
Static Mapping of Subtasks
in a Heterogeneous Ad Hoc Grid Environment

Sameer Shivle1, Ralph Castain1, H. J. Siegel1,2, Anthony A. Maciejewski1,
Tarun Banka2, Kiran Chindam1, Steve Dussinger1,3, Prakash Pichumani1,

Praveen Satyasekaran1, William Saylor1, David Sendek1, J. Sousa1,3,
Jayashree Sridharan1, Prasanna Sugavanam1, and Jose Velazco4

Colorado State University
1Electrical and Computer Engineering Dept.

2Computer Science Dept.
Fort Collins, CO 80523, U.S.A

 {ssameer, hj, aam, kiran, prkash, moses,
jaya, prasanna}@engr.colostate.edu

{rcastain, sendekdm}@lamar.colostate.edu
tarunb@cs.colostate.edu

3HP Technologies
Fort Collins, CO 80528-9544

{sjd, jso}@fc.hp.com

4Abbott Laboratories
Barceloneta, Puerto Rico 00617

jose.velazco@abbott.com

 This research was supported in part by the Colorado State
 University George T. Abell Endowment.

Abstract

An ad hoc grid is a heterogeneous computing and

communication system without a fixed infrastructure;
all of its components are mobile. Energy management
is a major concern in an ad hoc grid. One important
aspect of energy management is to minimize the energy
consumption during a mission. In an ad hoc grid,
communication and computations are deeply
intertwined, and any energy optimization must
consider both types of activities together rather than
separately. The mapping (defined as matching and
scheduling) of tasks onto machines with varied
computational capabilities has been shown, in general,
to be an NP-complete problem. Therefore, heuristic
techniques are required to efficiently map tasks to
machines in an ad hoc grid so as to minimize the
energy consumed due to communication and
computation. This research evaluates and compares
energy management issues for resource allocation in
ad hoc grids using six static heuristics.

1. Introduction and Problem Statement

An ad hoc grid is a heterogeneous computing and
communication system without a fixed infrastructure

(i.e., all of its components are mobile). An ad hoc grid
allows a group of individuals to accomplish a mission
that involves extensive computation and
communication among the grid components, often in a
hostile environment; examples of applications of ad
hoc grids are disaster management, wildfire
prevention, and peacekeeping operations [18]. In all
these cases a grid-like environment is necessary to
reliably support the coordinated effort of a group of
individuals working under extreme conditions. As the
total battery energy available for any of the above
applications is limited, energy management is a major
concern in ad hoc grids. Thus, it becomes necessary to
allocate efficiently the application task to the resources
in the grid to minimize the total battery usage. This
study focuses on this aspect of resource allocation in
an ad hoc grid, where the primary objective is to
minimize the total battery energy used to successfully
accomplish a mission.

For this research, a single, large application task is
considered to be composed of S communicating
subtasks with data dependencies among them. This
application task is to be executed in an ad hoc grid as
part of the mission being conducted.

An important research problem is how to assign
resources to the subtasks (matching) and order the
execution of the subtasks that are matched (scheduling)
to maximize some performance criterion of a

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

heterogeneous computing (HC) system. This procedure
of matching and scheduling is called mapping or
resource allocation. Static mapping refers to the case
where the applications are mapped in an off-line
planning phase [6], e.g., in a production environment.
The mapping problem has been shown, in general, to
be NP-complete (e.g., [8, 10, 12]). Thus, the
development of heuristic techniques to find near-
optimal solutions for the mapping problem is an active
area of research (e.g., [1, 3, 4, 5, 6, 9, 11, 17, 19, 23]).

In this study, we statically (offline) find a resource
allocation for a single application task composed of
communicating subtasks that will be needed for a
mission to be completed. The idea is to come up with a
complete static mapping of subtasks to machines that
could be used later when a particular mission is to be
instantiated (e.g., response to a particular wildfire). The
application would use input data relevant to the
particular mission that is instantiated. The goal is to
map subtasks to machines in such a way as to
minimize the average percentage of the energy
consumed by a machine.

Six static mapping heuristics for this problem are
evaluated and compared in this study through
simulation experiments. The simulated HC
environment consists of M machines in the ad hoc grid.
The estimated expected execution time for each
subtask on each machine is assumed to be known a
priori. The estimated time to compute (ETC) values
(calculated using the gamma distribution method in
[2]) are used by the mapping heuristics. The estimated
execution time of subtask i on machine j is ETC(i, j).
Each machine j has four energy parameters associated
with it:

i. maximum battery energy: B(j);
ii. rate at which it consumes energy for subtask

execution, per ETC time unit: E(j);
iii. rate at which it consumes energy for subtask

communication, per communication time unit:
C(j); and

iv. the machine’s communication bandwidth: BW(j).
Parameters (ii) and (iii) use a simplified model of real
energy consumption.

The energy consumed for executing a single
subtask i on machine j is ETC(i , j) × E(j). The time
required to transfer one bit of a data item between
machine j and machine k is the inter-machine
communication time called CMT(j, k) and is given by:

())(),(min1)(kBWjBWkj,CMT = .
The energy consumed to send a data item g of size

|g| from machine j to machine k is CMT(j, k) × C(j) ×
|g|. Each machine can transmit data to only one
destination at a time, and can do so while it is
computing. A machine can simultaneously handle one

outgoing data transmission and one incoming data
reception. Similar to the study in [22], we assume that:

i. a subtask can send out data only after it has
completed execution; and

ii. a subtask may not begin execution until it
receives all of its input data items.

The ad hoc grid that is considered for this project is
a simplified version of an actual one. The list of
simplifying assumptions that have been made are as
follows:
• the energy consumed by a subtask to receive a

data item is ignored;
• any initial data (i.e., data not generated during

execution of the application task) is preloaded
before the actual execution of the application task
begins;

• a machine consumes no energy if it is idle (i.e., not
computing or not transmitting).
The performance metric is based on the energy

consumption across all the machines in the ad hoc grid.
The total battery energy consumed by a machine j after
the entire task has been completed is given by EC(j).
The performance metric, Bpavg used to evaluate the
mapping is defined as the percentage of energy
consumed by each machine to complete the entire task,
averaged across all machines, and is given by

()

M

jBjEC

B

M

j
pavg

∑
−

=
=

1

0
)()(

.

