subtask graph, whereas 
Bottoms Up used the bottom to up approach. 
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Figure 2: The simulation results for Bpavg. 
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Figure 3: The simulation results for makespan. 
 
Overall among all the heuristics, the Genetic 

Algorithm performed the best. This was expected 
because the GA used the Bottoms Up result as a seed 
and also because it used the concept of elitism that 
ensured that the Bpavg of the new solution obtained was 
either better or at least the same as the seed.  

The Simplified Lagrangian had the highest 
average Bpavg because it tried to optimize the makespan 
along with the main objective function of Bpavg. It tried 
to fill in the gaps in the machine subtask queues when 
the machine was not computing and waiting for global 
data items, by allowing a mappable subtask to be 
scheduled for a time prior to the target machine’s 
availability time if it was possible to do so without 
violating precedence constraints. As described below, 
this resulted in a higher average usage of fast 
machines, which in turn leads to a higher Bpavg. As seen 
in Figure 3, the makespan generated by the Simplified 
Lagrangian is significantly less than that of the other 
heuristics. 

Another parameter, called packing density, was 
used to study the behavior of the heuristics for the 
given problem. Packing density is defined as the ratio 
of the total time spent by a machine for subtask 
execution only (ignoring the time required for 
communication) to the total makespan. As seen from 
Figure 4, the Simplified Lagrangian had a higher 
average packing density over all machines, especially 
the fast machines. Thus, for all the heuristics except 
the Simplified Lagrangian, the fast machines had many 
time gaps when the machines were not doing any 
computation but were waiting for global data items. 
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Figure 4: The simulation results for average 
packing density across fast machines and 
slow machines. 

 
6. Summary 
 

Six static heuristics were designed, developed, and 
simulated using the HC environment presented. 
Application tasks composed of communicating 
subtasks with data dependencies were mapped using 
the heuristics described in this research.  

The best Bpavg value was obtained by using the 
Genetic Algorithm and the second best by using 
Bottoms Up. However, the Genetic Algorithm used 
Bottoms Up as a seed and on an average did only 3.9% 
better than Bottoms Up. Also, the time required for the 
Genetic Algorithm itself to execute (i.e., heuristic 
execution time) is extremely high as compared to the 
Bottoms Up heuristic. Thus, Bottoms Up seems to be a 
good choice for the given problem.   
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Appendix 
 
Pseudocode for generating the DAGs 
 
/* input: 
     Na subtask nodes with no predecessors and only 

successors, with id #s  ranging from 1 to Na 
     Nb subtask nodes with both predecessors and  

successors, with id #s ranging from Na+1 to 
Na+Nb 

     Nc subtask nodes with no successors and only 
predecessors, with id #s ranging from Na+Nb+1 
to Na+Nb+Nc  

     maxFanOut, the maximum number of edges out of a 
node 

     minFanOut, the minimum number of edges out of a 
node   

*/ 
/* output: 
     a DAG where all edges point from a smaller id node 

to a larger id node 
*/ 
DAG generator pseudocode 
 
1) for every node with successors, i, 
             /* the maximum number of outgoing edges of 

node i must be equal to the maximum 
fanout or the number of nodes with id larger 
than node i */ 

2)     maxedges = min(maxFanOut, number of  
nodes  with id larger than i) 

3)     generate a random number, j, between 
(minFanOut, maxedges) 

4)     randomly select j nodes with id larger than i 
and  generate an edge from i to each of the j 
nodes, updating the data structures 
accordingly 

5) endfor 
 
/* check for nodes from (Na +1) to (Na+Nb+Nc) that 
do not have an incoming edge*/ 
6. for each node, i,  
7.     if there is no incoming edge 

/* find the first node with id less than i that 
can be used to make an edge to the node i */ 

8.         for k =1 to (i −1) do 
9.               if k does not have max outgoing edges 
10.       generate an edge between the node k   

and the node i, and break out of this for 
loop 

11. else if k has an outgoing edge pointing to a 
node that has more than 1 incoming 
edge 

12.      move the outgoing edge to point to 
node i, and break out of this for loop 

13. endif /* matches the if in Line (9) */ 
14.         endfor /* matches the for in Line (8) */ 
15.      endif /* matches the if in Line (7) */ 
16.  endfor /* matches the for in Line (6) */ 
 
End of DAG generator pseudocode. 
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