The goal of this study is to map all the subtasks to
machines in such a way as to minimize Bpavg, while
meeting an application execution time constraint τ. Six
static mapping schemes are studied in this paper: Min-
Min, Levelized Weight Tuning, Genetic Algorithm,
Simplified Lagrangian, Bottoms Up, and A*. The
makespan is defined as the overall execution time of
the application task on the machine suite in the ad hoc
grid. So the final makespan of all mappings has to be
less than or equal to τ. The wall clock time for each
mapper itself to execute is required to be less than or
equal to 60 minutes on a typical unloaded 1 GHz
desktop machine.

The next section describes the simulation setup
used for this research. Section 3 provides a list of some
of the literature related to this work. In Section 4, the
heuristics studied in this research are presented.
Section 5 describes the results, and the last section
gives a brief summary of this research.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

2. Simulation Setup

In this study, the application task is composed of
1024 communicating subtasks. This large number of
subtasks is chosen to present a significant mapping
challenge for each heuristic.

The data dependencies among the subtasks are
represented by a directed acyclic graph (DAG). The
pseudocode to generate the DAG is given in the
appendix of this paper. For this study, ten different
DAGs are developed. The maximum fan-in and fan-out
values for all the ten DAGs generated are twelve and
two, respectively. Also, for each DAG there are seven
subtasks with no predecessors, seven subtasks with no
successors, and the remaining 1010 subtasks have
predecessors and successors. The sizes of the global
data items to be transferred from one subtask to
another are sampled from a Gamma distribution, with a
mean value of 2.8 megabits and a variance of 1.4
megabits.

There are a total of eight machines in the
simulated ad hoc grid, and these are divided equally
into two classes: “fast machines” and “slow machines.”
The ETC matrices are setup such that machines 0 to 3
are fast machines, while machines 4 to 7 are slow
machines. There are eight communication channels
available that allow the eight machines to
communicate simultaneously with each other.

The ETC values for all subtasks, taking
heterogeneity into consideration, are generated using
the Gamma distribution method described in [2]. For
this research, a task mean and coefficient of variation
(COV) are used to generate the ETC matrices. The
mean subtask execution time is chosen to be 100
seconds and a COV of 0.9 is used to generate an ETC
matrix with high task and high machine heterogeneity.
For this study, ten different ETC matrices are
generated.

To obtain the two classes of machines, all the ETC
values for the slow machines are adjusted by a
multiplicative factor (MF). For each subtask i the ratio
diffi, of the ETC value of the fastest slow machine to
the ETC value of the slowest fast machine is calculated
as

 diffi = 







∈

∈

[0,3]for),(max

[4,7]for),(min

jjiETC

jjiETC .

Then the value of MF is given by
MF = 2 / (min diffi for i ∈ [0, 1023]).
All the ETC values for the slow machines are now
multiplied by the MF to get the new adjusted values.
After creating the two classes of machines, the new
mean estimated execution time for a single subtask is
131 seconds. For this study, across all the subtasks in
an ETC matrix, the average fastest machine is

approximately ten times faster than the average slowest
machine.

 fast machines slow machines

B(j) 580 energy units 58 energy units

C(j) 0.2 energy units/
sec

0.002 energy
units/sec

E(j) 0.1 energy units/
sec

0.001 energy
units/sec

BW(j) 8 megabits/sec 4 megabits/sec

Table 1: The values of B(j), C(j), E(j), and BW(j)
for fast and slow machines.

The values of B(j), C(j), E(j), and BW(j) for both
fast and slow machines are shown in Table 1. These
values represent a rough industry average based on
microprocessors and battery capacity selected on
currently commercially available machines. Fast
machines are typified by the DELL Precision M60
notebook computer using an Intel MP4M processor
operating at 1.7GHz. The statistics for the slow
machines are typical personal digital assistant (PDA)
computers, such as the DELL Axim X5 that uses an
Intel PXA255 processor operating at 400 MHz.

The value of the time constraintτ is chosen so that
it prevents any heuristic from mapping subtasks only to
slow machines, which consume less energy to execute
a subtask. A simple greedy mapping heuristic was used
to determine the value of τ as 34075 seconds. The
performance of each heuristic is studied across 100
different scenarios, where each scenario is a
combination of one of the task graphs and one of the
ETC matrices.

3. Related Work

The literature was examined to select a set of
heuristics appropriate for the HC environment
considered here. The nature of the DAGs used in this
study are similar to those used in [22]. Similar to [22],
this study also has a single application that is
decomposed into a number of communicating subtasks
with data dependencies among them, represented by a
directed acyclic graph.

Three of the six heuristics presented in this paper,
namely Min-Min, Genetic Algorithm, and A*, have
been used previously to map tasks onto heterogeneous
machines (e.g., [6]). However unlike [6], where the
goal was to minimize the total time required to
complete an application task, the goal of our study is to
minimize the average percentage of energy consumed
by the machines, in addition to complete the entire task

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

within a time constraint. The Min-Min heuristic has
proven to be a good heuristic for dynamic and static
mapping problems in earlier studies (e.g., [6, 17]). The
Bottoms Up heuristic used in this study is a variation
of the Min-Min heuristic. Bottoms Up assigns tasks to
machines in a manner similar to the Min-Min heuristic,
but considers tasks for scheduling in a different
manner. Genetic Algorithms are a technique used for
searching large solution spaces and have been used for
mapping subtasks to machines in a HC environment
(e.g., [6, 21, 22]). The Genetic Algorithm used in this
study is a slightly modified version of the one used in
[22]. A* is a search technique based on a tree and has
been used for many task allocation problems (e.g., [6,
15, 7]). A* has been selected for this study because the
application task is represented in the form of a DAG,
and A* has been found to be highly effective in
searching a tree or graph [15]. The Simplified
Lagrangian heuristic presented in this paper is a
modified version of the one used in [16]. Lagrangian
relaxation techniques have been used in [16] for job
scheduling in an industrial environment.

4. Heuristics

For all the six heuristics except Bottoms Up, only
the subtasks whose predecessors had been fully
mapped could be considered during a given mapping
iteration (referred to as mappable subtasks). Also, for
the final mapping of all the six heuristics, the energy
constraint is that B(j) is not exceeded for any machine,
and the time constraint is that the execution time of the
application does not exceedτ. This section describes
the six heuristics and a lower bound on the objective
function.

4.1. Min-Min

Based on the Min-Min concept in [12], this
heuristic utilized a fitness function to evaluate all
mappable subtasks. The fitness function is chosen such
that it would reflect the change in Bpavg and also the
change in the makespan of the system if a subtask is
mapped on to a machine. Let PBpavg(i, j) be the partial
Bpavg of the system, and let PCT(i, j) be the partial
completion time of machine j normalized with respect
to τ, if subtask i was mapped to machine j. Then using
α as a weighting parameter, the fitness value f(i, j) of
any subtask i on machine j is calculated as:
 f(i, j) = α × PBpavg(i, j) + ((1 − α) × PCT(i, j)).

The Min-Min heuristic can be summarized by the
following procedure.
1. A list of mappable subtasks is created. Initially

this list consists of subtasks with no predecessors.

2. For each subtask i in the above list, across all
machines find the machine j that gives the subtask
its minimum fitness value f(i, j), ignoring other
subtasks in the list. This is the first “Min.”

3. From among all the subtask/machine pairs found
in step 2, find the pair that gives the minimum
fitness value. This is the second “Min.”

4. The subtask found in the above step is then
removed from the list of mappable subtasks and is
mapped to its paired machine.

5. Update the time and energy availability of the
machine on which the subtask is mapped and also
across all machines that send global data items to
the mapped subtask.

6. The set of mappable subtasks is updated to include
any other new subtasks whose precedence
constraints have now been met.

7. Repeat steps 2 to 6 until all the subtasks are
mapped and calculate the value of Bpavg.

The procedure from step 1 to step 7 is carried out

for eleven different values of the weighting factor α to
get eleven different mappings. The value of α was
varied from 0 to 1 in steps of 0.1. From among the
eleven different mappings, the mapping that gave the
smallest value of Bpavg and also met the energy and
time constraints is chosen as the final mapping.

4.2. Levelized Weight Tuning

In a manner similar to that used in [13] and as
shown in Figure 1, the Levelized Weight Tuning
(LWT) heuristic assigns subtasks to different levels
depending on the data precedence constraints.

Figure 1: Levelizing of subtasks S0, S1, S2, S3,
S4, and S5 for a given sample DAG.

 The lowest level consists of subtasks with no

predecessors and the highest level consists of subtasks

level 0
(lowest level)

level 3
(highest level)

S0

S3

S1

S2

S4

S5

level 2

level 1

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

with no successors. Each of the rest of the subtasks is
at one level below the lowest producer of its global
data items. Starting from the lowest level, each subtask
on its respective level is assigned a priority based on
the total size (sum) of its output global data items. The
subtasks with larger sums of output global data items
have a higher priority on their respective level.

The LWT heuristic can be summarized by the
following procedure.
1. All the subtasks are first assigned levels depending

on the precedence constraints. Subtasks on each
level are assigned a priority as described above.

2. Starting from the lowest to the highest level,
subtasks are considered for mapping by levels
(from low level to high level), and by priorities
(from high priority to low priority) within levels.

3. Every time a subtask is considered for mapping,
find a machine M1 that will increase the current
Bpavg of the system by the least percentage. Let
this least percentage increase in Bpavg be MinBpavg.
Also, find a machine M2 that will increase the
current makespan of the system by the least
percentage. Let this least percentage increase in
makespan be MinMspan. A threshold factor η,
which is the ratio of makespan to τ is calculated.

4. If η > 0.9,
then the subtask is mapped to machine M2,

else
 if ((1 − Bpavg) × MinBpavg) > (Bpavg × MinMspan)

then the subtask is mapped to machine
M1

 else, the subtask is mapped to machine M2.
5. Update the time and energy availability of the

machine on which the subtask is mapped and also
across all machines that send global data items to
the mapped subtask.

6. Repeat steps 2 to 5 until all the subtasks are
mapped and calculate the final value of Bpavg.

4.3. Bottoms Up

The Bottoms Up (BU) heuristic assigns subtasks

to levels in a manner similar to the LWT heuristic.
However, unlike LWT, the BU heuristic begins by
mapping subtasks from the highest level. Thus, for the
BU heuristic, the set of mappable subtasks at any given
time consists of all subtasks that either have no
successors or subtasks whose successors have
previously been mapped. Subtasks in each level are
randomly selected for mapping.

Let the time for execution and communication of
subtask i on machine j, normalized with respect to the
maximum time required for execution and
communication by subtask i across all machines be
NT(i, j). Let the energy consumed for execution and

output communication of subtask i on machine j,
normalized with respect to the maximum energy
consumed for execution and output communication of
subtask i across all machines, be NE(i, j). Then, using
β as a weighting parameter, the fitness value γij is
calculated as
γij = (β × NT(i, j)) + ((1 − β) × NE(i, j)).
Different values of the weighting factor β were
considered for this study. The weighting factor of β =
0.52 was found to give the best value of Bpavg within
the time and energy constraints for all the scenarios
and hence was selected for this study.

The BU heuristic can be summarized by the
following procedure.
1. All the subtasks are first assigned levels depending

on the precedence constraints as explained above.
2. Starting from the highest level to the lowest level,

all mappable subtasks are considered randomly for
mapping within the respective level

3. For each mappable subtask i, at the current level
and across all machines find the machine j that
gives the subtask its minimum fitness value γij,
ignoring other subtasks on that level.

4. From among all the subtask/machine pairs found
in the above step, find the pair that gives the
minimum fitness value.

5. The subtask found in the above step is then
assigned to its paired machine.

6. Repeat steps 2 to 5 for each level (from highest to
lowest level) until all subtasks are assigned
machines.

7. After all subtasks are assigned machines, they are
scheduled in the reverse order they were matched.

8. The entire mapping is then evaluated and the final
value of Bpavg is calculated.

4.4. A*

The A* technique used in this study is similar to
that used in [6, 7]. A* is a tree-search algorithm,
beginning at a root node that is a null solution. As the
tree grows, nodes represent partial mappings (a subset
of subtasks is assigned to machines). The partial
mapping (solution) of a child node has one more
subtask mapped than the parent node. For each node n,
a cost function c(n) is calculated as follows:

Let g(n) be the maximum of the machine
completion times for the subtasks mapped through
node n and h(n) be a lower bound estimate of the
completion time of all the unassigned subtasks at node
n. Let mmct(n) be the maximum of the minimum
machine completion times over all unassigned subtasks
at node n. Then the function h(n) is defined as

()().)()(,0max)(ngnmmctnh −=

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

The function f(n) that is an estimate of the time
required to complete all the subtasks, normalized with
respect to τ, is given by

() .)()()(τnhngnf +=
The function p(n) is the lower bound of the

estimated energy consumption through node n. It is
defined as the sum of the Bpavg of all the assigned
subtasks at node n and the lower bound estimate of the
Bpavg for all the unassigned subtasks at node n. The
lower bound estimate of the Bpavg is calculated by
assuming that every unassigned subtask is assigned to
a machine that increases the Bpavg of the system by the
least amount.

The cost function for node n is then given by

() 22 p(n)f(n)c(n) +×= µ , where µ is a weighting
factor. Different values of the weighting factor µ were
considered for this study. The weighting factor of µ =
0.07 was found to give the best value of Bpavg within
the time and energy constraints for all the scenarios
and hence was selected for this study.

The A* heuristic can be summarized by the
following procedure.
1. A valid scheduling order of subtasks that satisfies

the precedence constraints for the entire task is
first generated.

2. All subtasks are then considered for mapping in
the order that they are in this valid schedule.

3. The root node generates eight nodes (partial
mappings) by allocating the first mappable subtask
to each of the eight machines.

4. After a parent node generates child nodes, it
becomes inactive (i.e., it is not eligible for further
expansion). The new nodes created are considered
to be active nodes and are stored in a node list.
The size of the node list is always kept at 100 by
retaining only the best 100 active nodes (based on
c(n)) at any one time. Similar to [6], this is done to
keep the execution time of the heuristic tractable.

5. For the next mappable subtask the node with the
minimum c(n) in the node list is then expanded to
generate eight more new child nodes
(corresponding to mapping that task to each of the
eight machines).

6. Repeat steps 2 to 5 for every mappable subtask
until finally a node is expanded to give, eight
complete mappings. From these eight complete
mappings, the mapping that gives the best value of
Bpavg and also meets the energy and time
constraints is then selected as the final mapping.

Experiments with node lists of sizes larger than

100 were also conducted. However, it was found that
there was no significant improvement in the value of

Bpavg, but the heuristic execution time increased
considerably.

4.5. Simplified Lagrangian

Lagrangian based approaches have been applied to
solve a wide range of complex production scheduling
problems [16]. The technique used here is a simplified
version of [16] so that it would be suitable for the
problem environment in this study. At any time k, if
the energy remaining in machine j is denoted ER(j, k)
and the makespan is denoted makespan(k), then the
Lagrangian equation, L(δ, k) is given by

[]().11

)k,(
1

0

τ)makespan(kδ)(

Mk)ER(j,δL
M

j

−−

+∑= 





 −

=
δ

Different values of the weighting factor δ were
considered for this study. The weighting factor of δ =
0.8 was found to give the best value of Bpavg within the
time and energy constraints for all the scenarios and
hence was selected for this study.

The Simplified Lagrangian (SL) heuristic can be
summarized by the following procedure.
1. At every mapping event, the next available

machine (i.e., the machine with the minimum
machine availability time) is selected. If one or
more machines have the same minimum machine
availability time, then any one of these machines
is selected randomly.

2. For the selected machine, the list of mappable
subtasks is generated. The list of mappable
subtasks consists of all the subtasks whose
predecessors have been mapped and can begin
execution on the selected machine.

3. Find the potential contribution of each mappable
subtask in the above list to the system Lagrangian
(i.e., L(δ, k)), ignoring other subtasks in the list.

4. From among the mappable subtasks found in the
above step find the subtask that gives the largest
value of the system Lagrangian, L(δ, k).

5. The subtask found in the above step is then
removed from the list of mappable subtasks and is
mapped to its selected machine.

6. Update the time and energy availability of the
machine on which the subtask is mapped and also
across all machines that send global data items to
the mapped subtask.

7. Repeat steps 1 to 6 until all the subtasks are
mapped and calculate the value of Bpavg.

The SL allowed a mappable subtask to be

scheduled for a time prior to the target machine’s
availability time if a sufficiently large “hole” in the

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

existing schedule could be found that complied with
precedence constraints. As a result, the SL-generated
mappings exhibited a very small makespan as
compared to all the other heuristics.

4.6. Genetic Algorithm

This method is similar to the genetic algorithm
approach used in [22]. The genetic algorithm (GA)
operates on a population of 100 chromosomes. Each
chromosome represents one solution to the problem
and a set of chromosomes is called a population. Each
chromosome is made of a scheduling string and a
matching string. The scheduling string is a total
ordering of the subtasks in the DAG that obeys the
precedence constraints, while the matching string gives
the subtask-to-machine assignments. To form a
scheduling string, the DAG is topologically sorted to
form a basis scheduling string. Then, for each
chromosome in the initial population, this basis string
is mutated (similar to the mutation procedure described
below) a random number of times to generate 98 other
valid scheduling strings. The corresponding 99
matching strings are generated by randomly assigning
subtasks to machines. The population also includes one
chromosome (seed) that is the Bottoms Up solution.
Similar to the approach in [22], these chromosomes
then undergo selection, crossover, mutation, and
evaluation.

Each chromosome has a fitness value (Bpavg)
associated with it. The rank-based roulette wheel
scheme is used for selection [21]. This scheme
probabilistically duplicates some chromosomes and
deletes others, where better mappings have a higher
probability of being duplicated in the next generation.
Elitism, the property of guaranteeing the best solution
remains in the population, is also implemented [20].
The population size stays fixed at 100.

In the crossover step, a pair of parent
chromosomes is selected from the chromosome
population. In case of scheduling string crossover, for
each pair a random cut-off point that cuts the
scheduling strings into top and bottom parts is
generated. Then, the subtasks in each bottom part are
reordered. The new ordering of the subtasks in one
bottom part is the relative positions of these subtasks in
the other original scheduling string in the pair, thus
guaranteeing that the newly generated scheduling
strings are valid scheduling strings. For matching
string crossover, again a random cut-off point that cuts
the matching strings into top and bottom parts is
generated. Then the machine assignments of the
subtasks in the bottom parts are exchanged. After the
crossover operation for both the scheduling and the
matching strings, the new chromosomes generated are

evaluated and if the new chromosomes generated do
not violate energy or time constraints, then they
replace the parent chromosomes in the population; else
the new chromosomes are dropped and no child
chromosomes are created.

In the mutation step, a parent chromosome is
selected for mutation from the chromosome population.
In case of scheduling string mutation, for each chosen
parent scheduling string, a subtask (called victim
subtask) is selected randomly. This victim subtask is
then moved randomly to another position in the
scheduling string in such a way that it does not violate
any precedence constraints to obtain a new valid
scheduling string. In case of matching string mutation,
for each chosen parent matching string, two
subtask/machine pairs are selected randomly and their
machine assignments are swapped. Similar to
crossover, after the mutation operation for both the
scheduling and matching strings, the new
chromosomes generated are evaluated and if the new
chromosomes generated do not violate energy or time
constraints, then they replace the parent chromosomes
in the population; else the new chromosomes are
dropped and no child chromosomes are created.

For both crossover and mutation operation, the
chromosome population is traversed serially, and every
chromosome is considered for crossover with a
probability of 40% and for mutation with a probability
of 20%. Selection, crossover, mutation, and evaluation
steps constitute a single GA iteration The GA stops
after a total of 400 iterations. Until the stopping
criterion is met, the loop repeats, beginning with the
selection step. At the end of 400 iterations, the
chromosome that gave the best Bpavg is selected as the
final mapping. For this study, at any point of time only
chromosomes that did not violate the energy or time
constraint were allowed to be in the population and the
population size was always kept constant at 100
chromosomes.

4.7. Lower Bound (LB)

The method developed for estimating a lower
bound (LB) on Bpavg for this study ignores data
precedence constraints, inter-machine communications,
the battery power constraint, andτ. For each subtask (in
any random order) in the application task, the
minimum percentage energy it will consume over all
the machines is found. These minimum percentage
energy values for all the subtasks are summed up and
then finally averaged over all machines. This gives us a
LB on Bpavg. Thus, the LB can be given as

.]7,0[
)(

)(),(
min

1 1

0
∑ ∈

×−

=














×

S

i
jfor

jB
jEjiETC

M

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

5. Results

The simulation results are shown in Figures 2, 3,
and 4. All heuristics are run for 10 different task graphs
(DAGs) and 10 different ETCs (i.e., a total of 100
combinations) and the average values and 95%
confidence intervals [14] are plotted. The running
times of the heuristics averaged over 100 trials,
mapping 1024 subtasks per trial, are shown in Table 2.

heuristic
average execution
times (seconds)

Min-Min 19
Levelized Weight Tuning 670
Bottoms Up 0.7
A* 645
Simplified Lagrangian 1200
Genetic Algorithm 3200

Table 2: The execution times of the heuristics
averaged over 100 scenarios (using a typical 1
GHz unloaded machine).

Among the faster heuristics (i.e., Min-Min and
Bottoms Up), the Bottoms Up heuristic did slightly
better than the Min-Min heuristic and gave the best
Bpavg. Both these heuristics are basically two-phase
greedy heuristics that optimize a fitness function. The
major difference between the two is that Min-Min used
the top to bottom approach beginning from the root
node to the leaf node of the subtask graph, whereas
Bottoms Up used the bottom to up approach.

0

0.1

0.2

0.3

0.4

0.5

0.6

M
in

-M
in

L
e

ve
liz

e
d

B
o

tto
m

s
u

p

S
im

p
lif

ie
d

La
g

ra
n

g
ia

n

A
*

G
e

n
e

tic

Lo
w

e
r

B
o

un
d

B
p

av
g

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 2: The simulation results for Bpavg.

0

5000

10000

15000

20000

25000

30000

35000

M
in

-M
in

L
e

ve
liz

e
d

B
o

tto
m

s
U

p

S
im

p
lif

ie
d

L
a

gr
an

g
ia

n

A
*

G
en

e
tic

m
ak

es
p

an
(s

ec
)

0

5000

10000

15000

20000

25000

30000

35000

Figure 3: The simulation results for makespan.

Overall among all the heuristics, the Genetic

Algorithm performed the best. This was expected
because the GA used the Bottoms Up result as a seed
and also because it used the concept of elitism that
ensured that the Bpavg of the new solution obtained was
either better or at least the same as the seed.

The Simplified Lagrangian had the highest
average Bpavg because it tried to optimize the makespan
along with the main objective function of Bpavg. It tried
to fill in the gaps in the machine subtask queues when
the machine was not computing and waiting for global
data items, by allowing a mappable subtask to be
scheduled for a time prior to the target machine’s
availability time if it was possible to do so without
violating precedence constraints. As described below,
this resulted in a higher average usage of fast
machines, which in turn leads to a higher Bpavg. As seen
in Figure 3, the makespan generated by the Simplified
Lagrangian is significantly less than that of the other
heuristics.

Another parameter, called packing density, was
used to study the behavior of the heuristics for the
given problem. Packing density is defined as the ratio
of the total time spent by a machine for subtask
execution only (ignoring the time required for
communication) to the total makespan. As seen from
Figure 4, the Simplified Lagrangian had a higher
average packing density over all machines, especially
the fast machines. Thus, for all the heuristics except
the Simplified Lagrangian, the fast machines had many
time gaps when the machines were not doing any
computation but were waiting for global data items.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

M
in

-M
in

L
e

v
e

li
z
e

d

B
o

tt
o

m
s
 U

p

S
im

p
li
fi
e

d
L

a
g

ra
n

g
ia

n

A
*

G
e

n
e

ti
c

a
v

e
ra

g
e

 p
a

c
k

in
g

 d
e

n
s

it
y

average packing
density (fast)
average packing
density (slow)

Figure 4: The simulation results for average
packing density across fast machines and
slow machines.

6. Summary

Six static heuristics were designed, developed, and
simulated using the HC environment presented.
Application tasks composed of communicating
subtasks with data dependencies were mapped using
the heuristics described in this research.

The best Bpavg value was obtained by using the
Genetic Algorithm and the second best by using
Bottoms Up. However, the Genetic Algorithm used
Bottoms Up as a seed and on an average did only 3.9%
better than Bottoms Up. Also, the time required for the
Genetic Algorithm itself to execute (i.e., heuristic
execution time) is extremely high as compared to the
Bottoms Up heuristic. Thus, Bottoms Up seems to be a
good choice for the given problem.

Acknowledgements: The authors thank Shoukat Ali and
Jong-Kook Kim for their valuable comments.

References

[1] S. Ali, J. K. Kim, H. J. Siegel, A. A. Maciejewski, Y.
Yu, S. B. Gundala, S. Gertphol, and V. Prasanna,
“Greedy heuristics for resource allocation in dynamic
distributed real-time heterogeneous computing
systems,” 2002 International Conference on Parallel
and Distributed Processing Techniques and
Applications (PDPTA 2002), June 2002, pp. 519-530.

[2] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and
S. Ali, “Representing task and machine

heterogeneities for heterogeneous computing
systems,” Tamkang Journal of Science and
Engineering, Special 50th Anniversary Issue, Vol. 3,
No. 3, Nov. 2000, pp. 195-207 (invited).

[3] H. Barada, S. M. Sait, and N. Baig, “Task matching
and scheduling in heterogeneous systems using
simulated evolution,” 10th IEEE Heterogeneous
Computing Workshop (HCW 2001), in the CD-ROM
“Proceedings of the 15th International Parallel and
Distributed Processing Symposium (IPDPS 2001),”
paper HCW 15, Apr. 2001.

[4] I. Banicescu and V. Velusamy, “Performance of
scheduling scientific applications with adaptive
weighted factoring,” 10th IEEE Heterogeneous
Computing Workshop (HCW 2001), in the CD-ROM
“Proceedings of the 15th International Parallel and
Distributed Processing Symposium (IPDPS 2001),”
paper HCW 06, Apr. 2001.

[5] T. D. Braun, H. J. Siegel, and A. A. Maciejewski,
“Heterogeneous computing: Goals, methods, and
open problems,” 2001 International Conference on
Parallel and Distributed Processing Techniques and
Applications (PDPTA 2001), June 2001, pp. 1–12
(invited keynote paper).

[6] T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, R. F.
Freund, D. Hensgen, M. Maheswaran, A. I. Reuther,
J. P. Robertson, M. D. Theys, and Bin Yao, “A
comparison of eleven static heuristics for mapping a
class of independent tasks onto heterogeneous
distributed computing systems,” Journal of Parallel
and Distributed Computing, Vol. 61, No. 6, June
2001, pp. 810-837.

[7] K. Chow and B. Liu, “On mapping signal processing
algorithms to a heterogeneous multiprocessor
system,” International Conference on Acoustics,
Speech, and Signal Processing (ICASSP ‘91), Vol. 3,
1991, pp. 1585-1588.

[8] E. G. Coffman, Jr. ed., Computer and Job-Shop
Scheduling Theory, John Wiley & Sons, New York,
NY, 1976.

[9] M. M. Eshaghian, ed., Heterogeneous Computing.
Norwood, MA, Artech House, 1996.

[10] D. Fernandez-Baca, “Allocating modules to
processors in a distributed system,” IEEE Transaction
on Software Engineering, Vol. SE-15, No. 11, Nov.
1989, pp. 1427–1436.

[11] I. Foster and C. Kesselman, eds., The Grid: Blueprint
for a New Computing Infrastructure, San Fransisco,
CA, Morgan Kaufmann, 1999.

[12] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for
scheduling independent tasks on non-identical
processors,” Journal of the ACM, Vol. 24, No. 2, Apr.
1977, pp. 280-289.

[13] M. A. Iverson, F. Ozguner, and G. J. Follen,
“Parallelizing existing applications in a distributed
heterogeneous environment,” 4th IEEE
Heterogeneous Computing Workshop (HCW ’95),
Apr. 1995, pp. 93-100.

[14] R. Jain, “The Art of Computer Systems Performance
Analysis Techniques for Experimental Design,

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Measurement, Simulation, and Modeling,” New
York, Wiley, 1991.

[15] M. Kafil and I. Ahmad, “Optimal task assignment in
heterogeneous distributed computing systems,” IEEE
Concurrency, Vol. 6, No 3, July-Sep. 1998, pp.
42-51.

 [16] P. Luh, X. Zhao, Y. Wang, and L. Thakur,
“Lagrangian relaxation neural networks for job shop
scheduling,” IEEE Transactions on Robotics and
Automation, Vol. 16, No. 1, Feb. 2000, pp. 78-88.

[17] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and
R. F. Freund, “Dynamic mapping of a class of
independent tasks onto heterogeneous computing
systems,” Journal of Parallel and Distributed
Computing, Vol. 59, No. 2, Nov. 1999, pp. 107-121.

[18] D. Marinescu, G. Marinescu, Y. Ji, L. Boloni, and H.
J. Siegel, “Ad hoc grids: Communication and
computing in a power constrained environment,”
Workshop on Energy-Efficient Wireless
Communications and Networks 2003 (EWCN 2003),
cosponsors: IEEE Computer Society and IEEE
Communications Society, Proceedings of the 22nd
International Performance, Computing, and
Communications Conference (IPCCC), Apr. 2003.

[19] Z. Michalewicz and D. B. Fogel, How to Solve It:
Modern Heuristics, New York, NY, Springer-Verlag,
2000.

[20] G. Rudolph, ‘‘Convergence Analysis of Canonical
Genetic Algorithms,’’ IEEE Trans. Neural Networks,
Vol. 5, No. 1, Jan. 1994, pp. 96-101.

[21] M. Srinivas and L. M. Patnaik, “Genetic algorithms:
A survey,” IEEE Computer, Vol. 27, No. 6, June
1994, pp. 17-26.

[22] L. Wang, H. J. Siegel, V. P. Roychowdhury, and A.
A. Maciejewski, “Task matching and scheduling in
heterogeneous computing environments using a
genetic-algorithm-based approach,” Journal of
Parallel and Distributed Computing, Vol. 47, No. 1,
Nov. 25, 1997, pp. 8-22.

[23] M. Y. Wu, W. Shu, and H. Zhang, “Segmented min-
min: A static mapping algorithm for meta-tasks on
heterogeneous computing systems,” 9th IEEE
Heterogeneous Computing Workshop (HCW 2000),
May 2000, pp. 375–385.

Appendix

Pseudocode for generating the DAGs

/* input:
 Na subtask nodes with no predecessors and only

successors, with id #s ranging from 1 to Na
 Nb subtask nodes with both predecessors and

successors, with id #s ranging from Na+1 to
Na+Nb

 Nc subtask nodes with no successors and only
predecessors, with id #s ranging from Na+Nb+1
to Na+Nb+Nc

 maxFanOut, the maximum number of edges out of a
node

 minFanOut, the minimum number of edges out of a
node

*/
/* output:
 a DAG where all edges point from a smaller id node

to a larger id node
*/
DAG generator pseudocode

1) for every node with successors, i,
 /* the maximum number of outgoing edges of

node i must be equal to the maximum
fanout or the number of nodes with id larger
than node i */

2) maxedges = min(maxFanOut, number of
nodes with id larger than i)

3) generate a random number, j, between
(minFanOut, maxedges)

4) randomly select j nodes with id larger than i
and generate an edge from i to each of the j
nodes, updating the data structures
accordingly

5) endfor

/* check for nodes from (Na +1) to (Na+Nb+Nc) that
do not have an incoming edge*/
6. for each node, i,
7. if there is no incoming edge

/* find the first node with id less than i that
can be used to make an edge to the node i */

8. for k =1 to (i −1) do
9. if k does not have max outgoing edges
10. generate an edge between the node k

and the node i, and break out of this for
loop

11. else if k has an outgoing edge pointing to a
node that has more than 1 incoming
edge

12. move the outgoing edge to point to
node i, and break out of this for loop

13. endif /* matches the if in Line (9) */
14. endfor /* matches the for in Line (8) */
15. endif /* matches the if in Line (7) */
16. endfor /* matches the for in Line (6) */

End of DAG generator pseudocode.

Biographies

Sameer Shivle is a graduate student of Colorado State
University pursuing his M.S. degree in Electrical and
Computer Engineering. He received a B.E. degree in

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Electrical Engineering from the Government College
of Engineering, Pune, India. He has worked as a
Software Engineer with Mahindra British Telecom,
India from 2000 to 2001. His fields of interest are
heterogeneous computing, computer architecture,
resource management, and digital system design.

Ralph Castain is currently serving as a Research
Scientist within the Electrical and Computer
Engineering Department at Colorado State University
where he conducts research focused on robust resource
management within distributed computing systems. In
addition, he is leading the Colorado Grid Computing
(COGrid) initiative on behalf of Colorado State
University, an effort that he founded in late 2002 to
create a statewide grid computing system capable of
meeting the needs of industry, government, and
academia of all levels. This initiative is rapidly
gathering momentum, with production capabilities
expected to become operational in early 2004. Prior to
joining the University, he spent eight years in industry
leading technology initiatives, and eleven years at Los
Alamos National Laboratory. While at Los Alamos, he
served as Chief Scientist - Nonproliferation and Arms
Control. His technical paper in the early 1990s on next-
generation methods for proliferation detection has
served as the foundation for the U.S. government's
nonproliferation research program for over ten years.
He received his BS degree from Harvey Mudd College,
and the MS, MSEE, and PhD degrees from Purdue
University.

H. J. Siegel holds the endowed chair position of Abell
Distinguished Professor of Electrical and Computer
Engineering at Colorado State University (CSU),
where he is also a Professor of Computer Science. He
is the Director of the CSU Information Science and
Technology Center (ISTeC). ISTeC a university-wide
organization for promoting, facilitating, and enhancing
CSU’s research, education, and outreach activities
pertaining to the design and innovative application of
computer, communication, and information systems.
Prof. Siegel is a Fellow of the IEEE and a Fellow of
the ACM. From 1976 to 2001, he was a professor in
the School of Electrical and Computer Engineering at
Purdue University. He received a B.S. degree in
electrical engineering and a B.S. degree in
management from the Massachusetts Institute of
Technology (MIT), and the M.A., M.S.E., and Ph.D.
degrees from the Department of Electrical Engineering
and Computer Science at Princeton University. He has
co-authored over 300 technical papers. His research
interests include heterogeneous parallel and distributed
computing, communication networks, parallel
algorithms, parallel machine interconnection networks,

and reconfigurable parallel computer systems. He was
a Coeditor-in-Chief of the Journal of Parallel and
Distributed Computing, and has been on the Editorial
Boards of both the IEEE Transactions on Parallel and
Distributed Systems and the IEEE Transactions on
Computers. He was Program Chair/Co-Chair of three
major international conferences, General Chair/Co-
Chair of four international conferences, and Chair/Co-
Chair of five workshops. He is currently on the
Steering Committees of five continuing
conferences/workshops. He is a member of the Eta
Kappa Nu electrical engineering honor society, the
Sigma Xi science honor society, and the Upsilon Pi
Epsilon computing sciences honor society. An up-to-
date vita is available at www.engr.colostate.edu/~hj.

Anthony A. Maciejewski received the B.S.E.E, M.S.,
and Ph.D. degrees in Electrical Engineering in 1982,
1984, and 1987, respectively, all from The Ohio State
University under the support of an NSF graduate
fellowship. From 1985 to 1986 he was an American
Electronics Association Japan Research Fellow at the
Hitachi Central Research Laboratory in Tokyo, Japan
where he performed work on the development of
parallel processing algorithms for computer graphic
imaging. From 1988 to 2001, he was a Professor of
Electrical and Computer Engineering at Purdue
University. In 2001, he joined Colorado State
University where he is currently the Head of the
Department of Electrical and Computer Engineering.
Prof. Maciejewski’s primary research interests relate to
the analysis, simulation, and control of robotic systems
and he has co-authored over 100 published technical
articles in these areas. He is an Associate Editor for the
IEEE Transactions on Robotics and Automation, a
Regional Editor for the journal Intelligent Automation
and Soft Computing, and was co-guest editor for a
special issue on “Kinematically Redundant Robots” for
the Journal of Intelligent and Robotic Systems. He
serves on the IEEE Administrative Committee for the
Robotics and Automation Society and was the Program
Co-Chair (1997) and Chair (2002) for the International
Conference on Robotics and Automation, as well as
serving as the Chair and on the Program Committee for
numerous other conferences. An up-to-date vita is
available at www.engr.colostate.edu/~aam.

Tarun Banka is currently pursuing Ph.D. in the
Department of Computer Science at Colorado State
University. He received his M.S. in Computer Science
from Colorado State University and B.E. in Computer
Science and Engineering from Punjab Engineering
College, Chandigarh India. He has worked with
Honeywell India as a Software Engineer from 1998 to

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

2000. His research interests are in the field of sensor
networks and distributed computing.

Kiran Chindam is a graduate student of Colorado
State University pursuing a M.S. degree in Electrical
and Computer Engineering. He received his B.Tech.
degree in Electronics and Communication Engineering
from Jawaharlal Nehru Technological University
(JNTU) in 2001. His research interests include VLSI
systems design, heterogeneous, parallel and
reconfigurable computing. He is a student member of
IEEE.

Steve Dussinger received a B.S. in Electrical
Engineering and a B.S. in Computer Engineering in
1999 from the University of Florida. He is currently
pursuing a M.E in Electrical Engineering degree in the
Department of Electrical and Computer Engineering at
Colorado State University. He currently works for
Hewlett Packard in Fort Collins as a VLSI design
engineer. His technical interests include VLSI design
techniques and computer architecture.

Prakash K. Pichumani graduated from the
Department of Electrical and Computer Engineering at
Colorado State University where he received his M.S.
degree in Electrical and Computer Engineering. He
received his Bachelor of Engineering degree in
Electronics and Instrumentation Engineering from
Annamalai University, India. His research interests
include wireless networking, heterogeneous
computing, digital communications, and digital signal
processing.

Praveen Moses Satyasekaran is a graduate student in
the Department of Electrical and Computer
Engineering. He received his B.E. degree from
Bharathiar University, Coimbatore, India. His research
interests include exploring chip level parallelism, VLSI
design, analog IC design, and mixed signal design.

William W. Saylor, PE, is currently working as
consultant for the Department of Defense on several
advanced technology programs and is also in a
graduate program at Colorado State University doing
research on control issues for complex systems. He has
spent the past eight years working in the defense
and energy industries after twelve years at the Los
Alamos National Laboratory, where he was a project
leader for several aerospace and defense efforts. Prior
to that, he worked as a nuclear engineer in the energy
industry and spent nine years in the U. S. Army. He
received his B.S. degree from The United States
Military Academy and an M.S. degree from MIT, and

is a registered professional engineer in Pennsylvania
and Colorado.

David Sendek is pursuing a Ph.D. from the
Department of Electrical and Computer Engineering at
Colorado State University. His main research interest
is in VLSI computer architectures. He received his
B.S. in Mathematics from the College of Charleston in
1981 and his M.S.E.E. from the Naval Postgraduate
School in 1990. Prior to pursuing higher education,
Commander Sendek served in the United States Navy
as an engineer where he managed the acquisition,
research and development, systems engineering, and
life cycle support of military satellite communications
systems and missile weapons systems. During active
duty military service, he obtained advanced level
Defense Acquisition Workforce Improvement Act
certifications in Program Management, Systems
Engineering, and Test and Evaluation Engineering.

JC Sousa is pursuing a M.E in Electrical Engineering
degree in the Department of Electrical and Computer
Engineering at Colorado State University. He received
a B.S. degree in Electrical Engineering from
University of Utah. He is currently employed at
Hewlett Packard and is working on microprocessor
design for servers.

Jayashree Sridharan is a graduate student of
Colorado State University pursuing an M.S. degree in
Electrical and Computer Engineering. She received her
Bachelors degree in Electronics and Communication
Engineering from M. S. Ramaiah Institute of
Technology (affiliated to the Visveswaraiah
Technological University, Karnataka) in 2002. Her
research interests include computer architecture,
system level hardware design, hardware description
languages, and VLSI.

Prasanna V. Sugavanam is pursuing his M.S. degree
in Electrical and Computer Engineering at Colorado
State University, where he is currently a Graduate
Teaching Assistant. He received his Bachelor of
Engineering degree in Electrical and Electronics at
Bharathiar University, India. His current focus includes
heterogeneous computing, computer architecture, re-
configurable and microprocessor based systems. He is
a student member of IEEE Computer Society.

José Velazco received a B.S. degree in Electrical
Engineering from the University of Puerto Rico at
Mayagüez. He then received a M.E. degree from
Colorado State University. He has worked in the
semiconductor industry with Hewlett-Packard in Fort
Collins, CO, and is currently employed by

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Abbott Laboratories in a manufacturing facility in
Barceloneta, PR. His research interests include
VLSI design, analog IC design, networking, and digital
communications.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

